// Copyright 2015 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // multi_thread_gemm.h: Multi-threaded GEMM entry point. // Readers note: To understand this file, it is useful to first // read and understand the much simpler single_thread_gemm.h. #ifndef GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_ #define GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_ #include <pthread.h> #include <unistd.h> #include <vector> #include "single_thread_gemm.h" namespace gemmlowp { #ifdef GEMMLOWP_ALLOW_INLINE_ASM // Where inline asm is allowed, we use some busy-waiting, // preferably implemented using NOP instructions. const int kMaxBusyWaitNOPs = 32 * 1000 * 1000; #define GEMMLOWP_NOP "nop\n" #define GEMMLOWP_STRING_CONCAT_4(X) X X X X #define GEMMLOWP_NOP4 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP) #define GEMMLOWP_NOP16 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP4) #define GEMMLOWP_NOP64 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP16) #define GEMMLOWP_NOP256 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP64) inline int Do256NOPs() { asm volatile(GEMMLOWP_NOP256); return 256; } #undef GEMMLOWP_STRING_CONCAT_4 #undef GEMMLOWP_NOP256 #undef GEMMLOWP_NOP64 #undef GEMMLOWP_NOP16 #undef GEMMLOWP_NOP4 #undef GEMMLOWP_NOP #else // not GEMMLOWP_ALLOW_INLINE_ASM // It is nontrivial to implement a good busy-waiting without // using asm; NOP instructions have the least side effects // and the lowest power usage; and since the whole busy-waiting // story is an optimization, it's not very interesting anyway // in places where we're slow anyway due to not being able to // use our inline asm kernels. const int kMaxBusyWaitNOPs = 0; inline int Do256NOPs() { return 0; } #endif // not GEMMLOWP_ALLOW_INLINE_ASM inline void WriteBarrier() { #ifdef GEMMLOWP_ARM_32 MemoryBarrier(); #elif defined(GEMMLOWP_ARM_64) asm volatile("dmb ishst" ::: "memory"); #elif defined(GEMMLOWP_X86) asm volatile("sfence" ::: "memory"); #elif defined(__mips__) MemoryBarrier(); #else #error "Unsupported architecture for WriteBarrier." #endif } inline void ReadBarrier() { #ifdef GEMMLOWP_ARM_32 MemoryBarrier(); #elif defined(GEMMLOWP_ARM_64) asm volatile("dmb ishld" ::: "memory"); #elif defined(GEMMLOWP_X86) asm volatile("lfence" ::: "memory"); #elif defined(__mips__) MemoryBarrier(); #else #error "Unsupported architecture for ReadBarrier." #endif } // Waits until *var != initial_value. // // Returns the new value of *var. The guarantee here is that // the return value is different from initial_value, and that that // new value has been taken by *var at some point during the // execution of this function. There is no guarantee that this is // still the value of *var when this function returns, since *var is // not assumed to be guarded by any lock. // // First does some busy-waiting for a fixed number of no-op cycles, // then falls back to passive waiting for the given condvar, guarded // by the given mutex. // // The idea of doing some initial busy-waiting is to help get // better and more consistent multithreading benefits for small GEMM sizes. // Busy-waiting help ensuring that if we need to wake up soon after having // started waiting, then we can wake up quickly (as opposed to, say, // having to wait to be scheduled again by the OS). On the other hand, // we must still eventually revert to passive waiting for longer waits // (e.g. worker threads having finished a GEMM and waiting until the next GEMM) // so as to avoid permanently spinning. // template <typename T> T WaitForVariableChange(volatile T* var, T initial_value, pthread_cond_t* cond, pthread_mutex_t* mutex) { int nops = 0; // First, trivial case where the variable already changed value. T new_value = *var; if (new_value != initial_value) { return new_value; } // Then try busy-waiting. while (nops < kMaxBusyWaitNOPs) { nops += Do256NOPs(); new_value = *var; if (new_value != initial_value) { return new_value; } } // Finally, do real passive waiting. pthread_mutex_lock(mutex); new_value = *var; if (new_value == initial_value) { pthread_cond_wait(cond, mutex); new_value = *var; assert(new_value != initial_value); } pthread_mutex_unlock(mutex); return new_value; } // A BlockingCounter lets one thread to wait for N events to occur. // This is how the master thread waits for all the worker threads // to have finished working. class BlockingCounter { public: BlockingCounter() : cond_(PTHREAD_COND_INITIALIZER), mutex_(PTHREAD_MUTEX_INITIALIZER), count_(0), initial_count_(0) {} // Sets/resets the counter; initial_count is the number of // decrementing events that the Wait() call will be waiting for. void Reset(std::size_t initial_count) { pthread_mutex_lock(&mutex_); assert(count_ == 0); initial_count_ = initial_count; count_ = initial_count_; pthread_mutex_unlock(&mutex_); } // Decrements the counter; if the counter hits zero, signals // the thread that was waiting for that, and returns true. // Otherwise (if the decremented count is still nonzero), // returns false. bool DecrementCount() { pthread_mutex_lock(&mutex_); assert(count_ > 0); count_--; if (count_ == 0) { pthread_cond_signal(&cond_); } bool retval = count_ == 0; pthread_mutex_unlock(&mutex_); return retval; } // Waits for the N other threads (N having been set by Reset()) // to hit the BlockingCounter. void Wait() { ScopedProfilingLabel label("BlockingCounter::Wait"); while (count_) { MemoryBarrier(); const std::size_t count_value = count_; if (count_value) { WaitForVariableChange(&count_, count_value, &cond_, &mutex_); } } } private: pthread_cond_t cond_; pthread_mutex_t mutex_; std::size_t count_; std::size_t initial_count_; }; // A workload for a worker. struct Task { Task() : local_allocator(nullptr) {} virtual ~Task() {} virtual void Run() const = 0; Allocator* local_allocator; }; // A worker thread. class Worker { public: enum class State { ThreadStartup, // The initial state before the thread main loop runs. Ready, // Is not working, has not yet received new work to do. HasWork, // Has work to do. ExitAsSoonAsPossible // Should exit at earliest convenience. }; explicit Worker(BlockingCounter* counter_to_decrement_when_ready) : task_(nullptr), state_cond_(PTHREAD_COND_INITIALIZER), state_mutex_(PTHREAD_MUTEX_INITIALIZER), state_(State::ThreadStartup), counter_to_decrement_when_ready_(counter_to_decrement_when_ready) { pthread_create(&thread_, nullptr, ThreadFunc, this); } ~Worker() { ChangeState(State::ExitAsSoonAsPossible); pthread_join(thread_, nullptr); } // Changes State; may be called from either the worker thread // or the master thread; however, not all state transitions are legal, // which is guarded by assertions. void ChangeState(State new_state) { ScopedProfilingLabel label("Worker::ChangeState"); pthread_mutex_lock(&state_mutex_); assert(new_state != state_); switch (state_) { case State::ThreadStartup: assert(new_state == State::Ready); break; case State::Ready: assert(new_state == State::HasWork || new_state == State::ExitAsSoonAsPossible); break; case State::HasWork: assert(new_state == State::Ready || new_state == State::ExitAsSoonAsPossible); break; default: abort(); } state_ = new_state; pthread_cond_signal(&state_cond_); if (state_ == State::Ready) { counter_to_decrement_when_ready_->DecrementCount(); } pthread_mutex_unlock(&state_mutex_); } // Thread entry point. void ThreadFunc() { ScopedProfilingLabel label("Worker::ThreadFunc"); RegisterCurrentThreadForProfiling(); ChangeState(State::Ready); // Thread main loop while (true) { // Get a state to act on // In the 'Ready' state, we have nothing to do but to wait until // we switch to another state. State state_to_act_upon = WaitForVariableChange( &state_, State::Ready, &state_cond_, &state_mutex_); // We now have a state to act on, so act. switch (state_to_act_upon) { case State::HasWork: // Got work to do! So do it, and then revert to 'Ready' state. ReadBarrier(); assert(task_); task_->Run(); delete task_; task_ = nullptr; ChangeState(State::Ready); break; case State::ExitAsSoonAsPossible: return; default: abort(); } } } static void* ThreadFunc(void* arg) { static_cast<Worker*>(arg)->ThreadFunc(); return nullptr; } // Called by the master thead to give this worker work to do. // It is only legal to call this if the worker void StartWork(Task* task) { assert(!task_); task->local_allocator = &local_allocator_; task_ = task; WriteBarrier(); assert(state_ == State::Ready); ChangeState(State::HasWork); } private: // The underlying thread. pthread_t thread_; // The task to be worked on. const Task* task_; // The condition variable and mutex guarding state changes. pthread_cond_t state_cond_; pthread_mutex_t state_mutex_; // The state enum tells if we're currently working, waiting for work, etc. State state_; // Each thread had a local allocator so they can allocate temporary // buffers without blocking each other. Allocator local_allocator_; // pointer to the master's thread BlockingCounter object, to notify the // master thread of when this worker switches to the 'Ready' state. BlockingCounter* const counter_to_decrement_when_ready_; }; // A very simple pool of workers, that only allows the very // specific parallelization pattern that we use here: // a fixed number of workers can be given work, and one then // waits for all of them to finish. class WorkersPool { public: WorkersPool() {} ~WorkersPool() { for (auto w : workers_) { delete w; } } BlockingCounter& counter_to_decrement_when_ready() { return counter_to_decrement_when_ready_; } // Give work to a specific worker. void StartWorker(int index, Task* task_) { assert(static_cast<std::size_t>(index) < workers_.size()); workers_[index]->StartWork(task_); } // Ensures that the pool has at least the given count of workers. // If any new worker has to be created, this function waits for it to // be ready. void CreateWorkers(std::size_t workers_count) { if (workers_.size() >= workers_count) { return; } counter_to_decrement_when_ready_.Reset(workers_count - workers_.size()); while (workers_.size() < workers_count) { workers_.push_back(new Worker(&counter_to_decrement_when_ready_)); } counter_to_decrement_when_ready_.Wait(); } private: // copy construction disallowed WorkersPool(const WorkersPool&) = delete; // The workers in this pool. They are owned by the pool: // the pool creates workers and destroys them in its destructor. std::vector<Worker*> workers_; // The BlockingCounter used to wait for the workers. BlockingCounter counter_to_decrement_when_ready_; }; // The task we use to implement a multi-threaded Gemm: a block of the // RHS has been packed by the master thread; each worker thread // then has to pack a block of the LHS and accumulate the Gemm of these // packed LHS and RHS blocks. template <typename KernelFormat, typename InputScalar, typename OutputScalar, typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder, typename LhsOffset, typename RhsOffset, typename OutputPipelineType> struct GemmWithPackedRhsTask : Task { typedef PackedSideBlock<typename KernelFormat::Lhs> PackedLhs; typedef PackedSideBlock<typename KernelFormat::Rhs> PackedRhs; GemmWithPackedRhsTask(const KernelBase& _kernel, const MatrixMap<const InputScalar, LhsOrder>& _lhs, const PackedRhs& _packed_rhs, MatrixMap<OutputScalar, ResultOrder>* _result, const LhsOffset& _lhs_offset, const RhsOffset& _rhs_offset, const OutputPipelineType& _output_pipeline) : kernel(_kernel), lhs(_lhs), packed_rhs(_packed_rhs), result(*_result), lhs_offset(_lhs_offset), rhs_offset(_rhs_offset), output_pipeline(_output_pipeline) {} void Run() const override { ScopedProfilingLabel label("GemmWithPackedRhsTask"); const int rows = result.rows(); const int cols = result.cols(); const int depth = lhs.cols(); BlockParams block_params; block_params.Init<KernelFormat>(rows, cols, depth, 1); PackedLhs packed_lhs(Side::Lhs, local_allocator, block_params); PackedResult packed_result(local_allocator, block_params); local_allocator->Commit(); for (int c = 0; c < cols; c += block_params.l2_cols) { int cs = std::min(block_params.l2_cols, cols - c); for (int r = 0; r < rows; r += block_params.l2_rows) { int rs = std::min(block_params.l2_rows, rows - r); PackLhs<BitDepthParams>(&packed_lhs, lhs.block(r, 0, rs, depth)); Compute(kernel, block_params, &packed_result, packed_lhs, packed_rhs); auto result_block = result.block(r, c, rs, cs); UnpackResult<BitDepthParams>(&result_block, packed_result, depth, packed_lhs.sums_of_each_slice(), packed_rhs.sums_of_each_slice(), lhs_offset, rhs_offset, output_pipeline); } } local_allocator->Decommit(); } const KernelBase& kernel; const MatrixMap<const InputScalar, LhsOrder> lhs; const PackedRhs packed_rhs; MatrixMap<OutputScalar, ResultOrder> result; const LhsOffset& lhs_offset; const RhsOffset& rhs_offset; const OutputPipelineType& output_pipeline; }; class MultiThreadGemmContext : public SingleThreadGemmContext { public: MultiThreadGemmContext() : max_num_threads_(0) {} void set_max_num_threads(int n) { max_num_threads_ = n; } int max_num_threads() const { return max_num_threads_; } WorkersPool* workers_pool() { return &workers_pool_; } Allocator* main_thread_task_allocator() { return &main_thread_task_allocator_; } protected: // The workers pool used by MultiThreadGemm. Making // this part of the context allows it to be persistent, // avoiding recreating threads on every Gemm. WorkersPool workers_pool_; // The maximum number of worker threads to use (in addition // to the master thread). // The default value 0 means the default behavior of // detecting the number of hardware threads. Nonzero values mean // skipping and overriding hardware detection. int max_num_threads_; // For N-threaded operations, we will use only N-1 worker threads // while the last task will be run directly on the main thread. // It will then use this main_thread_task_allocator_; having a // dedicated allocator for that (separate from the base allocator_) // allows to use the same code for all tasks regardless of which // thread they run on. Allocator main_thread_task_allocator_; }; // Determines how many threads should be used for a given Gemm // operation. template <int KernelRows> inline int HowManyThreads(MultiThreadGemmContext* context, int rows, int cols, int depth) { // First check if the user set an explicit maximum number of threads. int max_count = context->max_num_threads(); if (!max_count) { // No user-set maximum number of threads, so we need to // do some hardware detection. // This is expensive to query so we do it only once. // Too bad for dynamicness. Also, we dont use the c++11 standard getter // because Google's coding style currently bans #include <thread_>. static const int hardware_threads_count = static_cast<int>(sysconf(_SC_NPROCESSORS_CONF)); max_count = hardware_threads_count; } // Basic calculation: take into account max pool size, and // how many rows we have to feed our kernel. // The motivation for an absolute minimum number of rows per thread, // potentially higher than KernelRows, is that very thin thread workload // currently defeat assumptions of the AddMod generator, resulting // in substantial bias in TestWithRealData on 24 threads. // Ideally, the AddMod generator should be aware of global (r,c) coordinates // so as to be independent of the number of threads. static const int AbsoluteMinRowsPerThread = 16; static const int MinRowsPerThread = KernelRows > AbsoluteMinRowsPerThread ? KernelRows : AbsoluteMinRowsPerThread; int thread_count = std::min(max_count, CeilQuotient(rows, MinRowsPerThread)); // At this point for small products we already have thread_count==1 so // we can avoid doing more work; otherwise, we still want to check // that the cubic size (rows*cols*depth) is big enough to keep // workers_ busy. if (thread_count > 1) { // Empirically determined value. static const std::uint64_t min_cubic_size_per_thread = 64 * 1024; // We can only multiply two out of three sizes without risking overflow const std::uint64_t cubic_size = std::uint64_t(rows) * std::uint64_t(cols) * std::uint64_t(depth); thread_count = std::min(thread_count, int(cubic_size / min_cubic_size_per_thread)); if (thread_count < 1) { thread_count = 1; } } assert(thread_count > 0 && thread_count <= max_count); return thread_count; } // The main multi-threaded Gemm function. // To understand it, first read the code of SingleThreadedGemm(). // The parallelization scheme used here is to have this master function // pack a block of RHS and then start worker threads to pack a block of LHS // each, and accumulate the corresponding products. template <typename KernelFormat, typename InputScalar, typename OutputScalar, typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder, typename LhsOffset, typename RhsOffset, typename OutputPipelineType> void MultiThreadGemm(MultiThreadGemmContext* context, const KernelBase& kernel, const MatrixMap<const InputScalar, LhsOrder>& lhs, const MatrixMap<const InputScalar, RhsOrder>& rhs, MatrixMap<OutputScalar, ResultOrder>* result, const LhsOffset& lhs_offset, const RhsOffset& rhs_offset, const OutputPipelineType& output_pipeline) { ScopedProfilingLabel label("gemmlowp::MultiThreadGemm"); assert(lhs.cols() == rhs.rows()); int rows = result->rows(); int cols = result->cols(); int depth = lhs.cols(); assert(rows > 0); assert(cols > 0); assert(depth > 0); const int thread_count = HowManyThreads<KernelFormat::kRows>(context, rows, cols, depth); if (thread_count == 1) { return SingleThreadGemm<KernelFormat, InputScalar, OutputScalar, BitDepthParams>(context, kernel, lhs, rhs, result, lhs_offset, rhs_offset, output_pipeline); } assert(thread_count > 1); // We choose to use a worker thread for all but one // of the thread workloads. The remaining thread workload will be // executed immediately on the current thread. // In this way, the total number of threads (1 master, N-1 workers) // equals the value returned by HowManyThread. This simple // 1:1 mapping of threads to physical cores, is very important // to getting good multithreaded performance especially for // not-very-large GEMMs, and especially on Android. const int workers_count = thread_count - 1; Allocator* allocator = context->allocator(); WorkersPool* workers_pool = context->workers_pool(); workers_pool->CreateWorkers(workers_count); BlockParams block_params; block_params.Init<KernelFormat>(rows, cols, depth, workers_count); PackedSideBlock<typename KernelFormat::Rhs> packed_rhs( Side::Rhs, allocator, block_params); allocator->Commit(); // We loop over large blocks of the RHS. for (int c = 0; c < cols; c += block_params.l2_cols) { int cs = std::min(block_params.l2_cols, cols - c); // Pack a large block of the RHS. PackRhs<BitDepthParams>(&packed_rhs, rhs.block(0, c, depth, cs)); // Give work to each worker. int next_start_row = 0; workers_pool->counter_to_decrement_when_ready().Reset(workers_count); for (int thread = 0; thread < thread_count; thread++) { int start_row = next_start_row; next_start_row = std::min(rows, RoundUp<KernelFormat::kRows>( rows * (thread + 1) / thread_count)); int block_rows = next_start_row - start_row; auto lhs_block = lhs.block(start_row, 0, block_rows, depth); auto result_block = result->block(start_row, c, block_rows, cs); typedef GemmWithPackedRhsTask<KernelFormat, InputScalar, OutputScalar, BitDepthParams, LhsOrder, RhsOrder, ResultOrder, LhsOffset, RhsOffset, OutputPipelineType> TaskType; auto task = new TaskType(kernel, lhs_block, packed_rhs, &result_block, lhs_offset, rhs_offset, output_pipeline); if (thread < workers_count) { workers_pool->StartWorker(thread, task); } else { // Execute the remaining workload immediately on the current thread. task->local_allocator = context->main_thread_task_allocator(); task->Run(); delete task; } } // Wait for the workers. workers_pool->counter_to_decrement_when_ready().Wait(); } allocator->Decommit(); } } // namespace gemmlowp #endif // GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_