// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include <algorithm> #include "ceres/compressed_col_sparse_matrix_utils.h" #include "ceres/internal/port.h" #include "ceres/suitesparse.h" #include "ceres/triplet_sparse_matrix.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { TEST(_, BlockPermutationToScalarPermutation) { vector<int> blocks; // Block structure // 0 --1- ---2--- ---3--- 4 // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] blocks.push_back(1); blocks.push_back(2); blocks.push_back(3); blocks.push_back(3); blocks.push_back(1); // Block ordering // [1, 0, 2, 4, 5] vector<int> block_ordering; block_ordering.push_back(1); block_ordering.push_back(0); block_ordering.push_back(2); block_ordering.push_back(4); block_ordering.push_back(3); // Expected ordering // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8] vector<int> expected_scalar_ordering; expected_scalar_ordering.push_back(1); expected_scalar_ordering.push_back(2); expected_scalar_ordering.push_back(0); expected_scalar_ordering.push_back(3); expected_scalar_ordering.push_back(4); expected_scalar_ordering.push_back(5); expected_scalar_ordering.push_back(9); expected_scalar_ordering.push_back(6); expected_scalar_ordering.push_back(7); expected_scalar_ordering.push_back(8); vector<int> scalar_ordering; BlockOrderingToScalarOrdering(blocks, block_ordering, &scalar_ordering); EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size()); for (int i = 0; i < expected_scalar_ordering.size(); ++i) { EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]); } } // Helper function to fill the sparsity pattern of a TripletSparseMatrix. int FillBlock(const vector<int>& row_blocks, const vector<int>& col_blocks, const int row_block_id, const int col_block_id, int* rows, int* cols) { int row_pos = 0; for (int i = 0; i < row_block_id; ++i) { row_pos += row_blocks[i]; } int col_pos = 0; for (int i = 0; i < col_block_id; ++i) { col_pos += col_blocks[i]; } int offset = 0; for (int r = 0; r < row_blocks[row_block_id]; ++r) { for (int c = 0; c < col_blocks[col_block_id]; ++c, ++offset) { rows[offset] = row_pos + r; cols[offset] = col_pos + c; } } return offset; } TEST(_, ScalarMatrixToBlockMatrix) { // Block sparsity. // // [1 2 3 2] // [1] x x // [2] x x // [2] x x // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15 vector<int> col_blocks; col_blocks.push_back(1); col_blocks.push_back(2); col_blocks.push_back(3); col_blocks.push_back(2); vector<int> row_blocks; row_blocks.push_back(1); row_blocks.push_back(2); row_blocks.push_back(2); TripletSparseMatrix tsm(5, 8, 18); int* rows = tsm.mutable_rows(); int* cols = tsm.mutable_cols(); fill(tsm.mutable_values(), tsm.mutable_values() + 18, 1.0); int offset = 0; #define CERES_TEST_FILL_BLOCK(row_block_id, col_block_id) \ offset += FillBlock(row_blocks, col_blocks, \ row_block_id, col_block_id, \ rows + offset, cols + offset); CERES_TEST_FILL_BLOCK(0, 0); CERES_TEST_FILL_BLOCK(2, 0); CERES_TEST_FILL_BLOCK(1, 1); CERES_TEST_FILL_BLOCK(2, 1); CERES_TEST_FILL_BLOCK(0, 2); CERES_TEST_FILL_BLOCK(1, 3); #undef CERES_TEST_FILL_BLOCK tsm.set_num_nonzeros(offset); SuiteSparse ss; scoped_ptr<cholmod_sparse> ccsm(ss.CreateSparseMatrix(&tsm)); vector<int> expected_block_rows; expected_block_rows.push_back(0); expected_block_rows.push_back(2); expected_block_rows.push_back(1); expected_block_rows.push_back(2); expected_block_rows.push_back(0); expected_block_rows.push_back(1); vector<int> expected_block_cols; expected_block_cols.push_back(0); expected_block_cols.push_back(2); expected_block_cols.push_back(4); expected_block_cols.push_back(5); expected_block_cols.push_back(6); vector<int> block_rows; vector<int> block_cols; CompressedColumnScalarMatrixToBlockMatrix( reinterpret_cast<const int*>(ccsm->i), reinterpret_cast<const int*>(ccsm->p), row_blocks, col_blocks, &block_rows, &block_cols); EXPECT_EQ(block_cols.size(), expected_block_cols.size()); EXPECT_EQ(block_rows.size(), expected_block_rows.size()); for (int i = 0; i < expected_block_cols.size(); ++i) { EXPECT_EQ(block_cols[i], expected_block_cols[i]); } for (int i = 0; i < expected_block_rows.size(); ++i) { EXPECT_EQ(block_rows[i], expected_block_rows[i]); } ss.Free(ccsm.release()); } class SolveUpperTriangularTest : public ::testing::Test { protected: void SetUp() { cols.resize(5); rows.resize(7); values.resize(7); cols[0] = 0; rows[0] = 0; values[0] = 0.50754; cols[1] = 1; rows[1] = 1; values[1] = 0.80483; cols[2] = 2; rows[2] = 1; values[2] = 0.14120; rows[3] = 2; values[3] = 0.3; cols[3] = 4; rows[4] = 0; values[4] = 0.77696; rows[5] = 1; values[5] = 0.41860; rows[6] = 3; values[6] = 0.88979; cols[4] = 7; } vector<int> cols; vector<int> rows; vector<double> values; }; TEST_F(SolveUpperTriangularTest, SolveInPlace) { double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477}; SolveUpperTriangularInPlace<int>(cols.size() - 1, &rows[0], &cols[0], &values[0], rhs_and_solution); for (int i = 0; i < 4; ++i) { EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; } } TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) { double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; double expected[] = {1.970288, 1.242498, 6.081864, -0.057255}; SolveUpperTriangularTransposeInPlace<int>(cols.size() - 1, &rows[0], &cols[0], &values[0], rhs_and_solution); for (int i = 0; i < 4; ++i) { EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; } } TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) { double solution[4]; double expected[] = { 6.8420e+00, 1.0057e+00, -1.4907e-16, -1.9335e+00, 1.0057e+00, 2.2275e+00, -1.9493e+00, -6.5693e-01, -1.4907e-16, -1.9493e+00, 1.1111e+01, 9.7381e-17, -1.9335e+00, -6.5693e-01, 9.7381e-17, 1.2631e+00 }; for (int i = 0; i < 4; ++i) { SolveRTRWithSparseRHS<int>(cols.size() - 1, &rows[0], &cols[0], &values[0], i, solution); for (int j = 0; j < 4; ++j) { EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i; } } } } // namespace internal } // namespace ceres