// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: mierle@gmail.com (Keir Mierle) // // An incomplete C API for Ceres. // // TODO(keir): Figure out why logging does not seem to work. #include "ceres/c_api.h" #include <vector> #include <iostream> #include <string> #include "ceres/cost_function.h" #include "ceres/loss_function.h" #include "ceres/problem.h" #include "ceres/solver.h" #include "ceres/types.h" // for std #include "glog/logging.h" using ceres::Problem; void ceres_init() { // This is not ideal, but it's not clear what to do if there is no gflags and // no access to command line arguments. char message[] = "<unknown>"; google::InitGoogleLogging(message); } ceres_problem_t* ceres_create_problem() { return reinterpret_cast<ceres_problem_t*>(new Problem); } void ceres_free_problem(ceres_problem_t* problem) { delete reinterpret_cast<Problem*>(problem); } // This cost function wraps a C-level function pointer from the user, to bridge // between C and C++. class CallbackCostFunction : public ceres::CostFunction { public: CallbackCostFunction(ceres_cost_function_t cost_function, void* user_data, int num_residuals, int num_parameter_blocks, int* parameter_block_sizes) : cost_function_(cost_function), user_data_(user_data) { set_num_residuals(num_residuals); for (int i = 0; i < num_parameter_blocks; ++i) { mutable_parameter_block_sizes()->push_back(parameter_block_sizes[i]); } } virtual ~CallbackCostFunction() {} virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { return (*cost_function_)(user_data_, const_cast<double**>(parameters), residuals, jacobians); } private: ceres_cost_function_t cost_function_; void* user_data_; }; // This loss function wraps a C-level function pointer from the user, to bridge // between C and C++. class CallbackLossFunction : public ceres::LossFunction { public: explicit CallbackLossFunction(ceres_loss_function_t loss_function, void* user_data) : loss_function_(loss_function), user_data_(user_data) {} virtual void Evaluate(double sq_norm, double* rho) const { (*loss_function_)(user_data_, sq_norm, rho); } private: ceres_loss_function_t loss_function_; void* user_data_; }; // Wrappers for the stock loss functions. void* ceres_create_huber_loss_function_data(double a) { return new ceres::HuberLoss(a); } void* ceres_create_softl1_loss_function_data(double a) { return new ceres::SoftLOneLoss(a); } void* ceres_create_cauchy_loss_function_data(double a) { return new ceres::CauchyLoss(a); } void* ceres_create_arctan_loss_function_data(double a) { return new ceres::ArctanLoss(a); } void* ceres_create_tolerant_loss_function_data(double a, double b) { return new ceres::TolerantLoss(a, b); } void ceres_free_stock_loss_function_data(void* loss_function_data) { delete reinterpret_cast<ceres::LossFunction*>(loss_function_data); } void ceres_stock_loss_function(void* user_data, double squared_norm, double out[3]) { reinterpret_cast<ceres::LossFunction*>(user_data) ->Evaluate(squared_norm, out); } ceres_residual_block_id_t* ceres_problem_add_residual_block( ceres_problem_t* problem, ceres_cost_function_t cost_function, void* cost_function_data, ceres_loss_function_t loss_function, void* loss_function_data, int num_residuals, int num_parameter_blocks, int* parameter_block_sizes, double** parameters) { Problem* ceres_problem = reinterpret_cast<Problem*>(problem); ceres::CostFunction* callback_cost_function = new CallbackCostFunction(cost_function, cost_function_data, num_residuals, num_parameter_blocks, parameter_block_sizes); ceres::LossFunction* callback_loss_function = NULL; if (loss_function != NULL) { callback_loss_function = new CallbackLossFunction(loss_function, loss_function_data); } std::vector<double*> parameter_blocks(parameters, parameters + num_parameter_blocks); return reinterpret_cast<ceres_residual_block_id_t*>( ceres_problem->AddResidualBlock(callback_cost_function, callback_loss_function, parameter_blocks)); } void ceres_solve(ceres_problem_t* c_problem) { Problem* problem = reinterpret_cast<Problem*>(c_problem); // TODO(keir): Obviously, this way of setting options won't scale or last. // Instead, figure out a way to specify some of the options without // duplicating everything. ceres::Solver::Options options; options.max_num_iterations = 100; options.linear_solver_type = ceres::DENSE_QR; options.minimizer_progress_to_stdout = true; ceres::Solver::Summary summary; ceres::Solve(options, problem, &summary); std::cout << summary.FullReport() << "\n"; }