// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/debug/stack_trace.h" #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <sys/param.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include <map> #include <ostream> #include <string> #include <vector> #if defined(__GLIBCXX__) #include <cxxabi.h> #endif #if !defined(__UCLIBC__) #include <execinfo.h> #endif #if defined(OS_MACOSX) #include <AvailabilityMacros.h> #endif #include "base/debug/debugger.h" #include "base/debug/proc_maps_linux.h" #include "base/logging.h" #include "base/macros.h" #include "base/memory/scoped_ptr.h" #include "base/memory/singleton.h" #include "base/numerics/safe_conversions.h" #include "base/posix/eintr_wrapper.h" #include "base/strings/string_number_conversions.h" #include "build/build_config.h" #if defined(USE_SYMBOLIZE) #error "symbolize support was removed from libchrome" #endif namespace base { namespace debug { namespace { volatile sig_atomic_t in_signal_handler = 0; #if !defined(USE_SYMBOLIZE) && defined(__GLIBCXX__) // The prefix used for mangled symbols, per the Itanium C++ ABI: // http://www.codesourcery.com/cxx-abi/abi.html#mangling const char kMangledSymbolPrefix[] = "_Z"; // Characters that can be used for symbols, generated by Ruby: // (('a'..'z').to_a+('A'..'Z').to_a+('0'..'9').to_a + ['_']).join const char kSymbolCharacters[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; #endif // !defined(USE_SYMBOLIZE) && defined(__GLIBCXX__) #if !defined(USE_SYMBOLIZE) // Demangles C++ symbols in the given text. Example: // // "out/Debug/base_unittests(_ZN10StackTraceC1Ev+0x20) [0x817778c]" // => // "out/Debug/base_unittests(StackTrace::StackTrace()+0x20) [0x817778c]" #if defined(__GLIBCXX__) && !defined(__UCLIBC__) void DemangleSymbols(std::string* text) { // Note: code in this function is NOT async-signal safe (std::string uses // malloc internally). std::string::size_type search_from = 0; while (search_from < text->size()) { // Look for the start of a mangled symbol, from search_from. std::string::size_type mangled_start = text->find(kMangledSymbolPrefix, search_from); if (mangled_start == std::string::npos) { break; // Mangled symbol not found. } // Look for the end of the mangled symbol. std::string::size_type mangled_end = text->find_first_not_of(kSymbolCharacters, mangled_start); if (mangled_end == std::string::npos) { mangled_end = text->size(); } std::string mangled_symbol = text->substr(mangled_start, mangled_end - mangled_start); // Try to demangle the mangled symbol candidate. int status = 0; scoped_ptr<char, base::FreeDeleter> demangled_symbol( abi::__cxa_demangle(mangled_symbol.c_str(), NULL, 0, &status)); if (status == 0) { // Demangling is successful. // Remove the mangled symbol. text->erase(mangled_start, mangled_end - mangled_start); // Insert the demangled symbol. text->insert(mangled_start, demangled_symbol.get()); // Next time, we'll start right after the demangled symbol we inserted. search_from = mangled_start + strlen(demangled_symbol.get()); } else { // Failed to demangle. Retry after the "_Z" we just found. search_from = mangled_start + 2; } } } #elif !defined(__UCLIBC__) void DemangleSymbols(std::string* /* text */) {} #endif // defined(__GLIBCXX__) && !defined(__UCLIBC__) #endif // !defined(USE_SYMBOLIZE) class BacktraceOutputHandler { public: virtual void HandleOutput(const char* output) = 0; protected: virtual ~BacktraceOutputHandler() {} }; #if defined(USE_SYMBOLIZE) || !defined(__UCLIBC__) void OutputPointer(void* pointer, BacktraceOutputHandler* handler) { // This should be more than enough to store a 64-bit number in hex: // 16 hex digits + 1 for null-terminator. char buf[17] = { '\0' }; handler->HandleOutput("0x"); internal::itoa_r(reinterpret_cast<intptr_t>(pointer), buf, sizeof(buf), 16, 12); handler->HandleOutput(buf); } #endif // defined(USE_SYMBOLIZE) || !defined(__UCLIBC__) #if defined(USE_SYMBOLIZE) void OutputFrameId(intptr_t frame_id, BacktraceOutputHandler* handler) { // Max unsigned 64-bit number in decimal has 20 digits (18446744073709551615). // Hence, 30 digits should be more than enough to represent it in decimal // (including the null-terminator). char buf[30] = { '\0' }; handler->HandleOutput("#"); internal::itoa_r(frame_id, buf, sizeof(buf), 10, 1); handler->HandleOutput(buf); } #endif // defined(USE_SYMBOLIZE) #if !defined(__UCLIBC__) void ProcessBacktrace(void *const * trace, size_t size, BacktraceOutputHandler* handler) { (void)trace; // unused based on build context below. (void)size; // unusud based on build context below. (void)handler; // unused based on build context below. // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if defined(USE_SYMBOLIZE) for (size_t i = 0; i < size; ++i) { OutputFrameId(i, handler); handler->HandleOutput(" "); OutputPointer(trace[i], handler); handler->HandleOutput(" "); char buf[1024] = { '\0' }; // Subtract by one as return address of function may be in the next // function when a function is annotated as noreturn. void* address = static_cast<char*>(trace[i]) - 1; if (google::Symbolize(address, buf, sizeof(buf))) handler->HandleOutput(buf); else handler->HandleOutput("<unknown>"); handler->HandleOutput("\n"); } #elif !defined(__UCLIBC__) bool printed = false; // Below part is async-signal unsafe (uses malloc), so execute it only // when we are not executing the signal handler. if (in_signal_handler == 0) { scoped_ptr<char*, FreeDeleter> trace_symbols(backtrace_symbols(trace, size)); if (trace_symbols.get()) { for (size_t i = 0; i < size; ++i) { std::string trace_symbol = trace_symbols.get()[i]; DemangleSymbols(&trace_symbol); handler->HandleOutput(trace_symbol.c_str()); handler->HandleOutput("\n"); } printed = true; } } if (!printed) { for (size_t i = 0; i < size; ++i) { handler->HandleOutput(" ["); OutputPointer(trace[i], handler); handler->HandleOutput("]\n"); } } #endif // defined(USE_SYMBOLIZE) } #endif // !defined(__UCLIBC__) void PrintToStderr(const char* output) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. ignore_result(HANDLE_EINTR(write(STDERR_FILENO, output, strlen(output)))); } void StackDumpSignalHandler(int signal, siginfo_t* info, void* void_context) { (void)void_context; // unused depending on build context // NOTE: This code MUST be async-signal safe. // NO malloc or stdio is allowed here. // Record the fact that we are in the signal handler now, so that the rest // of StackTrace can behave in an async-signal-safe manner. in_signal_handler = 1; if (BeingDebugged()) BreakDebugger(); PrintToStderr("Received signal "); char buf[1024] = { 0 }; internal::itoa_r(signal, buf, sizeof(buf), 10, 0); PrintToStderr(buf); if (signal == SIGBUS) { if (info->si_code == BUS_ADRALN) PrintToStderr(" BUS_ADRALN "); else if (info->si_code == BUS_ADRERR) PrintToStderr(" BUS_ADRERR "); else if (info->si_code == BUS_OBJERR) PrintToStderr(" BUS_OBJERR "); else PrintToStderr(" <unknown> "); } else if (signal == SIGFPE) { if (info->si_code == FPE_FLTDIV) PrintToStderr(" FPE_FLTDIV "); else if (info->si_code == FPE_FLTINV) PrintToStderr(" FPE_FLTINV "); else if (info->si_code == FPE_FLTOVF) PrintToStderr(" FPE_FLTOVF "); else if (info->si_code == FPE_FLTRES) PrintToStderr(" FPE_FLTRES "); else if (info->si_code == FPE_FLTSUB) PrintToStderr(" FPE_FLTSUB "); else if (info->si_code == FPE_FLTUND) PrintToStderr(" FPE_FLTUND "); else if (info->si_code == FPE_INTDIV) PrintToStderr(" FPE_INTDIV "); else if (info->si_code == FPE_INTOVF) PrintToStderr(" FPE_INTOVF "); else PrintToStderr(" <unknown> "); } else if (signal == SIGILL) { if (info->si_code == ILL_BADSTK) PrintToStderr(" ILL_BADSTK "); else if (info->si_code == ILL_COPROC) PrintToStderr(" ILL_COPROC "); else if (info->si_code == ILL_ILLOPN) PrintToStderr(" ILL_ILLOPN "); else if (info->si_code == ILL_ILLADR) PrintToStderr(" ILL_ILLADR "); else if (info->si_code == ILL_ILLTRP) PrintToStderr(" ILL_ILLTRP "); else if (info->si_code == ILL_PRVOPC) PrintToStderr(" ILL_PRVOPC "); else if (info->si_code == ILL_PRVREG) PrintToStderr(" ILL_PRVREG "); else PrintToStderr(" <unknown> "); } else if (signal == SIGSEGV) { if (info->si_code == SEGV_MAPERR) PrintToStderr(" SEGV_MAPERR "); else if (info->si_code == SEGV_ACCERR) PrintToStderr(" SEGV_ACCERR "); else PrintToStderr(" <unknown> "); } if (signal == SIGBUS || signal == SIGFPE || signal == SIGILL || signal == SIGSEGV) { internal::itoa_r(reinterpret_cast<intptr_t>(info->si_addr), buf, sizeof(buf), 16, 12); PrintToStderr(buf); } PrintToStderr("\n"); #if defined(CFI_ENFORCEMENT) if (signal == SIGILL && info->si_code == ILL_ILLOPN) { PrintToStderr( "CFI: Most likely a control flow integrity violation; for more " "information see:\n"); PrintToStderr( "https://www.chromium.org/developers/testing/control-flow-integrity\n"); } #endif debug::StackTrace().Print(); #if defined(OS_LINUX) #if ARCH_CPU_X86_FAMILY ucontext_t* context = reinterpret_cast<ucontext_t*>(void_context); const struct { const char* label; greg_t value; } registers[] = { #if ARCH_CPU_32_BITS { " gs: ", context->uc_mcontext.gregs[REG_GS] }, { " fs: ", context->uc_mcontext.gregs[REG_FS] }, { " es: ", context->uc_mcontext.gregs[REG_ES] }, { " ds: ", context->uc_mcontext.gregs[REG_DS] }, { " edi: ", context->uc_mcontext.gregs[REG_EDI] }, { " esi: ", context->uc_mcontext.gregs[REG_ESI] }, { " ebp: ", context->uc_mcontext.gregs[REG_EBP] }, { " esp: ", context->uc_mcontext.gregs[REG_ESP] }, { " ebx: ", context->uc_mcontext.gregs[REG_EBX] }, { " edx: ", context->uc_mcontext.gregs[REG_EDX] }, { " ecx: ", context->uc_mcontext.gregs[REG_ECX] }, { " eax: ", context->uc_mcontext.gregs[REG_EAX] }, { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, { " err: ", context->uc_mcontext.gregs[REG_ERR] }, { " ip: ", context->uc_mcontext.gregs[REG_EIP] }, { " cs: ", context->uc_mcontext.gregs[REG_CS] }, { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, { " usp: ", context->uc_mcontext.gregs[REG_UESP] }, { " ss: ", context->uc_mcontext.gregs[REG_SS] }, #elif ARCH_CPU_64_BITS { " r8: ", context->uc_mcontext.gregs[REG_R8] }, { " r9: ", context->uc_mcontext.gregs[REG_R9] }, { " r10: ", context->uc_mcontext.gregs[REG_R10] }, { " r11: ", context->uc_mcontext.gregs[REG_R11] }, { " r12: ", context->uc_mcontext.gregs[REG_R12] }, { " r13: ", context->uc_mcontext.gregs[REG_R13] }, { " r14: ", context->uc_mcontext.gregs[REG_R14] }, { " r15: ", context->uc_mcontext.gregs[REG_R15] }, { " di: ", context->uc_mcontext.gregs[REG_RDI] }, { " si: ", context->uc_mcontext.gregs[REG_RSI] }, { " bp: ", context->uc_mcontext.gregs[REG_RBP] }, { " bx: ", context->uc_mcontext.gregs[REG_RBX] }, { " dx: ", context->uc_mcontext.gregs[REG_RDX] }, { " ax: ", context->uc_mcontext.gregs[REG_RAX] }, { " cx: ", context->uc_mcontext.gregs[REG_RCX] }, { " sp: ", context->uc_mcontext.gregs[REG_RSP] }, { " ip: ", context->uc_mcontext.gregs[REG_RIP] }, { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, { " cgf: ", context->uc_mcontext.gregs[REG_CSGSFS] }, { " erf: ", context->uc_mcontext.gregs[REG_ERR] }, { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, { " msk: ", context->uc_mcontext.gregs[REG_OLDMASK] }, { " cr2: ", context->uc_mcontext.gregs[REG_CR2] }, #endif // ARCH_CPU_32_BITS }; #if ARCH_CPU_32_BITS const int kRegisterPadding = 8; #elif ARCH_CPU_64_BITS const int kRegisterPadding = 16; #endif for (size_t i = 0; i < arraysize(registers); i++) { PrintToStderr(registers[i].label); internal::itoa_r(registers[i].value, buf, sizeof(buf), 16, kRegisterPadding); PrintToStderr(buf); if ((i + 1) % 4 == 0) PrintToStderr("\n"); } PrintToStderr("\n"); #endif // ARCH_CPU_X86_FAMILY #endif // defined(OS_LINUX) PrintToStderr("[end of stack trace]\n"); #if defined(OS_MACOSX) && !defined(OS_IOS) if (::signal(signal, SIG_DFL) == SIG_ERR) _exit(1); #else // Non-Mac OSes should probably reraise the signal as well, but the Linux // sandbox tests break on CrOS devices. // https://code.google.com/p/chromium/issues/detail?id=551681 _exit(1); #endif // defined(OS_MACOSX) && !defined(OS_IOS) } class PrintBacktraceOutputHandler : public BacktraceOutputHandler { public: PrintBacktraceOutputHandler() {} void HandleOutput(const char* output) override { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. PrintToStderr(output); } private: DISALLOW_COPY_AND_ASSIGN(PrintBacktraceOutputHandler); }; class StreamBacktraceOutputHandler : public BacktraceOutputHandler { public: explicit StreamBacktraceOutputHandler(std::ostream* os) : os_(os) { } void HandleOutput(const char* output) override { (*os_) << output; } private: std::ostream* os_; DISALLOW_COPY_AND_ASSIGN(StreamBacktraceOutputHandler); }; void WarmUpBacktrace() { // Warm up stack trace infrastructure. It turns out that on the first // call glibc initializes some internal data structures using pthread_once, // and even backtrace() can call malloc(), leading to hangs. // // Example stack trace snippet (with tcmalloc): // // #8 0x0000000000a173b5 in tc_malloc // at ./third_party/tcmalloc/chromium/src/debugallocation.cc:1161 // #9 0x00007ffff7de7900 in _dl_map_object_deps at dl-deps.c:517 // #10 0x00007ffff7ded8a9 in dl_open_worker at dl-open.c:262 // #11 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #12 0x00007ffff7ded31a in _dl_open (file=0x7ffff625e298 "libgcc_s.so.1") // at dl-open.c:639 // #13 0x00007ffff6215602 in do_dlopen at dl-libc.c:89 // #14 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #15 0x00007ffff62156c4 in dlerror_run at dl-libc.c:48 // #16 __GI___libc_dlopen_mode at dl-libc.c:165 // #17 0x00007ffff61ef8f5 in init // at ../sysdeps/x86_64/../ia64/backtrace.c:53 // #18 0x00007ffff6aad400 in pthread_once // at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_once.S:104 // #19 0x00007ffff61efa14 in __GI___backtrace // at ../sysdeps/x86_64/../ia64/backtrace.c:104 // #20 0x0000000000752a54 in base::debug::StackTrace::StackTrace // at base/debug/stack_trace_posix.cc:175 // #21 0x00000000007a4ae5 in // base::(anonymous namespace)::StackDumpSignalHandler // at base/process_util_posix.cc:172 // #22 <signal handler called> StackTrace stack_trace; } } // namespace #if defined(USE_SYMBOLIZE) // class SandboxSymbolizeHelper. // // The purpose of this class is to prepare and install a "file open" callback // needed by the stack trace symbolization code // (base/third_party/symbolize/symbolize.h) so that it can function properly // in a sandboxed process. The caveat is that this class must be instantiated // before the sandboxing is enabled so that it can get the chance to open all // the object files that are loaded in the virtual address space of the current // process. class SandboxSymbolizeHelper { public: // Returns the singleton instance. static SandboxSymbolizeHelper* GetInstance() { return Singleton<SandboxSymbolizeHelper>::get(); } private: friend struct DefaultSingletonTraits<SandboxSymbolizeHelper>; SandboxSymbolizeHelper() : is_initialized_(false) { Init(); } ~SandboxSymbolizeHelper() { UnregisterCallback(); CloseObjectFiles(); } // Returns a O_RDONLY file descriptor for |file_path| if it was opened // successfully during the initialization. The file is repositioned at // offset 0. // IMPORTANT: This function must be async-signal-safe because it can be // called from a signal handler (symbolizing stack frames for a crash). int GetFileDescriptor(const char* file_path) { int fd = -1; #if !defined(OFFICIAL_BUILD) if (file_path) { // The assumption here is that iterating over std::map<std::string, int> // using a const_iterator does not allocate dynamic memory, hense it is // async-signal-safe. std::map<std::string, int>::const_iterator it; for (it = modules_.begin(); it != modules_.end(); ++it) { if (strcmp((it->first).c_str(), file_path) == 0) { // POSIX.1-2004 requires an implementation to guarantee that dup() // is async-signal-safe. fd = dup(it->second); break; } } // POSIX.1-2004 requires an implementation to guarantee that lseek() // is async-signal-safe. if (fd >= 0 && lseek(fd, 0, SEEK_SET) < 0) { // Failed to seek. fd = -1; } } #endif // !defined(OFFICIAL_BUILD) return fd; } // Searches for the object file (from /proc/self/maps) that contains // the specified pc. If found, sets |start_address| to the start address // of where this object file is mapped in memory, sets the module base // address into |base_address|, copies the object file name into // |out_file_name|, and attempts to open the object file. If the object // file is opened successfully, returns the file descriptor. Otherwise, // returns -1. |out_file_name_size| is the size of the file name buffer // (including the null terminator). // IMPORTANT: This function must be async-signal-safe because it can be // called from a signal handler (symbolizing stack frames for a crash). static int OpenObjectFileContainingPc(uint64_t pc, uint64_t& start_address, uint64_t& base_address, char* file_path, int file_path_size) { // This method can only be called after the singleton is instantiated. // This is ensured by the following facts: // * This is the only static method in this class, it is private, and // the class has no friends (except for the DefaultSingletonTraits). // The compiler guarantees that it can only be called after the // singleton is instantiated. // * This method is used as a callback for the stack tracing code and // the callback registration is done in the constructor, so logically // it cannot be called before the singleton is created. SandboxSymbolizeHelper* instance = GetInstance(); // The assumption here is that iterating over // std::vector<MappedMemoryRegion> using a const_iterator does not allocate // dynamic memory, hence it is async-signal-safe. std::vector<MappedMemoryRegion>::const_iterator it; bool is_first = true; for (it = instance->regions_.begin(); it != instance->regions_.end(); ++it, is_first = false) { const MappedMemoryRegion& region = *it; if (region.start <= pc && pc < region.end) { start_address = region.start; // Don't subtract 'start_address' from the first entry: // * If a binary is compiled w/o -pie, then the first entry in // process maps is likely the binary itself (all dynamic libs // are mapped higher in address space). For such a binary, // instruction offset in binary coincides with the actual // instruction address in virtual memory (as code section // is mapped to a fixed memory range). // * If a binary is compiled with -pie, all the modules are // mapped high at address space (in particular, higher than // shadow memory of the tool), so the module can't be the // first entry. base_address = (is_first ? 0U : start_address) - region.offset; if (file_path && file_path_size > 0) { strncpy(file_path, region.path.c_str(), file_path_size); // Ensure null termination. file_path[file_path_size - 1] = '\0'; } return instance->GetFileDescriptor(region.path.c_str()); } } return -1; } // Parses /proc/self/maps in order to compile a list of all object file names // for the modules that are loaded in the current process. // Returns true on success. bool CacheMemoryRegions() { // Reads /proc/self/maps. std::string contents; if (!ReadProcMaps(&contents)) { LOG(ERROR) << "Failed to read /proc/self/maps"; return false; } // Parses /proc/self/maps. if (!ParseProcMaps(contents, ®ions_)) { LOG(ERROR) << "Failed to parse the contents of /proc/self/maps"; return false; } is_initialized_ = true; return true; } // Opens all object files and caches their file descriptors. void OpenSymbolFiles() { // Pre-opening and caching the file descriptors of all loaded modules is // not safe for production builds. Hence it is only done in non-official // builds. For more details, take a look at: http://crbug.com/341966. #if !defined(OFFICIAL_BUILD) // Open the object files for all read-only executable regions and cache // their file descriptors. std::vector<MappedMemoryRegion>::const_iterator it; for (it = regions_.begin(); it != regions_.end(); ++it) { const MappedMemoryRegion& region = *it; // Only interesed in read-only executable regions. if ((region.permissions & MappedMemoryRegion::READ) == MappedMemoryRegion::READ && (region.permissions & MappedMemoryRegion::WRITE) == 0 && (region.permissions & MappedMemoryRegion::EXECUTE) == MappedMemoryRegion::EXECUTE) { if (region.path.empty()) { // Skip regions with empty file names. continue; } if (region.path[0] == '[') { // Skip pseudo-paths, like [stack], [vdso], [heap], etc ... continue; } // Avoid duplicates. if (modules_.find(region.path) == modules_.end()) { int fd = open(region.path.c_str(), O_RDONLY | O_CLOEXEC); if (fd >= 0) { modules_.insert(std::make_pair(region.path, fd)); } else { LOG(WARNING) << "Failed to open file: " << region.path << "\n Error: " << strerror(errno); } } } } #endif // !defined(OFFICIAL_BUILD) } // Initializes and installs the symbolization callback. void Init() { if (CacheMemoryRegions()) { OpenSymbolFiles(); google::InstallSymbolizeOpenObjectFileCallback( &OpenObjectFileContainingPc); } } // Unregister symbolization callback. void UnregisterCallback() { if (is_initialized_) { google::InstallSymbolizeOpenObjectFileCallback(NULL); is_initialized_ = false; } } // Closes all file descriptors owned by this instance. void CloseObjectFiles() { #if !defined(OFFICIAL_BUILD) std::map<std::string, int>::iterator it; for (it = modules_.begin(); it != modules_.end(); ++it) { int ret = IGNORE_EINTR(close(it->second)); DCHECK(!ret); it->second = -1; } modules_.clear(); #endif // !defined(OFFICIAL_BUILD) } // Set to true upon successful initialization. bool is_initialized_; #if !defined(OFFICIAL_BUILD) // Mapping from file name to file descriptor. Includes file descriptors // for all successfully opened object files and the file descriptor for // /proc/self/maps. This code is not safe for production builds. std::map<std::string, int> modules_; #endif // !defined(OFFICIAL_BUILD) // Cache for the process memory regions. Produced by parsing the contents // of /proc/self/maps cache. std::vector<MappedMemoryRegion> regions_; DISALLOW_COPY_AND_ASSIGN(SandboxSymbolizeHelper); }; #endif // USE_SYMBOLIZE bool EnableInProcessStackDumping() { #if defined(USE_SYMBOLIZE) SandboxSymbolizeHelper::GetInstance(); #endif // USE_SYMBOLIZE // When running in an application, our code typically expects SIGPIPE // to be ignored. Therefore, when testing that same code, it should run // with SIGPIPE ignored as well. struct sigaction sigpipe_action; memset(&sigpipe_action, 0, sizeof(sigpipe_action)); sigpipe_action.sa_handler = SIG_IGN; sigemptyset(&sigpipe_action.sa_mask); bool success = (sigaction(SIGPIPE, &sigpipe_action, NULL) == 0); // Avoid hangs during backtrace initialization, see above. WarmUpBacktrace(); struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_flags = SA_RESETHAND | SA_SIGINFO; action.sa_sigaction = &StackDumpSignalHandler; sigemptyset(&action.sa_mask); success &= (sigaction(SIGILL, &action, NULL) == 0); success &= (sigaction(SIGABRT, &action, NULL) == 0); success &= (sigaction(SIGFPE, &action, NULL) == 0); success &= (sigaction(SIGBUS, &action, NULL) == 0); success &= (sigaction(SIGSEGV, &action, NULL) == 0); // On Linux, SIGSYS is reserved by the kernel for seccomp-bpf sandboxing. #if !defined(OS_LINUX) success &= (sigaction(SIGSYS, &action, NULL) == 0); #endif // !defined(OS_LINUX) return success; } StackTrace::StackTrace() { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if !defined(__UCLIBC__) // Though the backtrace API man page does not list any possible negative // return values, we take no chance. count_ = base::saturated_cast<size_t>(backtrace(trace_, arraysize(trace_))); #else count_ = 0; #endif } void StackTrace::Print() const { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if !defined(__UCLIBC__) PrintBacktraceOutputHandler handler; ProcessBacktrace(trace_, count_, &handler); #endif } #if !defined(__UCLIBC__) void StackTrace::OutputToStream(std::ostream* os) const { StreamBacktraceOutputHandler handler(os); ProcessBacktrace(trace_, count_, &handler); } #endif namespace internal { // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. char* itoa_r(intptr_t i, char* buf, size_t sz, int base, size_t padding) { // Make sure we can write at least one NUL byte. size_t n = 1; if (n > sz) return NULL; if (base < 2 || base > 16) { buf[0] = '\000'; return NULL; } char* start = buf; uintptr_t j = i; // Handle negative numbers (only for base 10). if (i < 0 && base == 10) { // This does "j = -i" while avoiding integer overflow. j = static_cast<uintptr_t>(-(i + 1)) + 1; // Make sure we can write the '-' character. if (++n > sz) { buf[0] = '\000'; return NULL; } *start++ = '-'; } // Loop until we have converted the entire number. Output at least one // character (i.e. '0'). char* ptr = start; do { // Make sure there is still enough space left in our output buffer. if (++n > sz) { buf[0] = '\000'; return NULL; } // Output the next digit. *ptr++ = "0123456789abcdef"[j % base]; j /= base; if (padding > 0) padding--; } while (j > 0 || padding > 0); // Terminate the output with a NUL character. *ptr = '\000'; // Conversion to ASCII actually resulted in the digits being in reverse // order. We can't easily generate them in forward order, as we can't tell // the number of characters needed until we are done converting. // So, now, we reverse the string (except for the possible "-" sign). while (--ptr > start) { char ch = *ptr; *ptr = *start; *start++ = ch; } return buf; } } // namespace internal } // namespace debug } // namespace base