// Copyright 2015 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <unistd.h> #ifdef __APPLE__ #include <sys/time.h> #endif #include <cstdint> #include <cstdlib> #include <ctime> #include <iostream> #include <map> #include <vector> #ifdef __APPLE__ #include <TargetConditionals.h> #endif #include "test.h" #ifndef GEMMLOWP_TEST_BIT_DEPTH_PARAMS #define GEMMLOWP_TEST_BIT_DEPTH_PARAMS DefaultL8R8BitDepthParams #endif #if defined(__arm__) && !defined(GEMMLOWP_NEON) #warning "Building without NEON support on ARM, check your compiler setup!" #endif namespace gemmlowp { double time() { #ifdef __APPLE__ timeval t; gettimeofday(&t, nullptr); return t.tv_sec + 1e-6 * t.tv_usec; #else timespec t; clock_gettime(CLOCK_REALTIME, &t); return t.tv_sec + 1e-9 * t.tv_nsec; #endif } const double min_accurate_duration = 1e-1; const std::size_t min_working_set_size = 16 * 1024 * 1024; struct gemm_t { int rows, depth, cols; gemm_t() : rows(0), depth(0), cols(0) {} gemm_t(int r, int d, int c) : rows(r), depth(d), cols(c) {} }; bool operator<(const gemm_t& a, const gemm_t& b) { return a.rows < b.rows || (a.rows <= b.rows && (a.depth < b.depth || (a.depth <= b.depth && (a.cols < b.cols)))); } template <typename LhsType, typename RhsType, typename ResultType> double time_for_gemms(GemmContext* context, const std::vector<gemm_t>& gemms) { typedef std::uint8_t Scalar; // set up the matrix pool std::size_t combined_gemm_sizes = 0; for (auto gemm : gemms) { int rows = gemm.rows; int depth = gemm.depth; int cols = gemm.cols; combined_gemm_sizes += sizeof(Scalar) * (rows * depth + depth * cols + rows * cols); } const std::size_t pool_size = 1 + min_working_set_size / combined_gemm_sizes; std::vector<LhsType> lhs(pool_size * gemms.size()); std::vector<RhsType> rhs(pool_size * gemms.size()); std::vector<ResultType> result(pool_size * gemms.size()); for (std::size_t i = 0; i < pool_size; i++) { for (std::size_t j = 0; j < gemms.size(); j++) { int k = i * gemms.size() + j; lhs[k].Resize(gemms[j].rows, gemms[j].depth); MakeConstant(&lhs[k], 0); rhs[k].Resize(gemms[j].depth, gemms[j].cols); MakeConstant(&rhs[k], 0); result[k].Resize(gemms[j].rows, gemms[j].cols); MakeConstant(&result[k], 0); } } // main benchmark loop int iters_at_a_time = 1; float time_per_iter = 0.0f; std::size_t pool_index = 0; while (true) { double starttime = time(); for (int i = 0; i < iters_at_a_time; i++) { for (size_t j = 0; j < gemms.size(); j++) { int k = pool_index * gemms.size() + j; Gemm<std::uint8_t, GEMMLOWP_TEST_BIT_DEPTH_PARAMS>( context, lhs[k].const_map(), rhs[k].const_map(), &result[k].map(), -75, -91, 74980, 123, 20); } pool_index++; if (pool_index == pool_size) { pool_index = 0; } } double endtime = time(); const float timing = static_cast<float>(endtime - starttime); if (timing >= min_accurate_duration) { time_per_iter = timing / iters_at_a_time; break; } iters_at_a_time *= 2; } return time_per_iter; } template <typename LhsType, typename RhsType, typename ResultType> double gflops_for_gemms(GemmContext* context, const std::vector<gemm_t>& gemms) { const double time_per_iter = time_for_gemms<LhsType, RhsType, ResultType>(context, gemms); double ops = 0; for (auto gemm : gemms) { ops += 2.0 * gemm.rows * gemm.depth * gemm.cols; } return 1e-9 * ops / time_per_iter; } void benchmark(GemmContext* context) { std::map<gemm_t, std::vector<double>> benchmark_results; std::vector<gemm_t> benchmark_gemms; benchmark_gemms.emplace_back(10, 10, 10); benchmark_gemms.emplace_back(20, 20, 20); benchmark_gemms.emplace_back(30, 30, 30); benchmark_gemms.emplace_back(40, 40, 40); benchmark_gemms.emplace_back(50, 50, 50); benchmark_gemms.emplace_back(60, 60, 60); benchmark_gemms.emplace_back(64, 256, 147); benchmark_gemms.emplace_back(100, 100, 1); benchmark_gemms.emplace_back(100, 100, 100); benchmark_gemms.emplace_back(100, 1000, 100); benchmark_gemms.emplace_back(1000, 1000, 1); benchmark_gemms.emplace_back(1000, 1000, 10); benchmark_gemms.emplace_back(1000, 1000, 100); benchmark_gemms.emplace_back(1000, 1000, 1000); const int repeat = 2; typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType; typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType; typedef Matrix<std::uint8_t, MapOrder::ColMajor> ResultType; #ifdef GEMMLOWP_TEST_PROFILE gemmlowp::RegisterCurrentThreadForProfiling(); gemmlowp::StartProfiling(); #endif // We don't record the first repetition, it's just warm-up. for (int r = 0; r < repeat + 1; r++) { std::cout << "repetition " << r + 1 << "/" << repeat + 1 << "...\r" << std::flush; for (auto gemm : benchmark_gemms) { double gflops = 0; std::vector<gemm_t> unique_gemm; unique_gemm.push_back(gemm); gflops = gflops_for_gemms<LhsType, RhsType, ResultType>(context, unique_gemm); if (r > 0) { benchmark_results[gemm].emplace_back(gflops); } } } #ifdef GEMMLOWP_TEST_PROFILE gemmlowp::FinishProfiling(); #endif std::cout << " \r" << std::flush; std::cout.precision(4); for (auto b : benchmark_results) { sort(b.second.begin(), b.second.end()); std::cout << b.first.rows << "x" << b.first.depth << "x" << b.first.cols << " : " << b.second.back() << " GFlops/s" << std::endl; } std::cout << std::endl; } void benchmark_gemm_sizes(GemmContext* context, const std::vector<gemm_t>& gemms, double mintime) { typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType; typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType; typedef Matrix<std::uint8_t, MapOrder::ColMajor> ResultType; std::vector<float> gemm_times; std::cout << "running for " << mintime << " seconds..." << std::endl; #ifdef GEMMLOWP_TEST_PROFILE gemmlowp::RegisterCurrentThreadForProfiling(); gemmlowp::StartProfiling(); #endif double starttime = time(); while (time() < starttime + mintime) { gemm_times.push_back( time_for_gemms<LhsType, RhsType, ResultType>(context, gemms)); } #ifdef GEMMLOWP_TEST_PROFILE gemmlowp::FinishProfiling(); #endif std::sort(gemm_times.begin(), gemm_times.end()); double sum_gemm_times = 0; double sum_gemm_times_trimmed = 0; int count_gemm_times_trimmed = 0; const float trim_ratio = 0.25; const size_t count_trimmed = gemm_times.size() * trim_ratio; double sum_gemm_times_best = 0; int count_gemm_times_best = 0; const float best_ratio = 0.1; const size_t count_best = gemm_times.size() * best_ratio; for (size_t i = 0; i < gemm_times.size(); i++) { sum_gemm_times += gemm_times[i]; if (i >= count_trimmed && i < gemm_times.size() - count_trimmed) { sum_gemm_times_trimmed += gemm_times[i]; count_gemm_times_trimmed++; } if (i < count_best) { sum_gemm_times_best += gemm_times[i]; count_gemm_times_best++; } } const double min_latency = gemm_times.front(); const double max_latency = gemm_times.back(); const double mean_latency = sum_gemm_times / gemm_times.size(); const double trimmed_mean_latency = sum_gemm_times_trimmed / count_gemm_times_trimmed; const double best_mean_latency = sum_gemm_times_best / count_gemm_times_best; std::cout << "Graph latency (over " << gemm_times.size() << " iterations):" << std::endl; std::cout << " Best: " << min_latency << "s" << std::endl; std::cout << " Worst: " << max_latency << "s" << std::endl; std::cout << " Mean: " << mean_latency << "s" << std::endl; std::cout << " " << 100 * trim_ratio << "% trimmed mean: " << trimmed_mean_latency << "s" << std::endl; std::cout << " Mean of " << 100 * best_ratio << "% best: " << best_mean_latency << "s" << std::endl; } void benchmark_googlenet(GemmContext* context) { // These are the m, n, k sizes for a typical GoogLeNet. const int googlenet_gemm_sizes[] = { 12544, 64, 147, 3136, 64, 64, 3136, 192, 576, 784, 64, 192, 784, 96, 192, 784, 128, 864, 784, 16, 192, 784, 32, 400, 784, 32, 192, 784, 128, 256, 784, 128, 256, 784, 192, 1152, 784, 32, 256, 784, 96, 800, 784, 64, 256, 196, 192, 480, 196, 96, 480, 196, 204, 864, 196, 16, 480, 196, 48, 400, 196, 64, 480, 196, 160, 508, 196, 112, 508, 196, 224, 1008, 196, 24, 508, 196, 64, 600, 196, 64, 508, 196, 128, 512, 196, 128, 512, 196, 256, 1152, 196, 24, 512, 196, 64, 600, 196, 64, 512, 196, 112, 512, 196, 144, 512, 196, 288, 1296, 196, 32, 512, 196, 64, 800, 196, 64, 512, 196, 256, 528, 196, 160, 528, 196, 320, 1440, 196, 32, 528, 196, 128, 800, 196, 128, 528, 49, 256, 832, 49, 160, 832, 49, 320, 1440, 49, 48, 832, 49, 128, 1200, 49, 128, 832, 49, 384, 832, 49, 192, 832, 49, 384, 1728, 49, 48, 832, 49, 128, 1200, 49, 128, 832, 16, 128, 508, 1, 1024, 2048, 1, 1008, 1024, 16, 128, 528, 1, 1024, 2048, 1, 1008, 1024, 1, 1008, 1024, }; assert(sizeof(googlenet_gemm_sizes) % (3 * sizeof(googlenet_gemm_sizes[0])) == 0); const std::size_t num_googlenet_gemms = sizeof(googlenet_gemm_sizes) / (3 * sizeof(googlenet_gemm_sizes[0])); std::vector<gemm_t> googlenet_gemms(num_googlenet_gemms); for (std::size_t i = 0; i < num_googlenet_gemms; i++) { googlenet_gemms[i].rows = googlenet_gemm_sizes[3 * i + 1]; googlenet_gemms[i].depth = googlenet_gemm_sizes[3 * i + 2]; googlenet_gemms[i].cols = googlenet_gemm_sizes[3 * i + 0]; } const double mintime = 20.0; benchmark_gemm_sizes(context, googlenet_gemms, mintime); } void benchmark_small_model(GemmContext* context) { // These are the m, n, k sizes for a small model with large batches. const int small_model_gemm_sizes[] = { 29232, 16, 25, 7308, 6, 400, 203, 3002, 216, }; assert(sizeof(small_model_gemm_sizes) % (3 * sizeof(small_model_gemm_sizes[0])) == 0); const std::size_t num_small_model_gemms = sizeof(small_model_gemm_sizes) / (3 * sizeof(small_model_gemm_sizes[0])); std::vector<gemm_t> small_model_gemms(num_small_model_gemms); for (std::size_t i = 0; i < num_small_model_gemms; i++) { small_model_gemms[i].rows = small_model_gemm_sizes[3 * i + 1]; small_model_gemms[i].depth = small_model_gemm_sizes[3 * i + 2]; small_model_gemms[i].cols = small_model_gemm_sizes[3 * i + 0]; } const double mintime = 10.0; benchmark_gemm_sizes(context, small_model_gemms, mintime); } void benchmark_all() { { gemmlowp::GemmContext context; std::cout << "Benchmarking small model GEMMs..." << std::endl; gemmlowp::benchmark_small_model(&context); } { gemmlowp::GemmContext context; std::cout << "Benchmarking typical GoogLeNet GEMMs..." << std::endl; gemmlowp::benchmark_googlenet(&context); } { gemmlowp::GemmContext context; std::cout << "Benchmarking default mode (typically multi-threaded)..." << std::endl; gemmlowp::benchmark(&context); } { gemmlowp::GemmContext context; context.set_max_num_threads(1); std::cout << "Benchmarking single-threaded mode..." << std::endl; gemmlowp::benchmark(&context); } } } // end namespace gemmlowp // For iOS, we need to define our own main(), so skip it here. #if !(defined(__APPLE__) && (TARGET_OS_IPHONE || TARGET_IPHONE_SIMULATOR)) int main() { gemmlowp::benchmark_all(); } #endif