/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <ctype.h> #include <errno.h> #include <dirent.h> #include <fcntl.h> #include <inttypes.h> #include <linux/fs.h> #include <pthread.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/ioctl.h> #include <time.h> #include <unistd.h> #include <fec/io.h> #include <map> #include <memory> #include <string> #include <vector> #include <android-base/parseint.h> #include <android-base/strings.h> #include "applypatch/applypatch.h" #include "edify/expr.h" #include "error_code.h" #include "install.h" #include "openssl/sha.h" #include "minzip/Hash.h" #include "ota_io.h" #include "print_sha1.h" #include "unique_fd.h" #include "updater.h" #define BLOCKSIZE 4096 // Set this to 0 to interpret 'erase' transfers to mean do a // BLKDISCARD ioctl (the normal behavior). Set to 1 to interpret // erase to mean fill the region with zeroes. #define DEBUG_ERASE 0 #define STASH_DIRECTORY_BASE "/cache/recovery" #define STASH_DIRECTORY_MODE 0700 #define STASH_FILE_MODE 0600 struct RangeSet { size_t count; // Limit is INT_MAX. size_t size; std::vector<size_t> pos; // Actual limit is INT_MAX. }; static CauseCode failure_type = kNoCause; static bool is_retry = false; static std::map<std::string, RangeSet> stash_map; static void parse_range(const std::string& range_text, RangeSet& rs) { std::vector<std::string> pieces = android::base::Split(range_text, ","); if (pieces.size() < 3) { goto err; } size_t num; if (!android::base::ParseUint(pieces[0].c_str(), &num, static_cast<size_t>(INT_MAX))) { goto err; } if (num == 0 || num % 2) { goto err; // must be even } else if (num != pieces.size() - 1) { goto err; } rs.pos.resize(num); rs.count = num / 2; rs.size = 0; for (size_t i = 0; i < num; i += 2) { if (!android::base::ParseUint(pieces[i+1].c_str(), &rs.pos[i], static_cast<size_t>(INT_MAX))) { goto err; } if (!android::base::ParseUint(pieces[i+2].c_str(), &rs.pos[i+1], static_cast<size_t>(INT_MAX))) { goto err; } if (rs.pos[i] >= rs.pos[i+1]) { goto err; // empty or negative range } size_t sz = rs.pos[i+1] - rs.pos[i]; if (rs.size > SIZE_MAX - sz) { goto err; // overflow } rs.size += sz; } return; err: fprintf(stderr, "failed to parse range '%s'\n", range_text.c_str()); exit(1); } static bool range_overlaps(const RangeSet& r1, const RangeSet& r2) { for (size_t i = 0; i < r1.count; ++i) { size_t r1_0 = r1.pos[i * 2]; size_t r1_1 = r1.pos[i * 2 + 1]; for (size_t j = 0; j < r2.count; ++j) { size_t r2_0 = r2.pos[j * 2]; size_t r2_1 = r2.pos[j * 2 + 1]; if (!(r2_0 >= r1_1 || r1_0 >= r2_1)) { return true; } } } return false; } static int read_all(int fd, uint8_t* data, size_t size) { size_t so_far = 0; while (so_far < size) { ssize_t r = TEMP_FAILURE_RETRY(ota_read(fd, data+so_far, size-so_far)); if (r == -1) { failure_type = kFreadFailure; fprintf(stderr, "read failed: %s\n", strerror(errno)); return -1; } so_far += r; } return 0; } static int read_all(int fd, std::vector<uint8_t>& buffer, size_t size) { return read_all(fd, buffer.data(), size); } static int write_all(int fd, const uint8_t* data, size_t size) { size_t written = 0; while (written < size) { ssize_t w = TEMP_FAILURE_RETRY(ota_write(fd, data+written, size-written)); if (w == -1) { failure_type = kFwriteFailure; fprintf(stderr, "write failed: %s\n", strerror(errno)); return -1; } written += w; } return 0; } static int write_all(int fd, const std::vector<uint8_t>& buffer, size_t size) { return write_all(fd, buffer.data(), size); } static bool discard_blocks(int fd, off64_t offset, uint64_t size) { // Don't discard blocks unless the update is a retry run. if (!is_retry) { return true; } uint64_t args[2] = {static_cast<uint64_t>(offset), size}; int status = ioctl(fd, BLKDISCARD, &args); if (status == -1) { fprintf(stderr, "BLKDISCARD ioctl failed: %s\n", strerror(errno)); return false; } return true; } static bool check_lseek(int fd, off64_t offset, int whence) { off64_t rc = TEMP_FAILURE_RETRY(lseek64(fd, offset, whence)); if (rc == -1) { failure_type = kLseekFailure; fprintf(stderr, "lseek64 failed: %s\n", strerror(errno)); return false; } return true; } static void allocate(size_t size, std::vector<uint8_t>& buffer) { // if the buffer's big enough, reuse it. if (size <= buffer.size()) return; buffer.resize(size); } struct RangeSinkState { RangeSinkState(RangeSet& rs) : tgt(rs) { }; int fd; const RangeSet& tgt; size_t p_block; size_t p_remain; }; static ssize_t RangeSinkWrite(const uint8_t* data, ssize_t size, void* token) { RangeSinkState* rss = reinterpret_cast<RangeSinkState*>(token); if (rss->p_remain == 0) { fprintf(stderr, "range sink write overrun"); return 0; } ssize_t written = 0; while (size > 0) { size_t write_now = size; if (rss->p_remain < write_now) { write_now = rss->p_remain; } if (write_all(rss->fd, data, write_now) == -1) { break; } data += write_now; size -= write_now; rss->p_remain -= write_now; written += write_now; if (rss->p_remain == 0) { // move to the next block ++rss->p_block; if (rss->p_block < rss->tgt.count) { rss->p_remain = (rss->tgt.pos[rss->p_block * 2 + 1] - rss->tgt.pos[rss->p_block * 2]) * BLOCKSIZE; off64_t offset = static_cast<off64_t>(rss->tgt.pos[rss->p_block*2]) * BLOCKSIZE; if (!discard_blocks(rss->fd, offset, rss->p_remain)) { break; } if (!check_lseek(rss->fd, offset, SEEK_SET)) { break; } } else { // we can't write any more; return how many bytes have // been written so far. break; } } } return written; } // All of the data for all the 'new' transfers is contained in one // file in the update package, concatenated together in the order in // which transfers.list will need it. We want to stream it out of the // archive (it's compressed) without writing it to a temp file, but we // can't write each section until it's that transfer's turn to go. // // To achieve this, we expand the new data from the archive in a // background thread, and block that threads 'receive uncompressed // data' function until the main thread has reached a point where we // want some new data to be written. We signal the background thread // with the destination for the data and block the main thread, // waiting for the background thread to complete writing that section. // Then it signals the main thread to wake up and goes back to // blocking waiting for a transfer. // // NewThreadInfo is the struct used to pass information back and forth // between the two threads. When the main thread wants some data // written, it sets rss to the destination location and signals the // condition. When the background thread is done writing, it clears // rss and signals the condition again. struct NewThreadInfo { ZipArchive* za; const ZipEntry* entry; RangeSinkState* rss; pthread_mutex_t mu; pthread_cond_t cv; }; static bool receive_new_data(const unsigned char* data, int size, void* cookie) { NewThreadInfo* nti = reinterpret_cast<NewThreadInfo*>(cookie); while (size > 0) { // Wait for nti->rss to be non-null, indicating some of this // data is wanted. pthread_mutex_lock(&nti->mu); while (nti->rss == nullptr) { pthread_cond_wait(&nti->cv, &nti->mu); } pthread_mutex_unlock(&nti->mu); // At this point nti->rss is set, and we own it. The main // thread is waiting for it to disappear from nti. ssize_t written = RangeSinkWrite(data, size, nti->rss); data += written; size -= written; if (nti->rss->p_block == nti->rss->tgt.count) { // we have written all the bytes desired by this rss. pthread_mutex_lock(&nti->mu); nti->rss = nullptr; pthread_cond_broadcast(&nti->cv); pthread_mutex_unlock(&nti->mu); } } return true; } static void* unzip_new_data(void* cookie) { NewThreadInfo* nti = (NewThreadInfo*) cookie; mzProcessZipEntryContents(nti->za, nti->entry, receive_new_data, nti); return nullptr; } static int ReadBlocks(const RangeSet& src, std::vector<uint8_t>& buffer, int fd) { size_t p = 0; uint8_t* data = buffer.data(); for (size_t i = 0; i < src.count; ++i) { if (!check_lseek(fd, (off64_t) src.pos[i * 2] * BLOCKSIZE, SEEK_SET)) { return -1; } size_t size = (src.pos[i * 2 + 1] - src.pos[i * 2]) * BLOCKSIZE; if (read_all(fd, data + p, size) == -1) { return -1; } p += size; } return 0; } static int WriteBlocks(const RangeSet& tgt, const std::vector<uint8_t>& buffer, int fd) { const uint8_t* data = buffer.data(); size_t p = 0; for (size_t i = 0; i < tgt.count; ++i) { off64_t offset = static_cast<off64_t>(tgt.pos[i * 2]) * BLOCKSIZE; size_t size = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * BLOCKSIZE; if (!discard_blocks(fd, offset, size)) { return -1; } if (!check_lseek(fd, offset, SEEK_SET)) { return -1; } if (write_all(fd, data + p, size) == -1) { return -1; } p += size; } return 0; } // Parameters for transfer list command functions struct CommandParameters { std::vector<std::string> tokens; size_t cpos; const char* cmdname; const char* cmdline; std::string freestash; std::string stashbase; bool canwrite; int createdstash; int fd; bool foundwrites; bool isunresumable; int version; size_t written; size_t stashed; NewThreadInfo nti; pthread_t thread; std::vector<uint8_t> buffer; uint8_t* patch_start; }; // Do a source/target load for move/bsdiff/imgdiff in version 1. // We expect to parse the remainder of the parameter tokens as: // // <src_range> <tgt_range> // // The source range is loaded into the provided buffer, reallocating // it to make it larger if necessary. static int LoadSrcTgtVersion1(CommandParameters& params, RangeSet& tgt, size_t& src_blocks, std::vector<uint8_t>& buffer, int fd) { if (params.cpos + 1 >= params.tokens.size()) { fprintf(stderr, "invalid parameters\n"); return -1; } // <src_range> RangeSet src; parse_range(params.tokens[params.cpos++], src); // <tgt_range> parse_range(params.tokens[params.cpos++], tgt); allocate(src.size * BLOCKSIZE, buffer); int rc = ReadBlocks(src, buffer, fd); src_blocks = src.size; return rc; } static int VerifyBlocks(const std::string& expected, const std::vector<uint8_t>& buffer, const size_t blocks, bool printerror) { uint8_t digest[SHA_DIGEST_LENGTH]; const uint8_t* data = buffer.data(); SHA1(data, blocks * BLOCKSIZE, digest); std::string hexdigest = print_sha1(digest); if (hexdigest != expected) { if (printerror) { fprintf(stderr, "failed to verify blocks (expected %s, read %s)\n", expected.c_str(), hexdigest.c_str()); } return -1; } return 0; } static std::string GetStashFileName(const std::string& base, const std::string& id, const std::string& postfix) { if (base.empty()) { return ""; } std::string fn(STASH_DIRECTORY_BASE); fn += "/" + base + "/" + id + postfix; return fn; } typedef void (*StashCallback)(const std::string&, void*); // Does a best effort enumeration of stash files. Ignores possible non-file // items in the stash directory and continues despite of errors. Calls the // 'callback' function for each file and passes 'data' to the function as a // parameter. static void EnumerateStash(const std::string& dirname, StashCallback callback, void* data) { if (dirname.empty() || callback == nullptr) { return; } std::unique_ptr<DIR, int(*)(DIR*)> directory(opendir(dirname.c_str()), closedir); if (directory == nullptr) { if (errno != ENOENT) { fprintf(stderr, "opendir \"%s\" failed: %s\n", dirname.c_str(), strerror(errno)); } return; } struct dirent* item; while ((item = readdir(directory.get())) != nullptr) { if (item->d_type != DT_REG) { continue; } std::string fn = dirname + "/" + std::string(item->d_name); callback(fn, data); } } static void UpdateFileSize(const std::string& fn, void* data) { if (fn.empty() || !data) { return; } struct stat sb; if (stat(fn.c_str(), &sb) == -1) { fprintf(stderr, "stat \"%s\" failed: %s\n", fn.c_str(), strerror(errno)); return; } int* size = reinterpret_cast<int*>(data); *size += sb.st_size; } // Deletes the stash directory and all files in it. Assumes that it only // contains files. There is nothing we can do about unlikely, but possible // errors, so they are merely logged. static void DeleteFile(const std::string& fn, void* /* data */) { if (!fn.empty()) { fprintf(stderr, "deleting %s\n", fn.c_str()); if (unlink(fn.c_str()) == -1 && errno != ENOENT) { fprintf(stderr, "unlink \"%s\" failed: %s\n", fn.c_str(), strerror(errno)); } } } static void DeletePartial(const std::string& fn, void* data) { if (android::base::EndsWith(fn, ".partial")) { DeleteFile(fn, data); } } static void DeleteStash(const std::string& base) { if (base.empty()) { return; } fprintf(stderr, "deleting stash %s\n", base.c_str()); std::string dirname = GetStashFileName(base, "", ""); EnumerateStash(dirname, DeleteFile, nullptr); if (rmdir(dirname.c_str()) == -1) { if (errno != ENOENT && errno != ENOTDIR) { fprintf(stderr, "rmdir \"%s\" failed: %s\n", dirname.c_str(), strerror(errno)); } } } static int LoadStash(CommandParameters& params, const std::string& base, const std::string& id, bool verify, size_t* blocks, std::vector<uint8_t>& buffer, bool printnoent) { // In verify mode, if source range_set was saved for the given hash, // check contents in the source blocks first. If the check fails, // search for the stashed files on /cache as usual. if (!params.canwrite) { if (stash_map.find(id) != stash_map.end()) { const RangeSet& src = stash_map[id]; allocate(src.size * BLOCKSIZE, buffer); if (ReadBlocks(src, buffer, params.fd) == -1) { fprintf(stderr, "failed to read source blocks in stash map.\n"); return -1; } if (VerifyBlocks(id, buffer, src.size, true) != 0) { fprintf(stderr, "failed to verify loaded source blocks in stash map.\n"); return -1; } return 0; } } if (base.empty()) { return -1; } size_t blockcount = 0; if (!blocks) { blocks = &blockcount; } std::string fn = GetStashFileName(base, id, ""); struct stat sb; int res = stat(fn.c_str(), &sb); if (res == -1) { if (errno != ENOENT || printnoent) { fprintf(stderr, "stat \"%s\" failed: %s\n", fn.c_str(), strerror(errno)); } return -1; } fprintf(stderr, " loading %s\n", fn.c_str()); if ((sb.st_size % BLOCKSIZE) != 0) { fprintf(stderr, "%s size %" PRId64 " not multiple of block size %d", fn.c_str(), static_cast<int64_t>(sb.st_size), BLOCKSIZE); return -1; } int fd = TEMP_FAILURE_RETRY(open(fn.c_str(), O_RDONLY)); unique_fd fd_holder(fd); if (fd == -1) { fprintf(stderr, "open \"%s\" failed: %s\n", fn.c_str(), strerror(errno)); return -1; } allocate(sb.st_size, buffer); if (read_all(fd, buffer, sb.st_size) == -1) { return -1; } *blocks = sb.st_size / BLOCKSIZE; if (verify && VerifyBlocks(id, buffer, *blocks, true) != 0) { fprintf(stderr, "unexpected contents in %s\n", fn.c_str()); DeleteFile(fn, nullptr); return -1; } return 0; } static int WriteStash(const std::string& base, const std::string& id, int blocks, std::vector<uint8_t>& buffer, bool checkspace, bool *exists) { if (base.empty()) { return -1; } if (checkspace && CacheSizeCheck(blocks * BLOCKSIZE) != 0) { fprintf(stderr, "not enough space to write stash\n"); return -1; } std::string fn = GetStashFileName(base, id, ".partial"); std::string cn = GetStashFileName(base, id, ""); if (exists) { struct stat sb; int res = stat(cn.c_str(), &sb); if (res == 0) { // The file already exists and since the name is the hash of the contents, // it's safe to assume the contents are identical (accidental hash collisions // are unlikely) fprintf(stderr, " skipping %d existing blocks in %s\n", blocks, cn.c_str()); *exists = true; return 0; } *exists = false; } fprintf(stderr, " writing %d blocks to %s\n", blocks, cn.c_str()); int fd = TEMP_FAILURE_RETRY(open(fn.c_str(), O_WRONLY | O_CREAT | O_TRUNC, STASH_FILE_MODE)); unique_fd fd_holder(fd); if (fd == -1) { fprintf(stderr, "failed to create \"%s\": %s\n", fn.c_str(), strerror(errno)); return -1; } if (write_all(fd, buffer, blocks * BLOCKSIZE) == -1) { return -1; } if (ota_fsync(fd) == -1) { failure_type = kFsyncFailure; fprintf(stderr, "fsync \"%s\" failed: %s\n", fn.c_str(), strerror(errno)); return -1; } if (rename(fn.c_str(), cn.c_str()) == -1) { fprintf(stderr, "rename(\"%s\", \"%s\") failed: %s\n", fn.c_str(), cn.c_str(), strerror(errno)); return -1; } std::string dname = GetStashFileName(base, "", ""); int dfd = TEMP_FAILURE_RETRY(open(dname.c_str(), O_RDONLY | O_DIRECTORY)); unique_fd dfd_holder(dfd); if (dfd == -1) { failure_type = kFileOpenFailure; fprintf(stderr, "failed to open \"%s\" failed: %s\n", dname.c_str(), strerror(errno)); return -1; } if (ota_fsync(dfd) == -1) { failure_type = kFsyncFailure; fprintf(stderr, "fsync \"%s\" failed: %s\n", dname.c_str(), strerror(errno)); return -1; } return 0; } // Creates a directory for storing stash files and checks if the /cache partition // hash enough space for the expected amount of blocks we need to store. Returns // >0 if we created the directory, zero if it existed already, and <0 of failure. static int CreateStash(State* state, int maxblocks, const char* blockdev, std::string& base) { if (blockdev == nullptr) { return -1; } // Stash directory should be different for each partition to avoid conflicts // when updating multiple partitions at the same time, so we use the hash of // the block device name as the base directory uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(reinterpret_cast<const uint8_t*>(blockdev), strlen(blockdev), digest); base = print_sha1(digest); std::string dirname = GetStashFileName(base, "", ""); struct stat sb; int res = stat(dirname.c_str(), &sb); if (res == -1 && errno != ENOENT) { ErrorAbort(state, kStashCreationFailure, "stat \"%s\" failed: %s\n", dirname.c_str(), strerror(errno)); return -1; } else if (res != 0) { fprintf(stderr, "creating stash %s\n", dirname.c_str()); res = mkdir(dirname.c_str(), STASH_DIRECTORY_MODE); if (res != 0) { ErrorAbort(state, kStashCreationFailure, "mkdir \"%s\" failed: %s\n", dirname.c_str(), strerror(errno)); return -1; } if (CacheSizeCheck(maxblocks * BLOCKSIZE) != 0) { ErrorAbort(state, kStashCreationFailure, "not enough space for stash\n"); return -1; } return 1; // Created directory } fprintf(stderr, "using existing stash %s\n", dirname.c_str()); // If the directory already exists, calculate the space already allocated to // stash files and check if there's enough for all required blocks. Delete any // partially completed stash files first. EnumerateStash(dirname, DeletePartial, nullptr); int size = 0; EnumerateStash(dirname, UpdateFileSize, &size); size = maxblocks * BLOCKSIZE - size; if (size > 0 && CacheSizeCheck(size) != 0) { ErrorAbort(state, kStashCreationFailure, "not enough space for stash (%d more needed)\n", size); return -1; } return 0; // Using existing directory } static int SaveStash(CommandParameters& params, const std::string& base, std::vector<uint8_t>& buffer, int fd, bool usehash) { // <stash_id> <src_range> if (params.cpos + 1 >= params.tokens.size()) { fprintf(stderr, "missing id and/or src range fields in stash command\n"); return -1; } const std::string& id = params.tokens[params.cpos++]; size_t blocks = 0; if (usehash && LoadStash(params, base, id, true, &blocks, buffer, false) == 0) { // Stash file already exists and has expected contents. Do not // read from source again, as the source may have been already // overwritten during a previous attempt. return 0; } RangeSet src; parse_range(params.tokens[params.cpos++], src); allocate(src.size * BLOCKSIZE, buffer); if (ReadBlocks(src, buffer, fd) == -1) { return -1; } blocks = src.size; if (usehash && VerifyBlocks(id, buffer, blocks, true) != 0) { // Source blocks have unexpected contents. If we actually need this // data later, this is an unrecoverable error. However, the command // that uses the data may have already completed previously, so the // possible failure will occur during source block verification. fprintf(stderr, "failed to load source blocks for stash %s\n", id.c_str()); return 0; } // In verify mode, save source range_set instead of stashing blocks. if (!params.canwrite && usehash) { stash_map[id] = src; return 0; } fprintf(stderr, "stashing %zu blocks to %s\n", blocks, id.c_str()); params.stashed += blocks; return WriteStash(base, id, blocks, buffer, false, nullptr); } static int FreeStash(const std::string& base, const std::string& id) { if (base.empty() || id.empty()) { return -1; } std::string fn = GetStashFileName(base, id, ""); DeleteFile(fn, nullptr); return 0; } static void MoveRange(std::vector<uint8_t>& dest, const RangeSet& locs, const std::vector<uint8_t>& source) { // source contains packed data, which we want to move to the // locations given in locs in the dest buffer. source and dest // may be the same buffer. const uint8_t* from = source.data(); uint8_t* to = dest.data(); size_t start = locs.size; for (int i = locs.count-1; i >= 0; --i) { size_t blocks = locs.pos[i*2+1] - locs.pos[i*2]; start -= blocks; memmove(to + (locs.pos[i*2] * BLOCKSIZE), from + (start * BLOCKSIZE), blocks * BLOCKSIZE); } } // Do a source/target load for move/bsdiff/imgdiff in version 2. // We expect to parse the remainder of the parameter tokens as one of: // // <tgt_range> <src_block_count> <src_range> // (loads data from source image only) // // <tgt_range> <src_block_count> - <[stash_id:stash_range] ...> // (loads data from stashes only) // // <tgt_range> <src_block_count> <src_range> <src_loc> <[stash_id:stash_range] ...> // (loads data from both source image and stashes) // // On return, buffer is filled with the loaded source data (rearranged // and combined with stashed data as necessary). buffer may be // reallocated if needed to accommodate the source data. *tgt is the // target RangeSet. Any stashes required are loaded using LoadStash. static int LoadSrcTgtVersion2(CommandParameters& params, RangeSet& tgt, size_t& src_blocks, std::vector<uint8_t>& buffer, int fd, const std::string& stashbase, bool* overlap) { // At least it needs to provide three parameters: <tgt_range>, // <src_block_count> and "-"/<src_range>. if (params.cpos + 2 >= params.tokens.size()) { fprintf(stderr, "invalid parameters\n"); return -1; } // <tgt_range> parse_range(params.tokens[params.cpos++], tgt); // <src_block_count> const std::string& token = params.tokens[params.cpos++]; if (!android::base::ParseUint(token.c_str(), &src_blocks)) { fprintf(stderr, "invalid src_block_count \"%s\"\n", token.c_str()); return -1; } allocate(src_blocks * BLOCKSIZE, buffer); // "-" or <src_range> [<src_loc>] if (params.tokens[params.cpos] == "-") { // no source ranges, only stashes params.cpos++; } else { RangeSet src; parse_range(params.tokens[params.cpos++], src); int res = ReadBlocks(src, buffer, fd); if (overlap) { *overlap = range_overlaps(src, tgt); } if (res == -1) { return -1; } if (params.cpos >= params.tokens.size()) { // no stashes, only source range return 0; } RangeSet locs; parse_range(params.tokens[params.cpos++], locs); MoveRange(buffer, locs, buffer); } // <[stash_id:stash_range]> while (params.cpos < params.tokens.size()) { // Each word is a an index into the stash table, a colon, and // then a rangeset describing where in the source block that // stashed data should go. std::vector<std::string> tokens = android::base::Split(params.tokens[params.cpos++], ":"); if (tokens.size() != 2) { fprintf(stderr, "invalid parameter\n"); return -1; } std::vector<uint8_t> stash; int res = LoadStash(params, stashbase, tokens[0], false, nullptr, stash, true); if (res == -1) { // These source blocks will fail verification if used later, but we // will let the caller decide if this is a fatal failure fprintf(stderr, "failed to load stash %s\n", tokens[0].c_str()); continue; } RangeSet locs; parse_range(tokens[1], locs); MoveRange(buffer, locs, stash); } return 0; } // Do a source/target load for move/bsdiff/imgdiff in version 3. // // Parameters are the same as for LoadSrcTgtVersion2, except for 'onehash', which // tells the function whether to expect separate source and targe block hashes, or // if they are both the same and only one hash should be expected, and // 'isunresumable', which receives a non-zero value if block verification fails in // a way that the update cannot be resumed anymore. // // If the function is unable to load the necessary blocks or their contents don't // match the hashes, the return value is -1 and the command should be aborted. // // If the return value is 1, the command has already been completed according to // the contents of the target blocks, and should not be performed again. // // If the return value is 0, source blocks have expected content and the command // can be performed. static int LoadSrcTgtVersion3(CommandParameters& params, RangeSet& tgt, size_t& src_blocks, bool onehash, bool& overlap) { if (params.cpos >= params.tokens.size()) { fprintf(stderr, "missing source hash\n"); return -1; } std::string srchash = params.tokens[params.cpos++]; std::string tgthash; if (onehash) { tgthash = srchash; } else { if (params.cpos >= params.tokens.size()) { fprintf(stderr, "missing target hash\n"); return -1; } tgthash = params.tokens[params.cpos++]; } if (LoadSrcTgtVersion2(params, tgt, src_blocks, params.buffer, params.fd, params.stashbase, &overlap) == -1) { return -1; } std::vector<uint8_t> tgtbuffer(tgt.size * BLOCKSIZE); if (ReadBlocks(tgt, tgtbuffer, params.fd) == -1) { return -1; } if (VerifyBlocks(tgthash, tgtbuffer, tgt.size, false) == 0) { // Target blocks already have expected content, command should be skipped return 1; } if (VerifyBlocks(srchash, params.buffer, src_blocks, true) == 0) { // If source and target blocks overlap, stash the source blocks so we can // resume from possible write errors. In verify mode, we can skip stashing // because the source blocks won't be overwritten. if (overlap && params.canwrite) { fprintf(stderr, "stashing %zu overlapping blocks to %s\n", src_blocks, srchash.c_str()); bool stash_exists = false; if (WriteStash(params.stashbase, srchash, src_blocks, params.buffer, true, &stash_exists) != 0) { fprintf(stderr, "failed to stash overlapping source blocks\n"); return -1; } params.stashed += src_blocks; // Can be deleted when the write has completed if (!stash_exists) { params.freestash = srchash; } } // Source blocks have expected content, command can proceed return 0; } if (overlap && LoadStash(params, params.stashbase, srchash, true, nullptr, params.buffer, true) == 0) { // Overlapping source blocks were previously stashed, command can proceed. // We are recovering from an interrupted command, so we don't know if the // stash can safely be deleted after this command. return 0; } // Valid source data not available, update cannot be resumed fprintf(stderr, "partition has unexpected contents\n"); params.isunresumable = true; return -1; } static int PerformCommandMove(CommandParameters& params) { size_t blocks = 0; bool overlap = false; int status = 0; RangeSet tgt; if (params.version == 1) { status = LoadSrcTgtVersion1(params, tgt, blocks, params.buffer, params.fd); } else if (params.version == 2) { status = LoadSrcTgtVersion2(params, tgt, blocks, params.buffer, params.fd, params.stashbase, nullptr); } else if (params.version >= 3) { status = LoadSrcTgtVersion3(params, tgt, blocks, true, overlap); } if (status == -1) { fprintf(stderr, "failed to read blocks for move\n"); return -1; } if (status == 0) { params.foundwrites = true; } else if (params.foundwrites) { fprintf(stderr, "warning: commands executed out of order [%s]\n", params.cmdname); } if (params.canwrite) { if (status == 0) { fprintf(stderr, " moving %zu blocks\n", blocks); if (WriteBlocks(tgt, params.buffer, params.fd) == -1) { return -1; } } else { fprintf(stderr, "skipping %zu already moved blocks\n", blocks); } } if (!params.freestash.empty()) { FreeStash(params.stashbase, params.freestash); params.freestash.clear(); } params.written += tgt.size; return 0; } static int PerformCommandStash(CommandParameters& params) { return SaveStash(params, params.stashbase, params.buffer, params.fd, (params.version >= 3)); } static int PerformCommandFree(CommandParameters& params) { // <stash_id> if (params.cpos >= params.tokens.size()) { fprintf(stderr, "missing stash id in free command\n"); return -1; } const std::string& id = params.tokens[params.cpos++]; if (!params.canwrite && stash_map.find(id) != stash_map.end()) { stash_map.erase(id); return 0; } if (params.createdstash || params.canwrite) { return FreeStash(params.stashbase, id); } return 0; } static int PerformCommandZero(CommandParameters& params) { if (params.cpos >= params.tokens.size()) { fprintf(stderr, "missing target blocks for zero\n"); return -1; } RangeSet tgt; parse_range(params.tokens[params.cpos++], tgt); fprintf(stderr, " zeroing %zu blocks\n", tgt.size); allocate(BLOCKSIZE, params.buffer); memset(params.buffer.data(), 0, BLOCKSIZE); if (params.canwrite) { for (size_t i = 0; i < tgt.count; ++i) { off64_t offset = static_cast<off64_t>(tgt.pos[i * 2]) * BLOCKSIZE; size_t size = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, size)) { return -1; } if (!check_lseek(params.fd, offset, SEEK_SET)) { return -1; } for (size_t j = tgt.pos[i * 2]; j < tgt.pos[i * 2 + 1]; ++j) { if (write_all(params.fd, params.buffer, BLOCKSIZE) == -1) { return -1; } } } } if (params.cmdname[0] == 'z') { // Update only for the zero command, as the erase command will call // this if DEBUG_ERASE is defined. params.written += tgt.size; } return 0; } static int PerformCommandNew(CommandParameters& params) { if (params.cpos >= params.tokens.size()) { fprintf(stderr, "missing target blocks for new\n"); return -1; } RangeSet tgt; parse_range(params.tokens[params.cpos++], tgt); if (params.canwrite) { fprintf(stderr, " writing %zu blocks of new data\n", tgt.size); RangeSinkState rss(tgt); rss.fd = params.fd; rss.p_block = 0; rss.p_remain = (tgt.pos[1] - tgt.pos[0]) * BLOCKSIZE; off64_t offset = static_cast<off64_t>(tgt.pos[0]) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, tgt.size * BLOCKSIZE)) { return -1; } if (!check_lseek(params.fd, offset, SEEK_SET)) { return -1; } pthread_mutex_lock(¶ms.nti.mu); params.nti.rss = &rss; pthread_cond_broadcast(¶ms.nti.cv); while (params.nti.rss) { pthread_cond_wait(¶ms.nti.cv, ¶ms.nti.mu); } pthread_mutex_unlock(¶ms.nti.mu); } params.written += tgt.size; return 0; } static int PerformCommandDiff(CommandParameters& params) { // <offset> <length> if (params.cpos + 1 >= params.tokens.size()) { fprintf(stderr, "missing patch offset or length for %s\n", params.cmdname); return -1; } size_t offset; if (!android::base::ParseUint(params.tokens[params.cpos++].c_str(), &offset)) { fprintf(stderr, "invalid patch offset\n"); return -1; } size_t len; if (!android::base::ParseUint(params.tokens[params.cpos++].c_str(), &len)) { fprintf(stderr, "invalid patch offset\n"); return -1; } RangeSet tgt; size_t blocks = 0; bool overlap = false; int status = 0; if (params.version == 1) { status = LoadSrcTgtVersion1(params, tgt, blocks, params.buffer, params.fd); } else if (params.version == 2) { status = LoadSrcTgtVersion2(params, tgt, blocks, params.buffer, params.fd, params.stashbase, nullptr); } else if (params.version >= 3) { status = LoadSrcTgtVersion3(params, tgt, blocks, false, overlap); } if (status == -1) { fprintf(stderr, "failed to read blocks for diff\n"); return -1; } if (status == 0) { params.foundwrites = true; } else if (params.foundwrites) { fprintf(stderr, "warning: commands executed out of order [%s]\n", params.cmdname); } if (params.canwrite) { if (status == 0) { fprintf(stderr, "patching %zu blocks to %zu\n", blocks, tgt.size); Value patch_value; patch_value.type = VAL_BLOB; patch_value.size = len; patch_value.data = (char*) (params.patch_start + offset); RangeSinkState rss(tgt); rss.fd = params.fd; rss.p_block = 0; rss.p_remain = (tgt.pos[1] - tgt.pos[0]) * BLOCKSIZE; off64_t offset = static_cast<off64_t>(tgt.pos[0]) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, rss.p_remain)) { return -1; } if (!check_lseek(params.fd, offset, SEEK_SET)) { return -1; } if (params.cmdname[0] == 'i') { // imgdiff if (ApplyImagePatch(params.buffer.data(), blocks * BLOCKSIZE, &patch_value, &RangeSinkWrite, &rss, nullptr, nullptr) != 0) { fprintf(stderr, "Failed to apply image patch.\n"); return -1; } } else { if (ApplyBSDiffPatch(params.buffer.data(), blocks * BLOCKSIZE, &patch_value, 0, &RangeSinkWrite, &rss, nullptr) != 0) { fprintf(stderr, "Failed to apply bsdiff patch.\n"); return -1; } } // We expect the output of the patcher to fill the tgt ranges exactly. if (rss.p_block != tgt.count || rss.p_remain != 0) { fprintf(stderr, "range sink underrun?\n"); } } else { fprintf(stderr, "skipping %zu blocks already patched to %zu [%s]\n", blocks, tgt.size, params.cmdline); } } if (!params.freestash.empty()) { FreeStash(params.stashbase, params.freestash); params.freestash.clear(); } params.written += tgt.size; return 0; } static int PerformCommandErase(CommandParameters& params) { if (DEBUG_ERASE) { return PerformCommandZero(params); } struct stat sb; if (fstat(params.fd, &sb) == -1) { fprintf(stderr, "failed to fstat device to erase: %s\n", strerror(errno)); return -1; } if (!S_ISBLK(sb.st_mode)) { fprintf(stderr, "not a block device; skipping erase\n"); return -1; } if (params.cpos >= params.tokens.size()) { fprintf(stderr, "missing target blocks for erase\n"); return -1; } RangeSet tgt; parse_range(params.tokens[params.cpos++], tgt); if (params.canwrite) { fprintf(stderr, " erasing %zu blocks\n", tgt.size); for (size_t i = 0; i < tgt.count; ++i) { uint64_t blocks[2]; // offset in bytes blocks[0] = tgt.pos[i * 2] * (uint64_t) BLOCKSIZE; // length in bytes blocks[1] = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * (uint64_t) BLOCKSIZE; if (ioctl(params.fd, BLKDISCARD, &blocks) == -1) { fprintf(stderr, "BLKDISCARD ioctl failed: %s\n", strerror(errno)); return -1; } } } return 0; } // Definitions for transfer list command functions typedef int (*CommandFunction)(CommandParameters&); struct Command { const char* name; CommandFunction f; }; // CompareCommands and CompareCommandNames are for the hash table static int CompareCommands(const void* c1, const void* c2) { return strcmp(((const Command*) c1)->name, ((const Command*) c2)->name); } static int CompareCommandNames(const void* c1, const void* c2) { return strcmp(((const Command*) c1)->name, (const char*) c2); } // HashString is used to hash command names for the hash table static unsigned int HashString(const char *s) { unsigned int hash = 0; if (s) { while (*s) { hash = hash * 33 + *s++; } } return hash; } // args: // - block device (or file) to modify in-place // - transfer list (blob) // - new data stream (filename within package.zip) // - patch stream (filename within package.zip, must be uncompressed) static Value* PerformBlockImageUpdate(const char* name, State* state, int /* argc */, Expr* argv[], const Command* commands, size_t cmdcount, bool dryrun) { CommandParameters params; memset(¶ms, 0, sizeof(params)); params.canwrite = !dryrun; fprintf(stderr, "performing %s\n", dryrun ? "verification" : "update"); if (state->is_retry) { is_retry = true; fprintf(stderr, "This update is a retry.\n"); } Value* blockdev_filename = nullptr; Value* transfer_list_value = nullptr; Value* new_data_fn = nullptr; Value* patch_data_fn = nullptr; if (ReadValueArgs(state, argv, 4, &blockdev_filename, &transfer_list_value, &new_data_fn, &patch_data_fn) < 0) { return StringValue(strdup("")); } std::unique_ptr<Value, decltype(&FreeValue)> blockdev_filename_holder(blockdev_filename, FreeValue); std::unique_ptr<Value, decltype(&FreeValue)> transfer_list_value_holder(transfer_list_value, FreeValue); std::unique_ptr<Value, decltype(&FreeValue)> new_data_fn_holder(new_data_fn, FreeValue); std::unique_ptr<Value, decltype(&FreeValue)> patch_data_fn_holder(patch_data_fn, FreeValue); if (blockdev_filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string", name); return StringValue(strdup("")); } if (transfer_list_value->type != VAL_BLOB) { ErrorAbort(state, kArgsParsingFailure, "transfer_list argument to %s must be blob", name); return StringValue(strdup("")); } if (new_data_fn->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "new_data_fn argument to %s must be string", name); return StringValue(strdup("")); } if (patch_data_fn->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "patch_data_fn argument to %s must be string", name); return StringValue(strdup("")); } UpdaterInfo* ui = reinterpret_cast<UpdaterInfo*>(state->cookie); if (ui == nullptr) { return StringValue(strdup("")); } FILE* cmd_pipe = ui->cmd_pipe; ZipArchive* za = ui->package_zip; if (cmd_pipe == nullptr || za == nullptr) { return StringValue(strdup("")); } const ZipEntry* patch_entry = mzFindZipEntry(za, patch_data_fn->data); if (patch_entry == nullptr) { fprintf(stderr, "%s(): no file \"%s\" in package", name, patch_data_fn->data); return StringValue(strdup("")); } params.patch_start = ui->package_zip_addr + mzGetZipEntryOffset(patch_entry); const ZipEntry* new_entry = mzFindZipEntry(za, new_data_fn->data); if (new_entry == nullptr) { fprintf(stderr, "%s(): no file \"%s\" in package", name, new_data_fn->data); return StringValue(strdup("")); } params.fd = TEMP_FAILURE_RETRY(open(blockdev_filename->data, O_RDWR)); unique_fd fd_holder(params.fd); if (params.fd == -1) { fprintf(stderr, "open \"%s\" failed: %s\n", blockdev_filename->data, strerror(errno)); return StringValue(strdup("")); } if (params.canwrite) { params.nti.za = za; params.nti.entry = new_entry; pthread_mutex_init(¶ms.nti.mu, nullptr); pthread_cond_init(¶ms.nti.cv, nullptr); pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); int error = pthread_create(¶ms.thread, &attr, unzip_new_data, ¶ms.nti); if (error != 0) { fprintf(stderr, "pthread_create failed: %s\n", strerror(error)); return StringValue(strdup("")); } } // Copy all the lines in transfer_list_value into std::string for // processing. const std::string transfer_list(transfer_list_value->data, transfer_list_value->size); std::vector<std::string> lines = android::base::Split(transfer_list, "\n"); if (lines.size() < 2) { ErrorAbort(state, kArgsParsingFailure, "too few lines in the transfer list [%zd]\n", lines.size()); return StringValue(strdup("")); } // First line in transfer list is the version number if (!android::base::ParseInt(lines[0].c_str(), ¶ms.version, 1, 4)) { fprintf(stderr, "unexpected transfer list version [%s]\n", lines[0].c_str()); return StringValue(strdup("")); } fprintf(stderr, "blockimg version is %d\n", params.version); // Second line in transfer list is the total number of blocks we expect to write int total_blocks; if (!android::base::ParseInt(lines[1].c_str(), &total_blocks, 0)) { ErrorAbort(state, kArgsParsingFailure, "unexpected block count [%s]\n", lines[1].c_str()); return StringValue(strdup("")); } if (total_blocks == 0) { return StringValue(strdup("t")); } size_t start = 2; if (params.version >= 2) { if (lines.size() < 4) { ErrorAbort(state, kArgsParsingFailure, "too few lines in the transfer list [%zu]\n", lines.size()); return StringValue(strdup("")); } // Third line is how many stash entries are needed simultaneously fprintf(stderr, "maximum stash entries %s\n", lines[2].c_str()); // Fourth line is the maximum number of blocks that will be stashed simultaneously int stash_max_blocks; if (!android::base::ParseInt(lines[3].c_str(), &stash_max_blocks, 0)) { ErrorAbort(state, kArgsParsingFailure, "unexpected maximum stash blocks [%s]\n", lines[3].c_str()); return StringValue(strdup("")); } int res = CreateStash(state, stash_max_blocks, blockdev_filename->data, params.stashbase); if (res == -1) { return StringValue(strdup("")); } params.createdstash = res; start += 2; } // Build a hash table of the available commands HashTable* cmdht = mzHashTableCreate(cmdcount, nullptr); std::unique_ptr<HashTable, decltype(&mzHashTableFree)> cmdht_holder(cmdht, mzHashTableFree); for (size_t i = 0; i < cmdcount; ++i) { unsigned int cmdhash = HashString(commands[i].name); mzHashTableLookup(cmdht, cmdhash, (void*) &commands[i], CompareCommands, true); } int rc = -1; // Subsequent lines are all individual transfer commands for (auto it = lines.cbegin() + start; it != lines.cend(); it++) { const std::string& line_str(*it); if (line_str.empty()) { continue; } params.tokens = android::base::Split(line_str, " "); params.cpos = 0; params.cmdname = params.tokens[params.cpos++].c_str(); params.cmdline = line_str.c_str(); unsigned int cmdhash = HashString(params.cmdname); const Command* cmd = reinterpret_cast<const Command*>(mzHashTableLookup(cmdht, cmdhash, const_cast<char*>(params.cmdname), CompareCommandNames, false)); if (cmd == nullptr) { fprintf(stderr, "unexpected command [%s]\n", params.cmdname); goto pbiudone; } if (cmd->f != nullptr && cmd->f(params) == -1) { fprintf(stderr, "failed to execute command [%s]\n", line_str.c_str()); goto pbiudone; } if (params.canwrite) { if (ota_fsync(params.fd) == -1) { failure_type = kFsyncFailure; fprintf(stderr, "fsync failed: %s\n", strerror(errno)); goto pbiudone; } fprintf(cmd_pipe, "set_progress %.4f\n", (double) params.written / total_blocks); fflush(cmd_pipe); } } if (params.canwrite) { pthread_join(params.thread, nullptr); fprintf(stderr, "wrote %zu blocks; expected %d\n", params.written, total_blocks); fprintf(stderr, "stashed %zu blocks\n", params.stashed); fprintf(stderr, "max alloc needed was %zu\n", params.buffer.size()); const char* partition = strrchr(blockdev_filename->data, '/'); if (partition != nullptr && *(partition+1) != 0) { fprintf(cmd_pipe, "log bytes_written_%s: %zu\n", partition + 1, params.written * BLOCKSIZE); fprintf(cmd_pipe, "log bytes_stashed_%s: %zu\n", partition + 1, params.stashed * BLOCKSIZE); fflush(cmd_pipe); } // Delete stash only after successfully completing the update, as it // may contain blocks needed to complete the update later. DeleteStash(params.stashbase); } else { fprintf(stderr, "verified partition contents; update may be resumed\n"); } rc = 0; pbiudone: if (ota_fsync(params.fd) == -1) { failure_type = kFsyncFailure; fprintf(stderr, "fsync failed: %s\n", strerror(errno)); } // params.fd will be automatically closed because of the fd_holder above. // Only delete the stash if the update cannot be resumed, or it's // a verification run and we created the stash. if (params.isunresumable || (!params.canwrite && params.createdstash)) { DeleteStash(params.stashbase); } if (failure_type != kNoCause && state->cause_code == kNoCause) { state->cause_code = failure_type; } return StringValue(rc == 0 ? strdup("t") : strdup("")); } // The transfer list is a text file containing commands to // transfer data from one place to another on the target // partition. We parse it and execute the commands in order: // // zero [rangeset] // - fill the indicated blocks with zeros // // new [rangeset] // - fill the blocks with data read from the new_data file // // erase [rangeset] // - mark the given blocks as empty // // move <...> // bsdiff <patchstart> <patchlen> <...> // imgdiff <patchstart> <patchlen> <...> // - read the source blocks, apply a patch (or not in the // case of move), write result to target blocks. bsdiff or // imgdiff specifies the type of patch; move means no patch // at all. // // The format of <...> differs between versions 1 and 2; // see the LoadSrcTgtVersion{1,2}() functions for a // description of what's expected. // // stash <stash_id> <src_range> // - (version 2+ only) load the given source range and stash // the data in the given slot of the stash table. // // free <stash_id> // - (version 3+ only) free the given stash data. // // The creator of the transfer list will guarantee that no block // is read (ie, used as the source for a patch or move) after it // has been written. // // In version 2, the creator will guarantee that a given stash is // loaded (with a stash command) before it's used in a // move/bsdiff/imgdiff command. // // Within one command the source and target ranges may overlap so // in general we need to read the entire source into memory before // writing anything to the target blocks. // // All the patch data is concatenated into one patch_data file in // the update package. It must be stored uncompressed because we // memory-map it in directly from the archive. (Since patches are // already compressed, we lose very little by not compressing // their concatenation.) // // In version 3, commands that read data from the partition (i.e. // move/bsdiff/imgdiff/stash) have one or more additional hashes // before the range parameters, which are used to check if the // command has already been completed and verify the integrity of // the source data. Value* BlockImageVerifyFn(const char* name, State* state, int argc, Expr* argv[]) { // Commands which are not tested are set to nullptr to skip them completely const Command commands[] = { { "bsdiff", PerformCommandDiff }, { "erase", nullptr }, { "free", PerformCommandFree }, { "imgdiff", PerformCommandDiff }, { "move", PerformCommandMove }, { "new", nullptr }, { "stash", PerformCommandStash }, { "zero", nullptr } }; // Perform a dry run without writing to test if an update can proceed return PerformBlockImageUpdate(name, state, argc, argv, commands, sizeof(commands) / sizeof(commands[0]), true); } Value* BlockImageUpdateFn(const char* name, State* state, int argc, Expr* argv[]) { const Command commands[] = { { "bsdiff", PerformCommandDiff }, { "erase", PerformCommandErase }, { "free", PerformCommandFree }, { "imgdiff", PerformCommandDiff }, { "move", PerformCommandMove }, { "new", PerformCommandNew }, { "stash", PerformCommandStash }, { "zero", PerformCommandZero } }; return PerformBlockImageUpdate(name, state, argc, argv, commands, sizeof(commands) / sizeof(commands[0]), false); } Value* RangeSha1Fn(const char* name, State* state, int /* argc */, Expr* argv[]) { Value* blockdev_filename; Value* ranges; if (ReadValueArgs(state, argv, 2, &blockdev_filename, &ranges) < 0) { return StringValue(strdup("")); } std::unique_ptr<Value, decltype(&FreeValue)> ranges_holder(ranges, FreeValue); std::unique_ptr<Value, decltype(&FreeValue)> blockdev_filename_holder(blockdev_filename, FreeValue); if (blockdev_filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string", name); return StringValue(strdup("")); } if (ranges->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name); return StringValue(strdup("")); } int fd = open(blockdev_filename->data, O_RDWR); unique_fd fd_holder(fd); if (fd < 0) { ErrorAbort(state, kFileOpenFailure, "open \"%s\" failed: %s", blockdev_filename->data, strerror(errno)); return StringValue(strdup("")); } RangeSet rs; parse_range(ranges->data, rs); SHA_CTX ctx; SHA1_Init(&ctx); std::vector<uint8_t> buffer(BLOCKSIZE); for (size_t i = 0; i < rs.count; ++i) { if (!check_lseek(fd, (off64_t)rs.pos[i*2] * BLOCKSIZE, SEEK_SET)) { ErrorAbort(state, kLseekFailure, "failed to seek %s: %s", blockdev_filename->data, strerror(errno)); return StringValue(strdup("")); } for (size_t j = rs.pos[i*2]; j < rs.pos[i*2+1]; ++j) { if (read_all(fd, buffer, BLOCKSIZE) == -1) { ErrorAbort(state, kFreadFailure, "failed to read %s: %s", blockdev_filename->data, strerror(errno)); return StringValue(strdup("")); } SHA1_Update(&ctx, buffer.data(), BLOCKSIZE); } } uint8_t digest[SHA_DIGEST_LENGTH]; SHA1_Final(digest, &ctx); return StringValue(strdup(print_sha1(digest).c_str())); } // This function checks if a device has been remounted R/W prior to an incremental // OTA update. This is an common cause of update abortion. The function reads the // 1st block of each partition and check for mounting time/count. It return string "t" // if executes successfully and an empty string otherwise. Value* CheckFirstBlockFn(const char* name, State* state, int argc, Expr* argv[]) { Value* arg_filename; if (ReadValueArgs(state, argv, 1, &arg_filename) < 0) { return nullptr; } std::unique_ptr<Value, decltype(&FreeValue)> filename(arg_filename, FreeValue); if (filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name); return StringValue(strdup("")); } int fd = open(arg_filename->data, O_RDONLY); unique_fd fd_holder(fd); if (fd == -1) { ErrorAbort(state, kFileOpenFailure, "open \"%s\" failed: %s", arg_filename->data, strerror(errno)); return StringValue(strdup("")); } RangeSet blk0 {1 /*count*/, 1/*size*/, std::vector<size_t> {0, 1}/*position*/}; std::vector<uint8_t> block0_buffer(BLOCKSIZE); if (ReadBlocks(blk0, block0_buffer, fd) == -1) { ErrorAbort(state, kFreadFailure, "failed to read %s: %s", arg_filename->data, strerror(errno)); return StringValue(strdup("")); } // https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout // Super block starts from block 0, offset 0x400 // 0x2C: len32 Mount time // 0x30: len32 Write time // 0x34: len16 Number of mounts since the last fsck // 0x38: len16 Magic signature 0xEF53 time_t mount_time = *reinterpret_cast<uint32_t*>(&block0_buffer[0x400+0x2C]); uint16_t mount_count = *reinterpret_cast<uint16_t*>(&block0_buffer[0x400+0x34]); if (mount_count > 0) { uiPrintf(state, "Device was remounted R/W %d times\n", mount_count); uiPrintf(state, "Last remount happened on %s", ctime(&mount_time)); } return StringValue(strdup("t")); } Value* BlockImageRecoverFn(const char* name, State* state, int argc, Expr* argv[]) { Value* arg_filename; Value* arg_ranges; if (ReadValueArgs(state, argv, 2, &arg_filename, &arg_ranges) < 0) { return NULL; } std::unique_ptr<Value, decltype(&FreeValue)> filename(arg_filename, FreeValue); std::unique_ptr<Value, decltype(&FreeValue)> ranges(arg_ranges, FreeValue); if (filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name); return StringValue(strdup("")); } if (ranges->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name); return StringValue(strdup("")); } // Output notice to log when recover is attempted fprintf(stderr, "%s image corrupted, attempting to recover...\n", filename->data); // When opened with O_RDWR, libfec rewrites corrupted blocks when they are read fec::io fh(filename->data, O_RDWR); if (!fh) { ErrorAbort(state, kLibfecFailure, "fec_open \"%s\" failed: %s", filename->data, strerror(errno)); return StringValue(strdup("")); } if (!fh.has_ecc() || !fh.has_verity()) { ErrorAbort(state, kLibfecFailure, "unable to use metadata to correct errors"); return StringValue(strdup("")); } fec_status status; if (!fh.get_status(status)) { ErrorAbort(state, kLibfecFailure, "failed to read FEC status"); return StringValue(strdup("")); } RangeSet rs; parse_range(ranges->data, rs); uint8_t buffer[BLOCKSIZE]; for (size_t i = 0; i < rs.count; ++i) { for (size_t j = rs.pos[i * 2]; j < rs.pos[i * 2 + 1]; ++j) { // Stay within the data area, libfec validates and corrects metadata if (status.data_size <= (uint64_t)j * BLOCKSIZE) { continue; } if (fh.pread(buffer, BLOCKSIZE, (off64_t)j * BLOCKSIZE) != BLOCKSIZE) { ErrorAbort(state, kLibfecFailure, "failed to recover %s (block %zu): %s", filename->data, j, strerror(errno)); return StringValue(strdup("")); } // If we want to be able to recover from a situation where rewriting a corrected // block doesn't guarantee the same data will be returned when re-read later, we // can save a copy of corrected blocks to /cache. Note: // // 1. Maximum space required from /cache is the same as the maximum number of // corrupted blocks we can correct. For RS(255, 253) and a 2 GiB partition, // this would be ~16 MiB, for example. // // 2. To find out if this block was corrupted, call fec_get_status after each // read and check if the errors field value has increased. } } fprintf(stderr, "...%s image recovered successfully.\n", filename->data); return StringValue(strdup("t")); } void RegisterBlockImageFunctions() { RegisterFunction("block_image_verify", BlockImageVerifyFn); RegisterFunction("block_image_update", BlockImageUpdateFn); RegisterFunction("block_image_recover", BlockImageRecoverFn); RegisterFunction("check_first_block", CheckFirstBlockFn); RegisterFunction("range_sha1", RangeSha1Fn); }