//===- ScalarEvolutionNormalization.cpp - See below -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements utilities for working with "normalized" expressions. // See the comments at the top of ScalarEvolutionNormalization.h for details. // //===----------------------------------------------------------------------===// #include "llvm/IR/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionNormalization.h" using namespace llvm; /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression /// and now we need to decide whether the user should use the preinc or post-inc /// value. If this user should use the post-inc version of the IV, return true. /// /// Choosing wrong here can break dominance properties (if we choose to use the /// post-inc value when we cannot) or it can end up adding extra live-ranges to /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we /// should use the post-inc value). static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, const Loop *L, DominatorTree *DT) { // If the user is in the loop, use the preinc value. if (L->contains(User)) return false; BasicBlock *LatchBlock = L->getLoopLatch(); if (!LatchBlock) return false; // Ok, the user is outside of the loop. If it is dominated by the latch // block, use the post-inc value. if (DT->dominates(LatchBlock, User->getParent())) return true; // There is one case we have to be careful of: PHI nodes. These little guys // can live in blocks that are not dominated by the latch block, but (since // their uses occur in the predecessor block, not the block the PHI lives in) // should still use the post-inc value. Check for this case now. PHINode *PN = dyn_cast<PHINode>(User); if (!PN || !Operand) return false; // not a phi, not dominated by latch block. // Look at all of the uses of Operand by the PHI node. If any use corresponds // to a block that is not dominated by the latch block, give up and use the // preincremented value. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == Operand && !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) return false; // Okay, all uses of Operand by PN are in predecessor blocks that really are // dominated by the latch block. Use the post-incremented value. return true; } namespace { /// Hold the state used during post-inc expression transformation, including a /// map of transformed expressions. class PostIncTransform { TransformKind Kind; PostIncLoopSet &Loops; ScalarEvolution &SE; DominatorTree &DT; DenseMap<const SCEV*, const SCEV*> Transformed; public: PostIncTransform(TransformKind kind, PostIncLoopSet &loops, ScalarEvolution &se, DominatorTree &dt): Kind(kind), Loops(loops), SE(se), DT(dt) {} const SCEV *TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace); protected: const SCEV *TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace); }; } // namespace /// Implement post-inc transformation for all valid expression types. const SCEV *PostIncTransform:: TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) { if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) { const SCEV *O = X->getOperand(); const SCEV *N = TransformSubExpr(O, User, OperandValToReplace); if (O != N) switch (S->getSCEVType()) { case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType()); case scSignExtend: return SE.getSignExtendExpr(N, S->getType()); case scTruncate: return SE.getTruncateExpr(N, S->getType()); default: llvm_unreachable("Unexpected SCEVCastExpr kind!"); } return S; } if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { // An addrec. This is the interesting part. SmallVector<const SCEV *, 8> Operands; const Loop *L = AR->getLoop(); // The addrec conceptually uses its operands at loop entry. Instruction *LUser = &L->getHeader()->front(); // Transform each operand. for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); I != E; ++I) { Operands.push_back(TransformSubExpr(*I, LUser, nullptr)); } // Conservatively use AnyWrap until/unless we need FlagNW. const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); switch (Kind) { case NormalizeAutodetect: // Normalize this SCEV by subtracting the expression for the final step. // We only allow affine AddRecs to be normalized, otherwise we would not // be able to correctly denormalize. // e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2} // Normalized form: {-2,+,1,+,2} // Denormalized form: {1,+,3,+,2} // // However, denormalization would use a different step expression than // normalization (see getPostIncExpr), generating the wrong final // expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2} if (AR->isAffine() && IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) { const SCEV *TransformedStep = TransformSubExpr(AR->getStepRecurrence(SE), User, OperandValToReplace); Result = SE.getMinusSCEV(Result, TransformedStep); Loops.insert(L); } #if 0 // This assert is conceptually correct, but ScalarEvolution currently // sometimes fails to canonicalize two equal SCEVs to exactly the same // form. It's possibly a pessimization when this happens, but it isn't a // correctness problem, so disable this assert for now. assert(S == TransformSubExpr(Result, User, OperandValToReplace) && "SCEV normalization is not invertible!"); #endif break; case Normalize: // We want to normalize step expression, because otherwise we might not be // able to denormalize to the original expression. // // Here is an example what will happen if we don't normalize step: // ORIGINAL ISE: // {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25> // NORMALIZED ISE: // {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+, // (100 /u {0,+,1}<%bb16>)}<%bb25> // DENORMALIZED BACK ISE: // {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+, // (100 /u {1,+,1}<%bb16>)}<%bb25> // Note that the initial value changes after normalization + // denormalization, which isn't correct. if (Loops.count(L)) { const SCEV *TransformedStep = TransformSubExpr(AR->getStepRecurrence(SE), User, OperandValToReplace); Result = SE.getMinusSCEV(Result, TransformedStep); } #if 0 // See the comment on the assert above. assert(S == TransformSubExpr(Result, User, OperandValToReplace) && "SCEV normalization is not invertible!"); #endif break; case Denormalize: // Here we want to normalize step expressions for the same reasons, as // stated above. if (Loops.count(L)) { const SCEV *TransformedStep = TransformSubExpr(AR->getStepRecurrence(SE), User, OperandValToReplace); Result = SE.getAddExpr(Result, TransformedStep); } break; } return Result; } if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) { SmallVector<const SCEV *, 8> Operands; bool Changed = false; // Transform each operand. for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end(); I != E; ++I) { const SCEV *O = *I; const SCEV *N = TransformSubExpr(O, User, OperandValToReplace); Changed |= N != O; Operands.push_back(N); } // If any operand actually changed, return a transformed result. if (Changed) switch (S->getSCEVType()) { case scAddExpr: return SE.getAddExpr(Operands); case scMulExpr: return SE.getMulExpr(Operands); case scSMaxExpr: return SE.getSMaxExpr(Operands); case scUMaxExpr: return SE.getUMaxExpr(Operands); default: llvm_unreachable("Unexpected SCEVNAryExpr kind!"); } return S; } if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) { const SCEV *LO = X->getLHS(); const SCEV *RO = X->getRHS(); const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace); const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace); if (LO != LN || RO != RN) return SE.getUDivExpr(LN, RN); return S; } llvm_unreachable("Unexpected SCEV kind!"); } /// Manage recursive transformation across an expression DAG. Revisiting /// expressions would lead to exponential recursion. const SCEV *PostIncTransform:: TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) { if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S)) return S; const SCEV *Result = Transformed.lookup(S); if (Result) return Result; Result = TransformImpl(S, User, OperandValToReplace); Transformed[S] = Result; return Result; } /// Top level driver for transforming an expression DAG into its requested /// post-inc form (either "Normalized" or "Denormalized"). const SCEV *llvm::TransformForPostIncUse(TransformKind Kind, const SCEV *S, Instruction *User, Value *OperandValToReplace, PostIncLoopSet &Loops, ScalarEvolution &SE, DominatorTree &DT) { PostIncTransform Transform(Kind, Loops, SE, DT); return Transform.TransformSubExpr(S, User, OperandValToReplace); }