/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <errno.h> #include <fcntl.h> #include <libgen.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/statfs.h> #include <sys/types.h> #include <unistd.h> #include <memory> #include <string> #include <android-base/strings.h> #include "openssl/sha.h" #include "applypatch.h" #include "mtdutils/mtdutils.h" #include "edify/expr.h" #include "ota_io.h" #include "print_sha1.h" static int LoadPartitionContents(const char* filename, FileContents* file); static ssize_t FileSink(const unsigned char* data, ssize_t len, void* token); static int GenerateTarget(FileContents* source_file, const Value* source_patch_value, FileContents* copy_file, const Value* copy_patch_value, const char* source_filename, const char* target_filename, const uint8_t target_sha1[SHA_DIGEST_LENGTH], size_t target_size, const Value* bonus_data); static bool mtd_partitions_scanned = false; // Read a file into memory; store the file contents and associated // metadata in *file. // // Return 0 on success. int LoadFileContents(const char* filename, FileContents* file) { // A special 'filename' beginning with "MTD:" or "EMMC:" means to // load the contents of a partition. if (strncmp(filename, "MTD:", 4) == 0 || strncmp(filename, "EMMC:", 5) == 0) { return LoadPartitionContents(filename, file); } if (stat(filename, &file->st) != 0) { printf("failed to stat \"%s\": %s\n", filename, strerror(errno)); return -1; } std::vector<unsigned char> data(file->st.st_size); FILE* f = ota_fopen(filename, "rb"); if (f == NULL) { printf("failed to open \"%s\": %s\n", filename, strerror(errno)); return -1; } size_t bytes_read = ota_fread(data.data(), 1, data.size(), f); if (bytes_read != data.size()) { printf("short read of \"%s\" (%zu bytes of %zd)\n", filename, bytes_read, data.size()); ota_fclose(f); return -1; } ota_fclose(f); file->data = std::move(data); SHA1(file->data.data(), file->data.size(), file->sha1); return 0; } // Load the contents of an MTD or EMMC partition into the provided // FileContents. filename should be a string of the form // "MTD:<partition_name>:<size_1>:<sha1_1>:<size_2>:<sha1_2>:..." (or // "EMMC:<partition_device>:..."). The smallest size_n bytes for // which that prefix of the partition contents has the corresponding // sha1 hash will be loaded. It is acceptable for a size value to be // repeated with different sha1s. Will return 0 on success. // // This complexity is needed because if an OTA installation is // interrupted, the partition might contain either the source or the // target data, which might be of different lengths. We need to know // the length in order to read from a partition (there is no // "end-of-file" marker), so the caller must specify the possible // lengths and the hash of the data, and we'll do the load expecting // to find one of those hashes. enum PartitionType { MTD, EMMC }; static int LoadPartitionContents(const char* filename, FileContents* file) { std::string copy(filename); std::vector<std::string> pieces = android::base::Split(copy, ":"); if (pieces.size() < 4 || pieces.size() % 2 != 0) { printf("LoadPartitionContents called with bad filename (%s)\n", filename); return -1; } enum PartitionType type; if (pieces[0] == "MTD") { type = MTD; } else if (pieces[0] == "EMMC") { type = EMMC; } else { printf("LoadPartitionContents called with bad filename (%s)\n", filename); return -1; } const char* partition = pieces[1].c_str(); size_t pairs = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename std::vector<size_t> index(pairs); std::vector<size_t> size(pairs); std::vector<std::string> sha1sum(pairs); for (size_t i = 0; i < pairs; ++i) { size[i] = strtol(pieces[i*2+2].c_str(), NULL, 10); if (size[i] == 0) { printf("LoadPartitionContents called with bad size (%s)\n", filename); return -1; } sha1sum[i] = pieces[i*2+3].c_str(); index[i] = i; } // Sort the index[] array so it indexes the pairs in order of increasing size. sort(index.begin(), index.end(), [&](const size_t& i, const size_t& j) { return (size[i] < size[j]); } ); MtdReadContext* ctx = NULL; FILE* dev = NULL; switch (type) { case MTD: { if (!mtd_partitions_scanned) { mtd_scan_partitions(); mtd_partitions_scanned = true; } const MtdPartition* mtd = mtd_find_partition_by_name(partition); if (mtd == NULL) { printf("mtd partition \"%s\" not found (loading %s)\n", partition, filename); return -1; } ctx = mtd_read_partition(mtd); if (ctx == NULL) { printf("failed to initialize read of mtd partition \"%s\"\n", partition); return -1; } break; } case EMMC: dev = ota_fopen(partition, "rb"); if (dev == NULL) { printf("failed to open emmc partition \"%s\": %s\n", partition, strerror(errno)); return -1; } } SHA_CTX sha_ctx; SHA1_Init(&sha_ctx); uint8_t parsed_sha[SHA_DIGEST_LENGTH]; // Allocate enough memory to hold the largest size. std::vector<unsigned char> data(size[index[pairs-1]]); char* p = reinterpret_cast<char*>(data.data()); size_t data_size = 0; // # bytes read so far bool found = false; for (size_t i = 0; i < pairs; ++i) { // Read enough additional bytes to get us up to the next size. (Again, // we're trying the possibilities in order of increasing size). size_t next = size[index[i]] - data_size; if (next > 0) { size_t read = 0; switch (type) { case MTD: read = mtd_read_data(ctx, p, next); break; case EMMC: read = ota_fread(p, 1, next, dev); break; } if (next != read) { printf("short read (%zu bytes of %zu) for partition \"%s\"\n", read, next, partition); return -1; } SHA1_Update(&sha_ctx, p, read); data_size += read; p += read; } // Duplicate the SHA context and finalize the duplicate so we can // check it against this pair's expected hash. SHA_CTX temp_ctx; memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX)); uint8_t sha_so_far[SHA_DIGEST_LENGTH]; SHA1_Final(sha_so_far, &temp_ctx); if (ParseSha1(sha1sum[index[i]].c_str(), parsed_sha) != 0) { printf("failed to parse sha1 %s in %s\n", sha1sum[index[i]].c_str(), filename); return -1; } if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) { // we have a match. stop reading the partition; we'll return // the data we've read so far. printf("partition read matched size %zu sha %s\n", size[index[i]], sha1sum[index[i]].c_str()); found = true; break; } } switch (type) { case MTD: mtd_read_close(ctx); break; case EMMC: ota_fclose(dev); break; } if (!found) { // Ran off the end of the list of (size,sha1) pairs without finding a match. printf("contents of partition \"%s\" didn't match %s\n", partition, filename); return -1; } SHA1_Final(file->sha1, &sha_ctx); data.resize(data_size); file->data = std::move(data); // Fake some stat() info. file->st.st_mode = 0644; file->st.st_uid = 0; file->st.st_gid = 0; return 0; } // Save the contents of the given FileContents object under the given // filename. Return 0 on success. int SaveFileContents(const char* filename, const FileContents* file) { int fd = ota_open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR); if (fd < 0) { printf("failed to open \"%s\" for write: %s\n", filename, strerror(errno)); return -1; } ssize_t bytes_written = FileSink(file->data.data(), file->data.size(), &fd); if (bytes_written != static_cast<ssize_t>(file->data.size())) { printf("short write of \"%s\" (%zd bytes of %zu) (%s)\n", filename, bytes_written, file->data.size(), strerror(errno)); ota_close(fd); return -1; } if (ota_fsync(fd) != 0) { printf("fsync of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } if (ota_close(fd) != 0) { printf("close of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } if (chmod(filename, file->st.st_mode) != 0) { printf("chmod of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } if (chown(filename, file->st.st_uid, file->st.st_gid) != 0) { printf("chown of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } return 0; } // Write a memory buffer to 'target' partition, a string of the form // "MTD:<partition>[:...]" or "EMMC:<partition_device>[:...]". The target name // might contain multiple colons, but WriteToPartition() only uses the first // two and ignores the rest. Return 0 on success. int WriteToPartition(const unsigned char* data, size_t len, const char* target) { std::string copy(target); std::vector<std::string> pieces = android::base::Split(copy, ":"); if (pieces.size() < 2) { printf("WriteToPartition called with bad target (%s)\n", target); return -1; } enum PartitionType type; if (pieces[0] == "MTD") { type = MTD; } else if (pieces[0] == "EMMC") { type = EMMC; } else { printf("WriteToPartition called with bad target (%s)\n", target); return -1; } const char* partition = pieces[1].c_str(); switch (type) { case MTD: { if (!mtd_partitions_scanned) { mtd_scan_partitions(); mtd_partitions_scanned = true; } const MtdPartition* mtd = mtd_find_partition_by_name(partition); if (mtd == NULL) { printf("mtd partition \"%s\" not found for writing\n", partition); return -1; } MtdWriteContext* ctx = mtd_write_partition(mtd); if (ctx == NULL) { printf("failed to init mtd partition \"%s\" for writing\n", partition); return -1; } size_t written = mtd_write_data(ctx, reinterpret_cast<const char*>(data), len); if (written != len) { printf("only wrote %zu of %zu bytes to MTD %s\n", written, len, partition); mtd_write_close(ctx); return -1; } if (mtd_erase_blocks(ctx, -1) < 0) { printf("error finishing mtd write of %s\n", partition); mtd_write_close(ctx); return -1; } if (mtd_write_close(ctx)) { printf("error closing mtd write of %s\n", partition); return -1; } break; } case EMMC: { size_t start = 0; bool success = false; int fd = ota_open(partition, O_RDWR | O_SYNC); if (fd < 0) { printf("failed to open %s: %s\n", partition, strerror(errno)); return -1; } for (size_t attempt = 0; attempt < 2; ++attempt) { if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) { printf("failed seek on %s: %s\n", partition, strerror(errno)); return -1; } while (start < len) { size_t to_write = len - start; if (to_write > 1<<20) to_write = 1<<20; ssize_t written = TEMP_FAILURE_RETRY(ota_write(fd, data+start, to_write)); if (written == -1) { printf("failed write writing to %s: %s\n", partition, strerror(errno)); return -1; } start += written; } if (ota_fsync(fd) != 0) { printf("failed to sync to %s (%s)\n", partition, strerror(errno)); return -1; } if (ota_close(fd) != 0) { printf("failed to close %s (%s)\n", partition, strerror(errno)); return -1; } fd = ota_open(partition, O_RDONLY); if (fd < 0) { printf("failed to reopen %s for verify (%s)\n", partition, strerror(errno)); return -1; } // Drop caches so our subsequent verification read // won't just be reading the cache. sync(); int dc = ota_open("/proc/sys/vm/drop_caches", O_WRONLY); if (TEMP_FAILURE_RETRY(ota_write(dc, "3\n", 2)) == -1) { printf("write to /proc/sys/vm/drop_caches failed: %s\n", strerror(errno)); } else { printf(" caches dropped\n"); } ota_close(dc); sleep(1); // verify if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) { printf("failed to seek back to beginning of %s: %s\n", partition, strerror(errno)); return -1; } unsigned char buffer[4096]; start = len; for (size_t p = 0; p < len; p += sizeof(buffer)) { size_t to_read = len - p; if (to_read > sizeof(buffer)) { to_read = sizeof(buffer); } size_t so_far = 0; while (so_far < to_read) { ssize_t read_count = TEMP_FAILURE_RETRY(ota_read(fd, buffer+so_far, to_read-so_far)); if (read_count == -1) { printf("verify read error %s at %zu: %s\n", partition, p, strerror(errno)); return -1; } if (static_cast<size_t>(read_count) < to_read) { printf("short verify read %s at %zu: %zd %zu %s\n", partition, p, read_count, to_read, strerror(errno)); } so_far += read_count; } if (memcmp(buffer, data+p, to_read) != 0) { printf("verification failed starting at %zu\n", p); start = p; break; } } if (start == len) { printf("verification read succeeded (attempt %zu)\n", attempt+1); success = true; break; } } if (!success) { printf("failed to verify after all attempts\n"); return -1; } if (ota_close(fd) != 0) { printf("error closing %s (%s)\n", partition, strerror(errno)); return -1; } sync(); break; } } return 0; } // Take a string 'str' of 40 hex digits and parse it into the 20 // byte array 'digest'. 'str' may contain only the digest or be of // the form "<digest>:<anything>". Return 0 on success, -1 on any // error. int ParseSha1(const char* str, uint8_t* digest) { const char* ps = str; uint8_t* pd = digest; for (int i = 0; i < SHA_DIGEST_LENGTH * 2; ++i, ++ps) { int digit; if (*ps >= '0' && *ps <= '9') { digit = *ps - '0'; } else if (*ps >= 'a' && *ps <= 'f') { digit = *ps - 'a' + 10; } else if (*ps >= 'A' && *ps <= 'F') { digit = *ps - 'A' + 10; } else { return -1; } if (i % 2 == 0) { *pd = digit << 4; } else { *pd |= digit; ++pd; } } if (*ps != '\0') return -1; return 0; } // Search an array of sha1 strings for one matching the given sha1. // Return the index of the match on success, or -1 if no match is // found. int FindMatchingPatch(uint8_t* sha1, char* const * const patch_sha1_str, int num_patches) { uint8_t patch_sha1[SHA_DIGEST_LENGTH]; for (int i = 0; i < num_patches; ++i) { if (ParseSha1(patch_sha1_str[i], patch_sha1) == 0 && memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) { return i; } } return -1; } // Returns 0 if the contents of the file (argv[2]) or the cached file // match any of the sha1's on the command line (argv[3:]). Returns // nonzero otherwise. int applypatch_check(const char* filename, int num_patches, char** const patch_sha1_str) { FileContents file; // It's okay to specify no sha1s; the check will pass if the // LoadFileContents is successful. (Useful for reading // partitions, where the filename encodes the sha1s; no need to // check them twice.) if (LoadFileContents(filename, &file) != 0 || (num_patches > 0 && FindMatchingPatch(file.sha1, patch_sha1_str, num_patches) < 0)) { printf("file \"%s\" doesn't have any of expected " "sha1 sums; checking cache\n", filename); // If the source file is missing or corrupted, it might be because // we were killed in the middle of patching it. A copy of it // should have been made in CACHE_TEMP_SOURCE. If that file // exists and matches the sha1 we're looking for, the check still // passes. if (LoadFileContents(CACHE_TEMP_SOURCE, &file) != 0) { printf("failed to load cache file\n"); return 1; } if (FindMatchingPatch(file.sha1, patch_sha1_str, num_patches) < 0) { printf("cache bits don't match any sha1 for \"%s\"\n", filename); return 1; } } return 0; } int ShowLicenses() { ShowBSDiffLicense(); return 0; } ssize_t FileSink(const unsigned char* data, ssize_t len, void* token) { int fd = *static_cast<int*>(token); ssize_t done = 0; ssize_t wrote; while (done < len) { wrote = TEMP_FAILURE_RETRY(ota_write(fd, data+done, len-done)); if (wrote == -1) { printf("error writing %zd bytes: %s\n", (len-done), strerror(errno)); return done; } done += wrote; } return done; } ssize_t MemorySink(const unsigned char* data, ssize_t len, void* token) { std::string* s = static_cast<std::string*>(token); s->append(reinterpret_cast<const char*>(data), len); return len; } // Return the amount of free space (in bytes) on the filesystem // containing filename. filename must exist. Return -1 on error. size_t FreeSpaceForFile(const char* filename) { struct statfs sf; if (statfs(filename, &sf) != 0) { printf("failed to statfs %s: %s\n", filename, strerror(errno)); return -1; } return sf.f_bsize * sf.f_bavail; } int CacheSizeCheck(size_t bytes) { if (MakeFreeSpaceOnCache(bytes) < 0) { printf("unable to make %ld bytes available on /cache\n", (long)bytes); return 1; } else { return 0; } } // This function applies binary patches to files in a way that is safe // (the original file is not touched until we have the desired // replacement for it) and idempotent (it's okay to run this program // multiple times). // // - if the sha1 hash of <target_filename> is <target_sha1_string>, // does nothing and exits successfully. // // - otherwise, if the sha1 hash of <source_filename> is one of the // entries in <patch_sha1_str>, the corresponding patch from // <patch_data> (which must be a VAL_BLOB) is applied to produce a // new file (the type of patch is automatically detected from the // blob data). If that new file has sha1 hash <target_sha1_str>, // moves it to replace <target_filename>, and exits successfully. // Note that if <source_filename> and <target_filename> are not the // same, <source_filename> is NOT deleted on success. // <target_filename> may be the string "-" to mean "the same as // source_filename". // // - otherwise, or if any error is encountered, exits with non-zero // status. // // <source_filename> may refer to a partition to read the source data. // See the comments for the LoadPartitionContents() function above // for the format of such a filename. int applypatch(const char* source_filename, const char* target_filename, const char* target_sha1_str, size_t target_size, int num_patches, char** const patch_sha1_str, Value** patch_data, Value* bonus_data) { printf("patch %s: ", source_filename); if (target_filename[0] == '-' && target_filename[1] == '\0') { target_filename = source_filename; } uint8_t target_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(target_sha1_str, target_sha1) != 0) { printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str); return 1; } FileContents copy_file; FileContents source_file; const Value* source_patch_value = NULL; const Value* copy_patch_value = NULL; // We try to load the target file into the source_file object. if (LoadFileContents(target_filename, &source_file) == 0) { if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) { // The early-exit case: the patch was already applied, this file // has the desired hash, nothing for us to do. printf("already %s\n", short_sha1(target_sha1).c_str()); return 0; } } if (source_file.data.empty() || (target_filename != source_filename && strcmp(target_filename, source_filename) != 0)) { // Need to load the source file: either we failed to load the // target file, or we did but it's different from the source file. source_file.data.clear(); LoadFileContents(source_filename, &source_file); } if (!source_file.data.empty()) { int to_use = FindMatchingPatch(source_file.sha1, patch_sha1_str, num_patches); if (to_use >= 0) { source_patch_value = patch_data[to_use]; } } if (source_patch_value == NULL) { source_file.data.clear(); printf("source file is bad; trying copy\n"); if (LoadFileContents(CACHE_TEMP_SOURCE, ©_file) < 0) { // fail. printf("failed to read copy file\n"); return 1; } int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1_str, num_patches); if (to_use >= 0) { copy_patch_value = patch_data[to_use]; } if (copy_patch_value == NULL) { // fail. printf("copy file doesn't match source SHA-1s either\n"); return 1; } } return GenerateTarget(&source_file, source_patch_value, ©_file, copy_patch_value, source_filename, target_filename, target_sha1, target_size, bonus_data); } /* * This function flashes a given image to the target partition. It verifies * the target cheksum first, and will return if target has the desired hash. * It checks the checksum of the given source image before flashing, and * verifies the target partition afterwards. The function is idempotent. * Returns zero on success. */ int applypatch_flash(const char* source_filename, const char* target_filename, const char* target_sha1_str, size_t target_size) { printf("flash %s: ", target_filename); uint8_t target_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(target_sha1_str, target_sha1) != 0) { printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str); return 1; } FileContents source_file; std::string target_str(target_filename); std::vector<std::string> pieces = android::base::Split(target_str, ":"); if (pieces.size() != 2 || (pieces[0] != "MTD" && pieces[0] != "EMMC")) { printf("invalid target name \"%s\"", target_filename); return 1; } // Load the target into the source_file object to see if already applied. pieces.push_back(std::to_string(target_size)); pieces.push_back(target_sha1_str); std::string fullname = android::base::Join(pieces, ':'); if (LoadPartitionContents(fullname.c_str(), &source_file) == 0 && memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) { // The early-exit case: the image was already applied, this partition // has the desired hash, nothing for us to do. printf("already %s\n", short_sha1(target_sha1).c_str()); return 0; } if (LoadFileContents(source_filename, &source_file) == 0) { if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) { // The source doesn't have desired checksum. printf("source \"%s\" doesn't have expected sha1 sum\n", source_filename); printf("expected: %s, found: %s\n", short_sha1(target_sha1).c_str(), short_sha1(source_file.sha1).c_str()); return 1; } } if (WriteToPartition(source_file.data.data(), target_size, target_filename) != 0) { printf("write of copied data to %s failed\n", target_filename); return 1; } return 0; } static int GenerateTarget(FileContents* source_file, const Value* source_patch_value, FileContents* copy_file, const Value* copy_patch_value, const char* source_filename, const char* target_filename, const uint8_t target_sha1[SHA_DIGEST_LENGTH], size_t target_size, const Value* bonus_data) { int retry = 1; SHA_CTX ctx; std::string memory_sink_str; FileContents* source_to_use; int made_copy = 0; bool target_is_partition = (strncmp(target_filename, "MTD:", 4) == 0 || strncmp(target_filename, "EMMC:", 5) == 0); const std::string tmp_target_filename = std::string(target_filename) + ".patch"; // assume that target_filename (eg "/system/app/Foo.apk") is located // on the same filesystem as its top-level directory ("/system"). // We need something that exists for calling statfs(). std::string target_fs = target_filename; auto slash_pos = target_fs.find('/', 1); if (slash_pos != std::string::npos) { target_fs.resize(slash_pos); } const Value* patch; if (source_patch_value != NULL) { source_to_use = source_file; patch = source_patch_value; } else { source_to_use = copy_file; patch = copy_patch_value; } if (patch->type != VAL_BLOB) { printf("patch is not a blob\n"); return 1; } char* header = patch->data; ssize_t header_bytes_read = patch->size; bool use_bsdiff = false; if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) { use_bsdiff = true; } else if (header_bytes_read >= 8 && memcmp(header, "IMGDIFF2", 8) == 0) { use_bsdiff = false; } else { printf("Unknown patch file format\n"); return 1; } do { // Is there enough room in the target filesystem to hold the patched // file? if (target_is_partition) { // If the target is a partition, we're actually going to // write the output to /tmp and then copy it to the // partition. statfs() always returns 0 blocks free for // /tmp, so instead we'll just assume that /tmp has enough // space to hold the file. // We still write the original source to cache, in case // the partition write is interrupted. if (MakeFreeSpaceOnCache(source_file->data.size()) < 0) { printf("not enough free space on /cache\n"); return 1; } if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) { printf("failed to back up source file\n"); return 1; } made_copy = 1; retry = 0; } else { int enough_space = 0; if (retry > 0) { size_t free_space = FreeSpaceForFile(target_fs.c_str()); enough_space = (free_space > (256 << 10)) && // 256k (two-block) minimum (free_space > (target_size * 3 / 2)); // 50% margin of error if (!enough_space) { printf("target %zu bytes; free space %zu bytes; retry %d; enough %d\n", target_size, free_space, retry, enough_space); } } if (!enough_space) { retry = 0; } if (!enough_space && source_patch_value != NULL) { // Using the original source, but not enough free space. First // copy the source file to cache, then delete it from the original // location. if (strncmp(source_filename, "MTD:", 4) == 0 || strncmp(source_filename, "EMMC:", 5) == 0) { // It's impossible to free space on the target filesystem by // deleting the source if the source is a partition. If // we're ever in a state where we need to do this, fail. printf("not enough free space for target but source is partition\n"); return 1; } if (MakeFreeSpaceOnCache(source_file->data.size()) < 0) { printf("not enough free space on /cache\n"); return 1; } if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) { printf("failed to back up source file\n"); return 1; } made_copy = 1; unlink(source_filename); size_t free_space = FreeSpaceForFile(target_fs.c_str()); printf("(now %zu bytes free for target) ", free_space); } } SinkFn sink = NULL; void* token = NULL; int output_fd = -1; if (target_is_partition) { // We store the decoded output in memory. sink = MemorySink; token = &memory_sink_str; } else { // We write the decoded output to "<tgt-file>.patch". output_fd = ota_open(tmp_target_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR); if (output_fd < 0) { printf("failed to open output file %s: %s\n", tmp_target_filename.c_str(), strerror(errno)); return 1; } sink = FileSink; token = &output_fd; } SHA1_Init(&ctx); int result; if (use_bsdiff) { result = ApplyBSDiffPatch(source_to_use->data.data(), source_to_use->data.size(), patch, 0, sink, token, &ctx); } else { result = ApplyImagePatch(source_to_use->data.data(), source_to_use->data.size(), patch, sink, token, &ctx, bonus_data); } if (!target_is_partition) { if (ota_fsync(output_fd) != 0) { printf("failed to fsync file \"%s\" (%s)\n", tmp_target_filename.c_str(), strerror(errno)); result = 1; } if (ota_close(output_fd) != 0) { printf("failed to close file \"%s\" (%s)\n", tmp_target_filename.c_str(), strerror(errno)); result = 1; } } if (result != 0) { if (retry == 0) { printf("applying patch failed\n"); return result != 0; } else { printf("applying patch failed; retrying\n"); } if (!target_is_partition) { unlink(tmp_target_filename.c_str()); } } else { // succeeded; no need to retry break; } } while (retry-- > 0); uint8_t current_target_sha1[SHA_DIGEST_LENGTH]; SHA1_Final(current_target_sha1, &ctx); if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) { printf("patch did not produce expected sha1\n"); return 1; } else { printf("now %s\n", short_sha1(target_sha1).c_str()); } if (target_is_partition) { // Copy the temp file to the partition. if (WriteToPartition(reinterpret_cast<const unsigned char*>(memory_sink_str.c_str()), memory_sink_str.size(), target_filename) != 0) { printf("write of patched data to %s failed\n", target_filename); return 1; } } else { // Give the .patch file the same owner, group, and mode of the // original source file. if (chmod(tmp_target_filename.c_str(), source_to_use->st.st_mode) != 0) { printf("chmod of \"%s\" failed: %s\n", tmp_target_filename.c_str(), strerror(errno)); return 1; } if (chown(tmp_target_filename.c_str(), source_to_use->st.st_uid, source_to_use->st.st_gid) != 0) { printf("chown of \"%s\" failed: %s\n", tmp_target_filename.c_str(), strerror(errno)); return 1; } // Finally, rename the .patch file to replace the target file. if (rename(tmp_target_filename.c_str(), target_filename) != 0) { printf("rename of .patch to \"%s\" failed: %s\n", target_filename, strerror(errno)); return 1; } } // If this run of applypatch created the copy, and we're here, we // can delete it. if (made_copy) { unlink(CACHE_TEMP_SOURCE); } // Success! return 0; }