/* K=9 r=1/2 Viterbi decoder for PowerPC G4/G5 Altivec * Copyright Feb 2004, Phil Karn, KA9Q * May be used under the terms of the GNU Lesser General Public License (LGPL) */ #include <stdio.h> #include <stdlib.h> #include <memory.h> #include <sys/sysctl.h> #include "fec.h" typedef union { unsigned char c[256]; vector bool char v[16]; } decision_t; typedef union { unsigned char c[256]; vector unsigned char v[16]; } metric_t; static union branchtab29 { unsigned char c[128]; vector unsigned char v[8]; } Branchtab29[2]; static int Init = 0; /* State info for instance of Viterbi decoder */ struct v29 { metric_t metrics1; /* path metric buffer 1 */ metric_t metrics2; /* path metric buffer 2 */ decision_t *dp; /* Pointer to current decision */ metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */ decision_t *decisions; /* Beginning of decisions for block */ }; /* Initialize Viterbi decoder for start of new frame */ int init_viterbi29_av(void *p,int starting_state){ struct v29 *vp = p; int i; if(p == NULL) return -1; for(i=0;i<16;i++) vp->metrics1.v[i] = (vector unsigned char)(63); vp->old_metrics = &vp->metrics1; vp->new_metrics = &vp->metrics2; vp->dp = vp->decisions; vp->old_metrics->c[starting_state & 255] = 0; /* Bias known start state */ return 0; } void set_viterbi29_polynomial_av(int polys[2]){ int state; for(state=0;state < 128;state++){ Branchtab29[0].c[state] = (polys[0] < 0) ^ parity((2*state) & abs(polys[0])) ? 255 : 0; Branchtab29[1].c[state] = (polys[1] < 0) ^ parity((2*state) & abs(polys[1])) ? 255 : 0; } Init++; } /* Create a new instance of a Viterbi decoder */ void *create_viterbi29_av(int len){ struct v29 *vp; if(!Init){ int polys[2] = { V29POLYA,V29POLYB }; set_viterbi29_polynomial_av(polys); } if((vp = (struct v29 *)malloc(sizeof(struct v29))) == NULL) return NULL; if((vp->decisions = (decision_t *)malloc((len+8)*sizeof(decision_t))) == NULL){ free(vp); return NULL; } init_viterbi29_av(vp,0); return vp; } /* Viterbi chainback */ int chainback_viterbi29_av( void *p, unsigned char *data, /* Decoded output data */ unsigned int nbits, /* Number of data bits */ unsigned int endstate){ /* Terminal encoder state */ struct v29 *vp = p; decision_t *d; if(p == NULL) return -1; d = (decision_t *)vp->decisions; /* Make room beyond the end of the encoder register so we can * accumulate a full byte of decoded data */ endstate %= 256; /* The store into data[] only needs to be done every 8 bits. * But this avoids a conditional branch, and the writes will * combine in the cache anyway */ d += 8; /* Look past tail */ while(nbits-- != 0){ int k; k = d[nbits].c[endstate] & 1; data[nbits>>3] = endstate = (endstate >> 1) | (k << 7); } return 0; } /* Delete instance of a Viterbi decoder */ void delete_viterbi29_av(void *p){ struct v29 *vp = p; if(vp != NULL){ free(vp->decisions); free(vp); } } int update_viterbi29_blk_av(void *p,unsigned char *syms,int nbits){ struct v29 *vp = p; decision_t *d; int i; if(p == NULL) return -1; d = (decision_t *)vp->dp; while(nbits--){ vector unsigned char sym1v,sym2v; void *tmp; /* All this seems necessary just to load a byte into all elements of a vector! */ sym1v = vec_perm(vec_ld(0,syms),vec_ld(1,syms),vec_lvsl(0,syms)); /* sym1v.0 = syms[0]; sym1v.1 = syms[1] */ sym2v = vec_splat(sym1v,1); /* Splat syms[1] across sym2v */ sym1v = vec_splat(sym1v,0); /* Splat syms[0] across sym1v */ syms += 2; for(i=0;i<8;i++){ vector bool char decision0,decision1; vector unsigned char metric,m_metric,m0,m1,m2,m3,survivor0,survivor1; /* Form branch metrics */ metric = vec_avg(vec_xor(Branchtab29[0].v[i],sym1v),vec_xor(Branchtab29[1].v[i],sym2v)); metric = vec_sr(metric,(vector unsigned char)(3)); m_metric = (vector unsigned char)(31) - metric; /* Add branch metrics to path metrics */ m0 = vec_adds(vp->old_metrics->v[i],metric); m3 = vec_adds(vp->old_metrics->v[8+i],metric); m1 = vec_adds(vp->old_metrics->v[8+i],m_metric); m2 = vec_adds(vp->old_metrics->v[i],m_metric); /* Compare and select first set */ decision0 = vec_cmpgt(m0,m1); decision1 = vec_cmpgt(m2,m3); survivor0 = vec_min(m0,m1); survivor1 = vec_min(m2,m3); /* Interleave and store decisions and survivors */ d->v[2*i] = vec_mergeh(decision0,decision1); d->v[2*i+1] = vec_mergel(decision0,decision1); vp->new_metrics->v[2*i] = vec_mergeh(survivor0,survivor1); vp->new_metrics->v[2*i+1] = vec_mergel(survivor0,survivor1); } d++; /* renormalize if necessary */ if(vp->new_metrics->c[0] >= 50){ int i; vector unsigned char scale0,scale1; /* Find smallest metric and splat */ scale0 = vp->new_metrics->v[0]; scale1 = vp->new_metrics->v[1]; for(i=2;i<16;i+=2){ scale0 = vec_min(scale0,vp->new_metrics->v[i]); scale1 = vec_min(scale1,vp->new_metrics->v[i+1]); } scale0 = vec_min(scale0,scale1); scale0 = vec_min(scale0,vec_sld(scale0,scale0,8)); scale0 = vec_min(scale0,vec_sld(scale0,scale0,4)); scale0 = vec_min(scale0,vec_sld(scale0,scale0,2)); scale0 = vec_min(scale0,vec_sld(scale0,scale0,1)); /* Now subtract from all metrics */ for(i=0;i<16;i++) vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i],scale0); } /* Swap pointers to old and new metrics */ tmp = vp->old_metrics; vp->old_metrics = vp->new_metrics; vp->new_metrics = tmp; } vp->dp = d; return 0; }