//===-- sanitizer_allocator_test.cc ---------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // Tests for sanitizer_allocator.h. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_test_utils.h" #include "sanitizer_pthread_wrappers.h" #include "gtest/gtest.h" #include <stdlib.h> #include <algorithm> #include <vector> #include <set> // Too slow for debug build #if !SANITIZER_DEBUG #if SANITIZER_CAN_USE_ALLOCATOR64 static const uptr kAllocatorSpace = 0x700000000000ULL; static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. static const u64 kAddressSpaceSize = 1ULL << 47; typedef SizeClassAllocator64< kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap> Allocator64; typedef SizeClassAllocator64< kAllocatorSpace, kAllocatorSize, 16, CompactSizeClassMap> Allocator64Compact; #elif defined(__mips64) static const u64 kAddressSpaceSize = 1ULL << 40; #elif defined(__aarch64__) static const u64 kAddressSpaceSize = 1ULL << 39; #else static const u64 kAddressSpaceSize = 1ULL << 32; #endif static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24); static const uptr kFlatByteMapSize = kAddressSpaceSize >> kRegionSizeLog; typedef SizeClassAllocator32< 0, kAddressSpaceSize, /*kMetadataSize*/16, CompactSizeClassMap, kRegionSizeLog, FlatByteMap<kFlatByteMapSize> > Allocator32Compact; template <class SizeClassMap> void TestSizeClassMap() { typedef SizeClassMap SCMap; // SCMap::Print(); SCMap::Validate(); } TEST(SanitizerCommon, DefaultSizeClassMap) { TestSizeClassMap<DefaultSizeClassMap>(); } TEST(SanitizerCommon, CompactSizeClassMap) { TestSizeClassMap<CompactSizeClassMap>(); } TEST(SanitizerCommon, InternalSizeClassMap) { TestSizeClassMap<InternalSizeClassMap>(); } template <class Allocator> void TestSizeClassAllocator() { Allocator *a = new Allocator; a->Init(); SizeClassAllocatorLocalCache<Allocator> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; std::vector<void *> allocated; uptr last_total_allocated = 0; for (int i = 0; i < 3; i++) { // Allocate a bunch of chunks. for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { uptr size = sizes[s]; if (!a->CanAllocate(size, 1)) continue; // printf("s = %ld\n", size); uptr n_iter = std::max((uptr)6, 4000000 / size); // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); for (uptr i = 0; i < n_iter; i++) { uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); char *x = (char*)cache.Allocate(a, class_id0); x[0] = 0; x[size - 1] = 0; x[size / 2] = 0; allocated.push_back(x); CHECK_EQ(x, a->GetBlockBegin(x)); CHECK_EQ(x, a->GetBlockBegin(x + size - 1)); CHECK(a->PointerIsMine(x)); CHECK(a->PointerIsMine(x + size - 1)); CHECK(a->PointerIsMine(x + size / 2)); CHECK_GE(a->GetActuallyAllocatedSize(x), size); uptr class_id = a->GetSizeClass(x); CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size)); uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); metadata[0] = reinterpret_cast<uptr>(x) + 1; metadata[1] = 0xABCD; } } // Deallocate all. for (uptr i = 0; i < allocated.size(); i++) { void *x = allocated[i]; uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1); CHECK_EQ(metadata[1], 0xABCD); cache.Deallocate(a, a->GetSizeClass(x), x); } allocated.clear(); uptr total_allocated = a->TotalMemoryUsed(); if (last_total_allocated == 0) last_total_allocated = total_allocated; CHECK_EQ(last_total_allocated, total_allocated); } // Check that GetBlockBegin never crashes. for (uptr x = 0, step = kAddressSpaceSize / 100000; x < kAddressSpaceSize - step; x += step) if (a->PointerIsMine(reinterpret_cast<void *>(x))) Ident(a->GetBlockBegin(reinterpret_cast<void *>(x))); a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator64) { TestSizeClassAllocator<Allocator64>(); } TEST(SanitizerCommon, SizeClassAllocator64Compact) { TestSizeClassAllocator<Allocator64Compact>(); } #endif TEST(SanitizerCommon, SizeClassAllocator32Compact) { TestSizeClassAllocator<Allocator32Compact>(); } template <class Allocator> void SizeClassAllocatorMetadataStress() { Allocator *a = new Allocator; a->Init(); SizeClassAllocatorLocalCache<Allocator> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); const uptr kNumAllocs = 1 << 13; void *allocated[kNumAllocs]; void *meta[kNumAllocs]; for (uptr i = 0; i < kNumAllocs; i++) { void *x = cache.Allocate(a, 1 + i % 50); allocated[i] = x; meta[i] = a->GetMetaData(x); } // Get Metadata kNumAllocs^2 times. for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { uptr idx = i % kNumAllocs; void *m = a->GetMetaData(allocated[idx]); EXPECT_EQ(m, meta[idx]); } for (uptr i = 0; i < kNumAllocs; i++) { cache.Deallocate(a, 1 + i % 50, allocated[i]); } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) { SizeClassAllocatorMetadataStress<Allocator64>(); } TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) { SizeClassAllocatorMetadataStress<Allocator64Compact>(); } #endif // SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) { SizeClassAllocatorMetadataStress<Allocator32Compact>(); } template <class Allocator> void SizeClassAllocatorGetBlockBeginStress() { Allocator *a = new Allocator; a->Init(); SizeClassAllocatorLocalCache<Allocator> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); uptr max_size_class = Allocator::kNumClasses - 1; uptr size = Allocator::SizeClassMapT::Size(max_size_class); u64 G8 = 1ULL << 33; // Make sure we correctly compute GetBlockBegin() w/o overflow. for (size_t i = 0; i <= G8 / size; i++) { void *x = cache.Allocate(a, max_size_class); void *beg = a->GetBlockBegin(x); // if ((i & (i - 1)) == 0) // fprintf(stderr, "[%zd] %p %p\n", i, x, beg); EXPECT_EQ(x, beg); } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) { SizeClassAllocatorGetBlockBeginStress<Allocator64>(); } TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) { SizeClassAllocatorGetBlockBeginStress<Allocator64Compact>(); } TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) { SizeClassAllocatorGetBlockBeginStress<Allocator32Compact>(); } #endif // SANITIZER_CAN_USE_ALLOCATOR64 struct TestMapUnmapCallback { static int map_count, unmap_count; void OnMap(uptr p, uptr size) const { map_count++; } void OnUnmap(uptr p, uptr size) const { unmap_count++; } }; int TestMapUnmapCallback::map_count; int TestMapUnmapCallback::unmap_count; #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) { TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; typedef SizeClassAllocator64< kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap, TestMapUnmapCallback> Allocator64WithCallBack; Allocator64WithCallBack *a = new Allocator64WithCallBack; a->Init(); EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state. SizeClassAllocatorLocalCache<Allocator64WithCallBack> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); AllocatorStats stats; stats.Init(); a->AllocateBatch(&stats, &cache, 32); EXPECT_EQ(TestMapUnmapCallback::map_count, 3); // State + alloc + metadata. a->TestOnlyUnmap(); EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing. delete a; } #endif TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) { TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; typedef SizeClassAllocator32< 0, kAddressSpaceSize, /*kMetadataSize*/16, CompactSizeClassMap, kRegionSizeLog, FlatByteMap<kFlatByteMapSize>, TestMapUnmapCallback> Allocator32WithCallBack; Allocator32WithCallBack *a = new Allocator32WithCallBack; a->Init(); EXPECT_EQ(TestMapUnmapCallback::map_count, 0); SizeClassAllocatorLocalCache<Allocator32WithCallBack> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); AllocatorStats stats; stats.Init(); a->AllocateBatch(&stats, &cache, 32); EXPECT_EQ(TestMapUnmapCallback::map_count, 1); a->TestOnlyUnmap(); EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); delete a; // fprintf(stderr, "Map: %d Unmap: %d\n", // TestMapUnmapCallback::map_count, // TestMapUnmapCallback::unmap_count); } TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) { TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; LargeMmapAllocator<TestMapUnmapCallback> a; a.Init(/* may_return_null */ false); AllocatorStats stats; stats.Init(); void *x = a.Allocate(&stats, 1 << 20, 1); EXPECT_EQ(TestMapUnmapCallback::map_count, 1); a.Deallocate(&stats, x); EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); } template<class Allocator> void FailInAssertionOnOOM() { Allocator a; a.Init(); SizeClassAllocatorLocalCache<Allocator> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); AllocatorStats stats; stats.Init(); for (int i = 0; i < 1000000; i++) { a.AllocateBatch(&stats, &cache, 52); } a.TestOnlyUnmap(); } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator64Overflow) { EXPECT_DEATH(FailInAssertionOnOOM<Allocator64>(), "Out of memory"); } #endif #if !defined(_WIN32) // FIXME: This currently fails on Windows. TEST(SanitizerCommon, LargeMmapAllocator) { LargeMmapAllocator<> a; a.Init(/* may_return_null */ false); AllocatorStats stats; stats.Init(); static const int kNumAllocs = 1000; char *allocated[kNumAllocs]; static const uptr size = 4000; // Allocate some. for (int i = 0; i < kNumAllocs; i++) { allocated[i] = (char *)a.Allocate(&stats, size, 1); CHECK(a.PointerIsMine(allocated[i])); } // Deallocate all. CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); for (int i = 0; i < kNumAllocs; i++) { char *p = allocated[i]; CHECK(a.PointerIsMine(p)); a.Deallocate(&stats, p); } // Check that non left. CHECK_EQ(a.TotalMemoryUsed(), 0); // Allocate some more, also add metadata. for (int i = 0; i < kNumAllocs; i++) { char *x = (char *)a.Allocate(&stats, size, 1); CHECK_GE(a.GetActuallyAllocatedSize(x), size); uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x)); *meta = i; allocated[i] = x; } for (int i = 0; i < kNumAllocs * kNumAllocs; i++) { char *p = allocated[i % kNumAllocs]; CHECK(a.PointerIsMine(p)); CHECK(a.PointerIsMine(p + 2000)); } CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); // Deallocate all in reverse order. for (int i = 0; i < kNumAllocs; i++) { int idx = kNumAllocs - i - 1; char *p = allocated[idx]; uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p)); CHECK_EQ(*meta, idx); CHECK(a.PointerIsMine(p)); a.Deallocate(&stats, p); } CHECK_EQ(a.TotalMemoryUsed(), 0); // Test alignments. uptr max_alignment = SANITIZER_WORDSIZE == 64 ? (1 << 28) : (1 << 24); for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) { const uptr kNumAlignedAllocs = 100; for (uptr i = 0; i < kNumAlignedAllocs; i++) { uptr size = ((i % 10) + 1) * 4096; char *p = allocated[i] = (char *)a.Allocate(&stats, size, alignment); CHECK_EQ(p, a.GetBlockBegin(p)); CHECK_EQ(p, a.GetBlockBegin(p + size - 1)); CHECK_EQ(p, a.GetBlockBegin(p + size / 2)); CHECK_EQ(0, (uptr)allocated[i] % alignment); p[0] = p[size - 1] = 0; } for (uptr i = 0; i < kNumAlignedAllocs; i++) { a.Deallocate(&stats, allocated[i]); } } // Regression test for boundary condition in GetBlockBegin(). uptr page_size = GetPageSizeCached(); char *p = (char *)a.Allocate(&stats, page_size, 1); CHECK_EQ(p, a.GetBlockBegin(p)); CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1)); CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size)); a.Deallocate(&stats, p); } #endif template <class PrimaryAllocator, class SecondaryAllocator, class AllocatorCache> void TestCombinedAllocator() { typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator> Allocator; Allocator *a = new Allocator; a->Init(/* may_return_null */ true); AllocatorCache cache; memset(&cache, 0, sizeof(cache)); a->InitCache(&cache); EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0); EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0); EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0); EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0); // Set to false a->SetMayReturnNull(false); EXPECT_DEATH(a->Allocate(&cache, -1, 1), "allocator is terminating the process"); const uptr kNumAllocs = 100000; const uptr kNumIter = 10; for (uptr iter = 0; iter < kNumIter; iter++) { std::vector<void*> allocated; for (uptr i = 0; i < kNumAllocs; i++) { uptr size = (i % (1 << 14)) + 1; if ((i % 1024) == 0) size = 1 << (10 + (i % 14)); void *x = a->Allocate(&cache, size, 1); uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); CHECK_EQ(*meta, 0); *meta = size; allocated.push_back(x); } random_shuffle(allocated.begin(), allocated.end()); for (uptr i = 0; i < kNumAllocs; i++) { void *x = allocated[i]; uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); CHECK_NE(*meta, 0); CHECK(a->PointerIsMine(x)); *meta = 0; a->Deallocate(&cache, x); } allocated.clear(); a->SwallowCache(&cache); } a->DestroyCache(&cache); a->TestOnlyUnmap(); } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, CombinedAllocator64) { TestCombinedAllocator<Allocator64, LargeMmapAllocator<>, SizeClassAllocatorLocalCache<Allocator64> > (); } TEST(SanitizerCommon, CombinedAllocator64Compact) { TestCombinedAllocator<Allocator64Compact, LargeMmapAllocator<>, SizeClassAllocatorLocalCache<Allocator64Compact> > (); } #endif #if !defined(_WIN32) // FIXME: This currently fails on Windows. TEST(SanitizerCommon, CombinedAllocator32Compact) { TestCombinedAllocator<Allocator32Compact, LargeMmapAllocator<>, SizeClassAllocatorLocalCache<Allocator32Compact> > (); } #endif template <class AllocatorCache> void TestSizeClassAllocatorLocalCache() { AllocatorCache cache; typedef typename AllocatorCache::Allocator Allocator; Allocator *a = new Allocator(); a->Init(); memset(&cache, 0, sizeof(cache)); cache.Init(0); const uptr kNumAllocs = 10000; const int kNumIter = 100; uptr saved_total = 0; for (int class_id = 1; class_id <= 5; class_id++) { for (int it = 0; it < kNumIter; it++) { void *allocated[kNumAllocs]; for (uptr i = 0; i < kNumAllocs; i++) { allocated[i] = cache.Allocate(a, class_id); } for (uptr i = 0; i < kNumAllocs; i++) { cache.Deallocate(a, class_id, allocated[i]); } cache.Drain(a); uptr total_allocated = a->TotalMemoryUsed(); if (it) CHECK_EQ(saved_total, total_allocated); saved_total = total_allocated; } } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator64LocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache<Allocator64> >(); } TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache<Allocator64Compact> >(); } #endif TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) { TestSizeClassAllocatorLocalCache< SizeClassAllocatorLocalCache<Allocator32Compact> >(); } #if SANITIZER_CAN_USE_ALLOCATOR64 typedef SizeClassAllocatorLocalCache<Allocator64> AllocatorCache; static AllocatorCache static_allocator_cache; void *AllocatorLeakTestWorker(void *arg) { typedef AllocatorCache::Allocator Allocator; Allocator *a = (Allocator*)(arg); static_allocator_cache.Allocate(a, 10); static_allocator_cache.Drain(a); return 0; } TEST(SanitizerCommon, AllocatorLeakTest) { typedef AllocatorCache::Allocator Allocator; Allocator a; a.Init(); uptr total_used_memory = 0; for (int i = 0; i < 100; i++) { pthread_t t; PTHREAD_CREATE(&t, 0, AllocatorLeakTestWorker, &a); PTHREAD_JOIN(t, 0); if (i == 0) total_used_memory = a.TotalMemoryUsed(); EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory); } a.TestOnlyUnmap(); } // Struct which is allocated to pass info to new threads. The new thread frees // it. struct NewThreadParams { AllocatorCache *thread_cache; AllocatorCache::Allocator *allocator; uptr class_id; }; // Called in a new thread. Just frees its argument. static void *DeallocNewThreadWorker(void *arg) { NewThreadParams *params = reinterpret_cast<NewThreadParams*>(arg); params->thread_cache->Deallocate(params->allocator, params->class_id, params); return NULL; } // The allocator cache is supposed to be POD and zero initialized. We should be // able to call Deallocate on a zeroed cache, and it will self-initialize. TEST(Allocator, AllocatorCacheDeallocNewThread) { AllocatorCache::Allocator allocator; allocator.Init(); AllocatorCache main_cache; AllocatorCache child_cache; memset(&main_cache, 0, sizeof(main_cache)); memset(&child_cache, 0, sizeof(child_cache)); uptr class_id = DefaultSizeClassMap::ClassID(sizeof(NewThreadParams)); NewThreadParams *params = reinterpret_cast<NewThreadParams*>( main_cache.Allocate(&allocator, class_id)); params->thread_cache = &child_cache; params->allocator = &allocator; params->class_id = class_id; pthread_t t; PTHREAD_CREATE(&t, 0, DeallocNewThreadWorker, params); PTHREAD_JOIN(t, 0); } #endif TEST(Allocator, Basic) { char *p = (char*)InternalAlloc(10); EXPECT_NE(p, (char*)0); char *p2 = (char*)InternalAlloc(20); EXPECT_NE(p2, (char*)0); EXPECT_NE(p2, p); InternalFree(p); InternalFree(p2); } TEST(Allocator, Stress) { const int kCount = 1000; char *ptrs[kCount]; unsigned rnd = 42; for (int i = 0; i < kCount; i++) { uptr sz = my_rand_r(&rnd) % 1000; char *p = (char*)InternalAlloc(sz); EXPECT_NE(p, (char*)0); ptrs[i] = p; } for (int i = 0; i < kCount; i++) { InternalFree(ptrs[i]); } } TEST(Allocator, LargeAlloc) { void *p = InternalAlloc(10 << 20); InternalFree(p); } TEST(Allocator, ScopedBuffer) { const int kSize = 512; { InternalScopedBuffer<int> int_buf(kSize); EXPECT_EQ(sizeof(int) * kSize, int_buf.size()); // NOLINT } InternalScopedBuffer<char> char_buf(kSize); EXPECT_EQ(sizeof(char) * kSize, char_buf.size()); // NOLINT internal_memset(char_buf.data(), 'c', kSize); for (int i = 0; i < kSize; i++) { EXPECT_EQ('c', char_buf[i]); } } void IterationTestCallback(uptr chunk, void *arg) { reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk); } template <class Allocator> void TestSizeClassAllocatorIteration() { Allocator *a = new Allocator; a->Init(); SizeClassAllocatorLocalCache<Allocator> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; std::vector<void *> allocated; // Allocate a bunch of chunks. for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { uptr size = sizes[s]; if (!a->CanAllocate(size, 1)) continue; // printf("s = %ld\n", size); uptr n_iter = std::max((uptr)6, 80000 / size); // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); for (uptr j = 0; j < n_iter; j++) { uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); void *x = cache.Allocate(a, class_id0); allocated.push_back(x); } } std::set<uptr> reported_chunks; a->ForceLock(); a->ForEachChunk(IterationTestCallback, &reported_chunks); a->ForceUnlock(); for (uptr i = 0; i < allocated.size(); i++) { // Don't use EXPECT_NE. Reporting the first mismatch is enough. ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), reported_chunks.end()); } a->TestOnlyUnmap(); delete a; } #if SANITIZER_CAN_USE_ALLOCATOR64 TEST(SanitizerCommon, SizeClassAllocator64Iteration) { TestSizeClassAllocatorIteration<Allocator64>(); } #endif TEST(SanitizerCommon, SizeClassAllocator32Iteration) { TestSizeClassAllocatorIteration<Allocator32Compact>(); } TEST(SanitizerCommon, LargeMmapAllocatorIteration) { LargeMmapAllocator<> a; a.Init(/* may_return_null */ false); AllocatorStats stats; stats.Init(); static const uptr kNumAllocs = 1000; char *allocated[kNumAllocs]; static const uptr size = 40; // Allocate some. for (uptr i = 0; i < kNumAllocs; i++) allocated[i] = (char *)a.Allocate(&stats, size, 1); std::set<uptr> reported_chunks; a.ForceLock(); a.ForEachChunk(IterationTestCallback, &reported_chunks); a.ForceUnlock(); for (uptr i = 0; i < kNumAllocs; i++) { // Don't use EXPECT_NE. Reporting the first mismatch is enough. ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), reported_chunks.end()); } for (uptr i = 0; i < kNumAllocs; i++) a.Deallocate(&stats, allocated[i]); } TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) { LargeMmapAllocator<> a; a.Init(/* may_return_null */ false); AllocatorStats stats; stats.Init(); static const uptr kNumAllocs = 1024; static const uptr kNumExpectedFalseLookups = 10000000; char *allocated[kNumAllocs]; static const uptr size = 4096; // Allocate some. for (uptr i = 0; i < kNumAllocs; i++) { allocated[i] = (char *)a.Allocate(&stats, size, 1); } a.ForceLock(); for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { // if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i); char *p1 = allocated[i % kNumAllocs]; EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1)); EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size / 2)); EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size - 1)); EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 - 100)); } for (uptr i = 0; i < kNumExpectedFalseLookups; i++) { void *p = reinterpret_cast<void *>(i % 1024); EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); p = reinterpret_cast<void *>(~0L - (i % 1024)); EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); } a.ForceUnlock(); for (uptr i = 0; i < kNumAllocs; i++) a.Deallocate(&stats, allocated[i]); } #if SANITIZER_CAN_USE_ALLOCATOR64 // Regression test for out-of-memory condition in PopulateFreeList(). TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) { // In a world where regions are small and chunks are huge... typedef SizeClassMap<63, 128, 16> SpecialSizeClassMap; typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0, SpecialSizeClassMap> SpecialAllocator64; const uptr kRegionSize = kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded; SpecialAllocator64 *a = new SpecialAllocator64; a->Init(); SizeClassAllocatorLocalCache<SpecialAllocator64> cache; memset(&cache, 0, sizeof(cache)); cache.Init(0); // ...one man is on a mission to overflow a region with a series of // successive allocations. const uptr kClassID = 107; const uptr kAllocationSize = DefaultSizeClassMap::Size(kClassID); ASSERT_LT(2 * kAllocationSize, kRegionSize); ASSERT_GT(3 * kAllocationSize, kRegionSize); cache.Allocate(a, kClassID); EXPECT_DEATH(cache.Allocate(a, kClassID) && cache.Allocate(a, kClassID), "The process has exhausted"); a->TestOnlyUnmap(); delete a; } #endif TEST(SanitizerCommon, TwoLevelByteMap) { const u64 kSize1 = 1 << 6, kSize2 = 1 << 12; const u64 n = kSize1 * kSize2; TwoLevelByteMap<kSize1, kSize2> m; m.TestOnlyInit(); for (u64 i = 0; i < n; i += 7) { m.set(i, (i % 100) + 1); } for (u64 j = 0; j < n; j++) { if (j % 7) EXPECT_EQ(m[j], 0); else EXPECT_EQ(m[j], (j % 100) + 1); } m.TestOnlyUnmap(); } typedef TwoLevelByteMap<1 << 12, 1 << 13, TestMapUnmapCallback> TestByteMap; struct TestByteMapParam { TestByteMap *m; size_t shard; size_t num_shards; }; void *TwoLevelByteMapUserThread(void *param) { TestByteMapParam *p = (TestByteMapParam*)param; for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) { size_t val = (i % 100) + 1; p->m->set(i, val); EXPECT_EQ((*p->m)[i], val); } return 0; } TEST(SanitizerCommon, ThreadedTwoLevelByteMap) { TestByteMap m; m.TestOnlyInit(); TestMapUnmapCallback::map_count = 0; TestMapUnmapCallback::unmap_count = 0; static const int kNumThreads = 4; pthread_t t[kNumThreads]; TestByteMapParam p[kNumThreads]; for (int i = 0; i < kNumThreads; i++) { p[i].m = &m; p[i].shard = i; p[i].num_shards = kNumThreads; PTHREAD_CREATE(&t[i], 0, TwoLevelByteMapUserThread, &p[i]); } for (int i = 0; i < kNumThreads; i++) { PTHREAD_JOIN(t[i], 0); } EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, 0UL); m.TestOnlyUnmap(); EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, m.size1()); } #endif // #if !SANITIZER_DEBUG