//=-- CoverageMapping.cpp - Code coverage mapping support ---------*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for clang's and llvm's instrumentation based // code coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/CoverageMapping.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ProfileData/CoverageMappingReader.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace coverage; #define DEBUG_TYPE "coverage-mapping" Counter CounterExpressionBuilder::get(const CounterExpression &E) { auto It = ExpressionIndices.find(E); if (It != ExpressionIndices.end()) return Counter::getExpression(It->second); unsigned I = Expressions.size(); Expressions.push_back(E); ExpressionIndices[E] = I; return Counter::getExpression(I); } void CounterExpressionBuilder::extractTerms( Counter C, int Sign, SmallVectorImpl<std::pair<unsigned, int>> &Terms) { switch (C.getKind()) { case Counter::Zero: break; case Counter::CounterValueReference: Terms.push_back(std::make_pair(C.getCounterID(), Sign)); break; case Counter::Expression: const auto &E = Expressions[C.getExpressionID()]; extractTerms(E.LHS, Sign, Terms); extractTerms(E.RHS, E.Kind == CounterExpression::Subtract ? -Sign : Sign, Terms); break; } } Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { // Gather constant terms. llvm::SmallVector<std::pair<unsigned, int>, 32> Terms; extractTerms(ExpressionTree, +1, Terms); // If there are no terms, this is just a zero. The algorithm below assumes at // least one term. if (Terms.size() == 0) return Counter::getZero(); // Group the terms by counter ID. std::sort(Terms.begin(), Terms.end(), [](const std::pair<unsigned, int> &LHS, const std::pair<unsigned, int> &RHS) { return LHS.first < RHS.first; }); // Combine terms by counter ID to eliminate counters that sum to zero. auto Prev = Terms.begin(); for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { if (I->first == Prev->first) { Prev->second += I->second; continue; } ++Prev; *Prev = *I; } Terms.erase(++Prev, Terms.end()); Counter C; // Create additions. We do this before subtractions to avoid constructs like // ((0 - X) + Y), as opposed to (Y - X). for (auto Term : Terms) { if (Term.second <= 0) continue; for (int I = 0; I < Term.second; ++I) if (C.isZero()) C = Counter::getCounter(Term.first); else C = get(CounterExpression(CounterExpression::Add, C, Counter::getCounter(Term.first))); } // Create subtractions. for (auto Term : Terms) { if (Term.second >= 0) continue; for (int I = 0; I < -Term.second; ++I) C = get(CounterExpression(CounterExpression::Subtract, C, Counter::getCounter(Term.first))); } return C; } Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) { return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS))); } Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) { return simplify( get(CounterExpression(CounterExpression::Subtract, LHS, RHS))); } void CounterMappingContext::dump(const Counter &C, llvm::raw_ostream &OS) const { switch (C.getKind()) { case Counter::Zero: OS << '0'; return; case Counter::CounterValueReference: OS << '#' << C.getCounterID(); break; case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return; const auto &E = Expressions[C.getExpressionID()]; OS << '('; dump(E.LHS, OS); OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); dump(E.RHS, OS); OS << ')'; break; } } if (CounterValues.empty()) return; ErrorOr<int64_t> Value = evaluate(C); if (!Value) return; OS << '[' << *Value << ']'; } ErrorOr<int64_t> CounterMappingContext::evaluate(const Counter &C) const { switch (C.getKind()) { case Counter::Zero: return 0; case Counter::CounterValueReference: if (C.getCounterID() >= CounterValues.size()) return make_error_code(errc::argument_out_of_domain); return CounterValues[C.getCounterID()]; case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return make_error_code(errc::argument_out_of_domain); const auto &E = Expressions[C.getExpressionID()]; ErrorOr<int64_t> LHS = evaluate(E.LHS); if (!LHS) return LHS; ErrorOr<int64_t> RHS = evaluate(E.RHS); if (!RHS) return RHS; return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS; } } llvm_unreachable("Unhandled CounterKind"); } void FunctionRecordIterator::skipOtherFiles() { while (Current != Records.end() && !Filename.empty() && Filename != Current->Filenames[0]) ++Current; if (Current == Records.end()) *this = FunctionRecordIterator(); } ErrorOr<std::unique_ptr<CoverageMapping>> CoverageMapping::load(CoverageMappingReader &CoverageReader, IndexedInstrProfReader &ProfileReader) { auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); std::vector<uint64_t> Counts; for (const auto &Record : CoverageReader) { CounterMappingContext Ctx(Record.Expressions); Counts.clear(); if (std::error_code EC = ProfileReader.getFunctionCounts( Record.FunctionName, Record.FunctionHash, Counts)) { if (EC == instrprof_error::hash_mismatch) { Coverage->MismatchedFunctionCount++; continue; } else if (EC != instrprof_error::unknown_function) return EC; Counts.assign(Record.MappingRegions.size(), 0); } Ctx.setCounts(Counts); assert(!Record.MappingRegions.empty() && "Function has no regions"); StringRef OrigFuncName = Record.FunctionName; if (!Record.Filenames.empty()) OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); FunctionRecord Function(OrigFuncName, Record.Filenames); for (const auto &Region : Record.MappingRegions) { ErrorOr<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); if (!ExecutionCount) break; Function.pushRegion(Region, *ExecutionCount); } if (Function.CountedRegions.size() != Record.MappingRegions.size()) { Coverage->MismatchedFunctionCount++; continue; } Coverage->Functions.push_back(std::move(Function)); } return std::move(Coverage); } ErrorOr<std::unique_ptr<CoverageMapping>> CoverageMapping::load(StringRef ObjectFilename, StringRef ProfileFilename, StringRef Arch) { auto CounterMappingBuff = MemoryBuffer::getFileOrSTDIN(ObjectFilename); if (std::error_code EC = CounterMappingBuff.getError()) return EC; auto CoverageReaderOrErr = BinaryCoverageReader::create(CounterMappingBuff.get(), Arch); if (std::error_code EC = CoverageReaderOrErr.getError()) return EC; auto CoverageReader = std::move(CoverageReaderOrErr.get()); auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename); if (auto EC = ProfileReaderOrErr.getError()) return EC; auto ProfileReader = std::move(ProfileReaderOrErr.get()); return load(*CoverageReader, *ProfileReader); } namespace { /// \brief Distributes functions into instantiation sets. /// /// An instantiation set is a collection of functions that have the same source /// code, ie, template functions specializations. class FunctionInstantiationSetCollector { typedef DenseMap<std::pair<unsigned, unsigned>, std::vector<const FunctionRecord *>> MapT; MapT InstantiatedFunctions; public: void insert(const FunctionRecord &Function, unsigned FileID) { auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); while (I != E && I->FileID != FileID) ++I; assert(I != E && "function does not cover the given file"); auto &Functions = InstantiatedFunctions[I->startLoc()]; Functions.push_back(&Function); } MapT::iterator begin() { return InstantiatedFunctions.begin(); } MapT::iterator end() { return InstantiatedFunctions.end(); } }; class SegmentBuilder { std::vector<CoverageSegment> Segments; SmallVector<const CountedRegion *, 8> ActiveRegions; /// Start a segment with no count specified. void startSegment(unsigned Line, unsigned Col) { DEBUG(dbgs() << "Top level segment at " << Line << ":" << Col << "\n"); Segments.emplace_back(Line, Col, /*IsRegionEntry=*/false); } /// Start a segment with the given Region's count. void startSegment(unsigned Line, unsigned Col, bool IsRegionEntry, const CountedRegion &Region) { if (Segments.empty()) Segments.emplace_back(Line, Col, IsRegionEntry); CoverageSegment S = Segments.back(); // Avoid creating empty regions. if (S.Line != Line || S.Col != Col) { Segments.emplace_back(Line, Col, IsRegionEntry); S = Segments.back(); } DEBUG(dbgs() << "Segment at " << Line << ":" << Col); // Set this region's count. if (Region.Kind != coverage::CounterMappingRegion::SkippedRegion) { DEBUG(dbgs() << " with count " << Region.ExecutionCount); Segments.back().setCount(Region.ExecutionCount); } DEBUG(dbgs() << "\n"); } /// Start a segment for the given region. void startSegment(const CountedRegion &Region) { startSegment(Region.LineStart, Region.ColumnStart, true, Region); } /// Pop the top region off of the active stack, starting a new segment with /// the containing Region's count. void popRegion() { const CountedRegion *Active = ActiveRegions.back(); unsigned Line = Active->LineEnd, Col = Active->ColumnEnd; ActiveRegions.pop_back(); if (ActiveRegions.empty()) startSegment(Line, Col); else startSegment(Line, Col, false, *ActiveRegions.back()); } public: /// Build a list of CoverageSegments from a sorted list of Regions. std::vector<CoverageSegment> buildSegments(ArrayRef<CountedRegion> Regions) { const CountedRegion *PrevRegion = nullptr; for (const auto &Region : Regions) { // Pop any regions that end before this one starts. while (!ActiveRegions.empty() && ActiveRegions.back()->endLoc() <= Region.startLoc()) popRegion(); if (PrevRegion && PrevRegion->startLoc() == Region.startLoc() && PrevRegion->endLoc() == Region.endLoc()) { if (Region.Kind == coverage::CounterMappingRegion::CodeRegion) Segments.back().addCount(Region.ExecutionCount); } else { // Add this region to the stack. ActiveRegions.push_back(&Region); startSegment(Region); } PrevRegion = &Region; } // Pop any regions that are left in the stack. while (!ActiveRegions.empty()) popRegion(); return Segments; } }; } std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { std::vector<StringRef> Filenames; for (const auto &Function : getCoveredFunctions()) Filenames.insert(Filenames.end(), Function.Filenames.begin(), Function.Filenames.end()); std::sort(Filenames.begin(), Filenames.end()); auto Last = std::unique(Filenames.begin(), Filenames.end()); Filenames.erase(Last, Filenames.end()); return Filenames; } static SmallBitVector gatherFileIDs(StringRef SourceFile, const FunctionRecord &Function) { SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) if (SourceFile == Function.Filenames[I]) FilenameEquivalence[I] = true; return FilenameEquivalence; } static Optional<unsigned> findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); SmallBitVector FilenameEquivalence = gatherFileIDs(SourceFile, Function); for (const auto &CR : Function.CountedRegions) if (CR.Kind == CounterMappingRegion::ExpansionRegion && FilenameEquivalence[CR.FileID]) IsNotExpandedFile[CR.ExpandedFileID] = false; IsNotExpandedFile &= FilenameEquivalence; int I = IsNotExpandedFile.find_first(); if (I == -1) return None; return I; } static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) { SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); for (const auto &CR : Function.CountedRegions) if (CR.Kind == CounterMappingRegion::ExpansionRegion) IsNotExpandedFile[CR.ExpandedFileID] = false; int I = IsNotExpandedFile.find_first(); if (I == -1) return None; return I; } /// Sort a nested sequence of regions from a single file. template <class It> static void sortNestedRegions(It First, It Last) { std::sort(First, Last, [](const CountedRegion &LHS, const CountedRegion &RHS) { if (LHS.startLoc() == RHS.startLoc()) // When LHS completely contains RHS, we sort LHS first. return RHS.endLoc() < LHS.endLoc(); return LHS.startLoc() < RHS.startLoc(); }); } static bool isExpansion(const CountedRegion &R, unsigned FileID) { return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; } CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) { CoverageData FileCoverage(Filename); std::vector<coverage::CountedRegion> Regions; for (const auto &Function : Functions) { auto MainFileID = findMainViewFileID(Filename, Function); if (!MainFileID) continue; auto FileIDs = gatherFileIDs(Filename, Function); for (const auto &CR : Function.CountedRegions) if (FileIDs.test(CR.FileID)) { Regions.push_back(CR); if (isExpansion(CR, *MainFileID)) FileCoverage.Expansions.emplace_back(CR, Function); } } sortNestedRegions(Regions.begin(), Regions.end()); DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); FileCoverage.Segments = SegmentBuilder().buildSegments(Regions); return FileCoverage; } std::vector<const FunctionRecord *> CoverageMapping::getInstantiations(StringRef Filename) { FunctionInstantiationSetCollector InstantiationSetCollector; for (const auto &Function : Functions) { auto MainFileID = findMainViewFileID(Filename, Function); if (!MainFileID) continue; InstantiationSetCollector.insert(Function, *MainFileID); } std::vector<const FunctionRecord *> Result; for (const auto &InstantiationSet : InstantiationSetCollector) { if (InstantiationSet.second.size() < 2) continue; Result.insert(Result.end(), InstantiationSet.second.begin(), InstantiationSet.second.end()); } return Result; } CoverageData CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) { auto MainFileID = findMainViewFileID(Function); if (!MainFileID) return CoverageData(); CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); std::vector<coverage::CountedRegion> Regions; for (const auto &CR : Function.CountedRegions) if (CR.FileID == *MainFileID) { Regions.push_back(CR); if (isExpansion(CR, *MainFileID)) FunctionCoverage.Expansions.emplace_back(CR, Function); } sortNestedRegions(Regions.begin(), Regions.end()); DEBUG(dbgs() << "Emitting segments for function: " << Function.Name << "\n"); FunctionCoverage.Segments = SegmentBuilder().buildSegments(Regions); return FunctionCoverage; } CoverageData CoverageMapping::getCoverageForExpansion(const ExpansionRecord &Expansion) { CoverageData ExpansionCoverage( Expansion.Function.Filenames[Expansion.FileID]); std::vector<coverage::CountedRegion> Regions; for (const auto &CR : Expansion.Function.CountedRegions) if (CR.FileID == Expansion.FileID) { Regions.push_back(CR); if (isExpansion(CR, Expansion.FileID)) ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); } sortNestedRegions(Regions.begin(), Regions.end()); DEBUG(dbgs() << "Emitting segments for expansion of file " << Expansion.FileID << "\n"); ExpansionCoverage.Segments = SegmentBuilder().buildSegments(Regions); return ExpansionCoverage; } namespace { class CoverageMappingErrorCategoryType : public std::error_category { const char *name() const LLVM_NOEXCEPT override { return "llvm.coveragemap"; } std::string message(int IE) const override { auto E = static_cast<coveragemap_error>(IE); switch (E) { case coveragemap_error::success: return "Success"; case coveragemap_error::eof: return "End of File"; case coveragemap_error::no_data_found: return "No coverage data found"; case coveragemap_error::unsupported_version: return "Unsupported coverage format version"; case coveragemap_error::truncated: return "Truncated coverage data"; case coveragemap_error::malformed: return "Malformed coverage data"; } llvm_unreachable("A value of coveragemap_error has no message."); } }; } static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory; const std::error_category &llvm::coveragemap_category() { return *ErrorCategory; }