// Copyright 2015 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // pack_neon.h: optimized NEON specializations of the templates in pack.h. #ifndef GEMMLOWP_INTERNAL_PACK_NEON_H_ #define GEMMLOWP_INTERNAL_PACK_NEON_H_ #include "pack.h" #include <arm_neon.h> namespace gemmlowp { template <RoundingMode tRoundingMode> class NEONRoundingOffsetGenerator { public: uint8x16_t get() { assert(false); // This generic path should never be called. return vdupq_n_u8(0); } }; // A RoundingOffsetGenerator for rounding-to-nearest, always returning // the midpoint value 127. template <> class NEONRoundingOffsetGenerator<RoundingMode::Nearest> { public: uint8x16_t get() { return vdupq_n_u8(127); } }; // Variant of NEONRoundingOffsetGenerator that produces // random NEON 128-bit vectors using a 8-bit Xorshift. template <> class NEONRoundingOffsetGenerator<RoundingMode::ProbabilisticXorshift> { public: NEONRoundingOffsetGenerator() { uint8_t s = 128; std::uint8_t a[16]; for (int i = 0; i < 16; i++) { a[i] = s; // Xorshift8(7,7,1). Very important to choose a different // xorshift than we do in get(), otherwise lanes would contain // the same values! s ^= s << 7; s ^= s >> 7; s ^= s << 1; } x_ = vld1q_u8(a); } uint8x16_t get() { // Xorshift produces values in [1..255], we want [0..254]. uint8x16_t result = vsubq_u8(x_, vdupq_n_u8(1)); // Xorshift8(7,5,3) x_ = veorq_u8(x_, vshlq_n_u8(x_, 7)); x_ = veorq_u8(x_, vshrq_n_u8(x_, 5)); x_ = veorq_u8(x_, vshlq_n_u8(x_, 3)); return result; } private: // State uint8x16_t x_; }; // Variant of NEONRoundingOffsetGenerator that produces // rounding vectors using an 8-bit add/mod low-discrepancy sequence. template <> class NEONRoundingOffsetGenerator<RoundingMode::ProbabilisticAddmod> { public: NEONRoundingOffsetGenerator() { uint8_t s = 128; std::uint8_t a[16]; // The initial offset is set by offsetting each lane to one // more iteration of the sequence (s0...s15) Then, upon iteration, // each lane moves ahead by 16. for (int i = 0; i < 16; i++) { a[i] = s; s += (97 + (s >= 158)); } x_ = vld1q_u8(a); } uint8x16_t get() { // Get moves the lane ahead by 16 iterations of the sequence // x_ = (x + (16*97)) % 255. (16*97)%255 = 22. 255-22=233, // so x_ += (22 + (x >= 233)). // There's an excessively opaque bit hack here: // A "true" compare on NEON produces an all-1s result (0xff). // So instead of adding in the comparison result, we subtract it // to get the same effect as adding 1. uint8x16_t extra_one = vcgeq_u8(x_, vdupq_n_u8(233)); x_ = vaddq_u8(x_, vdupq_n_u8(22)); x_ = vsubq_u8(x_, extra_one); return x_; } private: // State uint8x16_t x_; }; // Requantizes source uint8 values in [0..255] range // to the range specified by BitDepth, [0..((2^bits)-1)]. // Bias must be avoided. Currently this is achieved // by probabilistic rounding. template <typename QuantizationParams> uint8x16_t Requantize( uint8x16_t raw_src_data, NEONRoundingOffsetGenerator<QuantizationParams::kRoundingMode>* rounding_offset_generator) { static const int kBits = QuantizationParams::BitDepth::kBits; static const std::uint8_t kMaxVal = (1 << kBits) - 1; if (kBits == 8) { return raw_src_data; } uint8x16_t rounding_offset = rounding_offset_generator->get(); // Compute: // x = maxval * src + rounding_offset uint16x8_t x[2]; const uint8x8_t maxval_dup = vdup_n_u8(kMaxVal); x[0] = vmlal_u8(vmovl_u8(vget_low_u8(rounding_offset)), maxval_dup, vget_low_u8(raw_src_data)); x[1] = vmlal_u8(vmovl_u8(vget_high_u8(rounding_offset)), maxval_dup, vget_high_u8(raw_src_data)); // Divide by 255 (truncating). // // Here we use the following formula, valid for all integers y in 0..65534 // (which is more than we need since we've already early-returned // if kBits==8). // // y/255 = (y + 1 + (y >> 8)) >> 8. uint8x8_t result[2]; for (int i = 0; i < 2; i++) { result[i] = vshrn_n_u16( vaddq_u16(vaddq_u16(x[i], vdupq_n_u16(1)), vshrq_n_u16(x[i], 8)), 8); } return vcombine_u8(result[0], result[1]); } typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor> WidthMajorUint8SideMap; template <int Cells> using DepthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2>, Cells>; template <typename QuantizationParams, int Cells> class PackingRegisterBlock< QuantizationParams, WidthMajorUint8SideMap, PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells> > > : public PackingRegisterBlockBase< QuantizationParams, WidthMajorUint8SideMap, PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells> > > { public: typedef DepthMajorSideFormatNCells4x2<Cells> KernelSideFormat; typedef typename KernelSideFormat::Cell CellFormat; static const int kCells = KernelSideFormat::kCells; static const int kCellWidth = CellFormat::kWidth; static const int kKernelWidth = CellFormat::kWidth * kCells; static const int kCellDepth = CellFormat::kDepth; static const int kCellSize = CellFormat::kSize; typedef NEONRoundingOffsetGenerator<QuantizationParams::kRoundingMode> RoundingOffsetGenerator; void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width, RoundingOffsetGenerator* rounding_offset_generator) { std::uint8_t* dst_ptr = dst->current_data(); const std::uint8_t* const src_ptr = this->complete_src_.data(); const int stride = this->complete_src_.stride(); // Load and requantize source WidthMajor data uint8x16_t src_lines[4 * kCells]; for (int i = 0; i < 4 * kCells; i++) { src_lines[i] = Requantize<QuantizationParams>( vld1q_u8(src_ptr + i * stride), rounding_offset_generator); } // Reorder the data within registers to make DepthMajor 4x2 cells uint8x16x2_t src_lines_intertwined_2x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_2x[2 * i] = vzipq_u8(src_lines[4 * i], src_lines[4 * i + 2]); src_lines_intertwined_2x[2 * i + 1] = vzipq_u8(src_lines[4 * i + 1], src_lines[4 * i + 3]); } uint8x16x2_t src_lines_intertwined_4x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_4x[2 * i] = vzipq_u8(src_lines_intertwined_2x[2 * i].val[0], src_lines_intertwined_2x[2 * i + 1].val[0]); src_lines_intertwined_4x[2 * i + 1] = vzipq_u8(src_lines_intertwined_2x[2 * i].val[1], src_lines_intertwined_2x[2 * i + 1].val[1]); } // Store the resulting DepthMajor 4x2 cells in the destination packed block for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vget_low_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner]); vst1_u8(dst_ptr, value); dst_ptr += 8; } for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vget_high_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner]); vst1_u8(dst_ptr, value); dst_ptr += 8; } } } // Compute sums across the depth dimension uint16x8_t sums_of_2_cells[kCells][4]; for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { int i = 2 * outer + inner; for (int cell = 0; cell < kCells; cell++) { sums_of_2_cells[cell][i] = vaddl_u8( vget_low_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner]), vget_high_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner])); } } } int32x4_t sums_of_4_cells[kCells][4]; for (int i = 0; i < 4; i++) { for (int cell = 0; cell < kCells; cell++) { sums_of_4_cells[cell][i] = vreinterpretq_s32_u32( vaddl_u16(vget_low_u16(sums_of_2_cells[cell][i]), vget_high_u16(sums_of_2_cells[cell][i]))); } } // Update the sums_of_each_slice vector for (int cell = 0; cell < kCells; cell++) { int32x4_t s01 = vaddq_s32(sums_of_4_cells[cell][0], sums_of_4_cells[cell][1]); int32x4_t s23 = vaddq_s32(sums_of_4_cells[cell][2], sums_of_4_cells[cell][3]); int32x4_t s = vaddq_s32(s01, s23); std::int32_t* sums_of_each_slice_ptr = dst->sums_of_each_slice() + start_width + 4 * cell; vst1q_s32(sums_of_each_slice_ptr, vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr))); } dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth); } }; template <int Cells> using WidthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>; template <typename QuantizationParams, int Cells> class PackingRegisterBlock< QuantizationParams, WidthMajorUint8SideMap, PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > > : public PackingRegisterBlockBase< QuantizationParams, WidthMajorUint8SideMap, PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > > { public: typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat; typedef typename KernelSideFormat::Cell CellFormat; static const int kCells = KernelSideFormat::kCells; static const int kCellWidth = CellFormat::kWidth; static const int kKernelWidth = CellFormat::kWidth * kCells; static const int kCellDepth = CellFormat::kDepth; static const int kCellSize = CellFormat::kSize; typedef NEONRoundingOffsetGenerator<QuantizationParams::kRoundingMode> RoundingOffsetGenerator; void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width, RoundingOffsetGenerator* rounding_offset_generator) { std::uint8_t* dst_ptr = dst->current_data(); const std::uint8_t* src_ptr = this->complete_src_.data(); const int stride = this->complete_src_.stride(); // Load and requantize source WidthMajor data uint16x8_t src_lines[kCells * 4]; for (int i = 0; i < kCells; i++) { // This packing path is used with our current // less-than-8-bit kernel, and the partial unrolling of this loop // results in substantially faster code (thanks to better // register allocation) on Nexus 5. #define GEMMLOWP_UNROLLED_LOOP_ITER(k) \ src_lines[4 * i + k] = vreinterpretq_u16_u8(Requantize<QuantizationParams>( \ vld1q_u8(src_ptr), rounding_offset_generator)); \ src_ptr += stride; GEMMLOWP_UNROLLED_LOOP_ITER(0) GEMMLOWP_UNROLLED_LOOP_ITER(1) GEMMLOWP_UNROLLED_LOOP_ITER(2) GEMMLOWP_UNROLLED_LOOP_ITER(3) #undef GEMMLOWP_UNROLLED_LOOP_ITER } // Reorder the data within registers to make WidthMajor 4x2 cells uint16x8x2_t src_lines_intertwined_2x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_2x[2 * i] = vzipq_u16(src_lines[4 * i], src_lines[4 * i + 2]); src_lines_intertwined_2x[2 * i + 1] = vzipq_u16(src_lines[4 * i + 1], src_lines[4 * i + 3]); } uint16x8x2_t src_lines_intertwined_4x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_4x[2 * i] = vzipq_u16(src_lines_intertwined_2x[2 * i].val[0], src_lines_intertwined_2x[2 * i + 1].val[0]); src_lines_intertwined_4x[2 * i + 1] = vzipq_u16(src_lines_intertwined_2x[2 * i].val[1], src_lines_intertwined_2x[2 * i + 1].val[1]); } // Store the resulting WidthMajor 4x2 cells in the destination packed block for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vreinterpret_u8_u16(vget_low_u16( src_lines_intertwined_4x[2 * cell + outer].val[inner])); vst1_u8(dst_ptr, value); dst_ptr += 8; } for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vreinterpret_u8_u16(vget_high_u16( src_lines_intertwined_4x[2 * cell + outer].val[inner])); vst1_u8(dst_ptr, value); dst_ptr += 8; } } } // Compute sums across the depth dimension uint16x8_t sums_of_2[kCells][4]; for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { int i = 2 * outer + inner; for (int cell = 0; cell < kCells; cell++) { sums_of_2[cell][i] = vpaddlq_u8(vreinterpretq_u8_u16( src_lines_intertwined_4x[2 * cell + outer].val[inner])); } } } uint16x8_t sums_of_4[kCells][2]; for (int i = 0; i < 2; i++) { for (int cell = 0; cell < kCells; cell++) { sums_of_4[cell][i] = vaddq_u16(sums_of_2[cell][2 * i], sums_of_2[cell][2 * i + 1]); } } uint16x8_t sums_of_8[kCells]; for (int cell = 0; cell < kCells; cell++) { sums_of_8[cell] = vaddq_u16(sums_of_4[cell][0], sums_of_4[cell][1]); } uint16x4_t sums_of_16[kCells]; for (int cell = 0; cell < kCells; cell++) { sums_of_16[cell] = vadd_u16(vget_low_u16(sums_of_8[cell]), vget_high_u16(sums_of_8[cell])); } // Update the sums_of_each_slice vector for (int cell = 0; cell < kCells; cell++) { int32x4_t s = vreinterpretq_s32_u32(vmovl_u16(sums_of_16[cell])); std::int32_t* sums_of_each_slice_ptr = dst->sums_of_each_slice() + start_width + 4 * cell; vst1q_s32(sums_of_each_slice_ptr, vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr))); } dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth); } }; } // namespace gemmlowp #endif // GEMMLOWP_INTERNAL_PACK_NEON_H_