//===- ScalarEvolutionAliasAnalysis.cpp - SCEV-based Alias Analysis -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ScalarEvolutionAliasAnalysis pass, which implements a // simple alias analysis implemented in terms of ScalarEvolution queries. // // This differs from traditional loop dependence analysis in that it tests // for dependencies within a single iteration of a loop, rather than // dependencies between different iterations. // // ScalarEvolution has a more complete understanding of pointer arithmetic // than BasicAliasAnalysis' collection of ad-hoc analyses. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/TargetLibraryInfo.h" using namespace llvm; AliasResult SCEVAAResult::alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { // If either of the memory references is empty, it doesn't matter what the // pointer values are. This allows the code below to ignore this special // case. if (LocA.Size == 0 || LocB.Size == 0) return NoAlias; // This is SCEVAAResult. Get the SCEVs! const SCEV *AS = SE.getSCEV(const_cast<Value *>(LocA.Ptr)); const SCEV *BS = SE.getSCEV(const_cast<Value *>(LocB.Ptr)); // If they evaluate to the same expression, it's a MustAlias. if (AS == BS) return MustAlias; // If something is known about the difference between the two addresses, // see if it's enough to prove a NoAlias. if (SE.getEffectiveSCEVType(AS->getType()) == SE.getEffectiveSCEVType(BS->getType())) { unsigned BitWidth = SE.getTypeSizeInBits(AS->getType()); APInt ASizeInt(BitWidth, LocA.Size); APInt BSizeInt(BitWidth, LocB.Size); // Compute the difference between the two pointers. const SCEV *BA = SE.getMinusSCEV(BS, AS); // Test whether the difference is known to be great enough that memory of // the given sizes don't overlap. This assumes that ASizeInt and BSizeInt // are non-zero, which is special-cased above. if (ASizeInt.ule(SE.getUnsignedRange(BA).getUnsignedMin()) && (-BSizeInt).uge(SE.getUnsignedRange(BA).getUnsignedMax())) return NoAlias; // Folding the subtraction while preserving range information can be tricky // (because of INT_MIN, etc.); if the prior test failed, swap AS and BS // and try again to see if things fold better that way. // Compute the difference between the two pointers. const SCEV *AB = SE.getMinusSCEV(AS, BS); // Test whether the difference is known to be great enough that memory of // the given sizes don't overlap. This assumes that ASizeInt and BSizeInt // are non-zero, which is special-cased above. if (BSizeInt.ule(SE.getUnsignedRange(AB).getUnsignedMin()) && (-ASizeInt).uge(SE.getUnsignedRange(AB).getUnsignedMax())) return NoAlias; } // If ScalarEvolution can find an underlying object, form a new query. // The correctness of this depends on ScalarEvolution not recognizing // inttoptr and ptrtoint operators. Value *AO = GetBaseValue(AS); Value *BO = GetBaseValue(BS); if ((AO && AO != LocA.Ptr) || (BO && BO != LocB.Ptr)) if (alias(MemoryLocation(AO ? AO : LocA.Ptr, AO ? +MemoryLocation::UnknownSize : LocA.Size, AO ? AAMDNodes() : LocA.AATags), MemoryLocation(BO ? BO : LocB.Ptr, BO ? +MemoryLocation::UnknownSize : LocB.Size, BO ? AAMDNodes() : LocB.AATags)) == NoAlias) return NoAlias; // Forward the query to the next analysis. return AAResultBase::alias(LocA, LocB); } /// Given an expression, try to find a base value. /// /// Returns null if none was found. Value *SCEVAAResult::GetBaseValue(const SCEV *S) { if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { // In an addrec, assume that the base will be in the start, rather // than the step. return GetBaseValue(AR->getStart()); } else if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { // If there's a pointer operand, it'll be sorted at the end of the list. const SCEV *Last = A->getOperand(A->getNumOperands() - 1); if (Last->getType()->isPointerTy()) return GetBaseValue(Last); } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { // This is a leaf node. return U->getValue(); } // No Identified object found. return nullptr; } SCEVAAResult SCEVAA::run(Function &F, AnalysisManager<Function> *AM) { return SCEVAAResult(AM->getResult<TargetLibraryAnalysis>(F), AM->getResult<ScalarEvolutionAnalysis>(F)); } char SCEVAA::PassID; char SCEVAAWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(SCEVAAWrapperPass, "scev-aa", "ScalarEvolution-based Alias Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(SCEVAAWrapperPass, "scev-aa", "ScalarEvolution-based Alias Analysis", false, true) FunctionPass *llvm::createSCEVAAWrapperPass() { return new SCEVAAWrapperPass(); } SCEVAAWrapperPass::SCEVAAWrapperPass() : FunctionPass(ID) { initializeSCEVAAWrapperPassPass(*PassRegistry::getPassRegistry()); } bool SCEVAAWrapperPass::runOnFunction(Function &F) { Result.reset( new SCEVAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), getAnalysis<ScalarEvolutionWrapperPass>().getSE())); return false; } void SCEVAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<ScalarEvolutionWrapperPass>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); }