//=-- InstrProfWriter.cpp - Instrumented profiling writer -------------------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing profiling data for clang's // instrumentation based PGO and coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/InstrProfWriter.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/OnDiskHashTable.h" #include <tuple> using namespace llvm; namespace { static support::endianness ValueProfDataEndianness = support::little; class InstrProfRecordTrait { public: typedef StringRef key_type; typedef StringRef key_type_ref; typedef const InstrProfWriter::ProfilingData *const data_type; typedef const InstrProfWriter::ProfilingData *const data_type_ref; typedef uint64_t hash_value_type; typedef uint64_t offset_type; static hash_value_type ComputeHash(key_type_ref K) { return IndexedInstrProf::ComputeHash(K); } static std::pair<offset_type, offset_type> EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) { using namespace llvm::support; endian::Writer<little> LE(Out); offset_type N = K.size(); LE.write<offset_type>(N); offset_type M = 0; for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; M += sizeof(uint64_t); // The function hash M += sizeof(uint64_t); // The size of the Counts vector M += ProfRecord.Counts.size() * sizeof(uint64_t); // Value data M += ValueProfData::getSize(ProfileData.second); } LE.write<offset_type>(M); return std::make_pair(N, M); } static void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N){ Out.write(K.data(), N); } static void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) { using namespace llvm::support; endian::Writer<little> LE(Out); for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; LE.write<uint64_t>(ProfileData.first); // Function hash LE.write<uint64_t>(ProfRecord.Counts.size()); for (uint64_t I : ProfRecord.Counts) LE.write<uint64_t>(I); // Write value data std::unique_ptr<ValueProfData> VDataPtr = ValueProfData::serializeFrom(ProfileData.second); uint32_t S = VDataPtr->getSize(); VDataPtr->swapBytesFromHost(ValueProfDataEndianness); Out.write((const char *)VDataPtr.get(), S); } } }; } // Internal interface for testing purpose only. void InstrProfWriter::setValueProfDataEndianness( support::endianness Endianness) { ValueProfDataEndianness = Endianness; } std::error_code InstrProfWriter::addRecord(InstrProfRecord &&I, uint64_t Weight) { auto &ProfileDataMap = FunctionData[I.Name]; bool NewFunc; ProfilingData::iterator Where; std::tie(Where, NewFunc) = ProfileDataMap.insert(std::make_pair(I.Hash, InstrProfRecord())); InstrProfRecord &Dest = Where->second; instrprof_error Result; if (NewFunc) { // We've never seen a function with this name and hash, add it. Dest = std::move(I); // Fix up the name to avoid dangling reference. Dest.Name = FunctionData.find(Dest.Name)->getKey(); Result = instrprof_error::success; if (Weight > 1) { for (auto &Count : Dest.Counts) { bool Overflowed; Count = SaturatingMultiply(Count, Weight, &Overflowed); if (Overflowed && Result == instrprof_error::success) { Result = instrprof_error::counter_overflow; } } } } else { // We're updating a function we've seen before. Result = Dest.merge(I, Weight); } // We keep track of the max function count as we go for simplicity. // Update this statistic no matter the result of the merge. if (Dest.Counts[0] > MaxFunctionCount) MaxFunctionCount = Dest.Counts[0]; return Result; } std::pair<uint64_t, uint64_t> InstrProfWriter::writeImpl(raw_ostream &OS) { OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator; // Populate the hash table generator. for (const auto &I : FunctionData) Generator.insert(I.getKey(), &I.getValue()); using namespace llvm::support; endian::Writer<little> LE(OS); // Write the header. IndexedInstrProf::Header Header; Header.Magic = IndexedInstrProf::Magic; Header.Version = IndexedInstrProf::Version; Header.MaxFunctionCount = MaxFunctionCount; Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType); Header.HashOffset = 0; int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t); // Only write out all the fields execpt 'HashOffset'. We need // to remember the offset of that field to allow back patching // later. for (int I = 0; I < N - 1; I++) LE.write<uint64_t>(reinterpret_cast<uint64_t *>(&Header)[I]); // Save a space to write the hash table start location. uint64_t HashTableStartLoc = OS.tell(); // Reserve the space for HashOffset field. LE.write<uint64_t>(0); // Write the hash table. uint64_t HashTableStart = Generator.Emit(OS); return std::make_pair(HashTableStartLoc, HashTableStart); } void InstrProfWriter::write(raw_fd_ostream &OS) { // Write the hash table. auto TableStart = writeImpl(OS); // Go back and fill in the hash table start. using namespace support; OS.seek(TableStart.first); // Now patch the HashOffset field previously reserved. endian::Writer<little>(OS).write<uint64_t>(TableStart.second); } static const char *ValueProfKindStr[] = { #define VALUE_PROF_KIND(Enumerator, Value) #Enumerator, #include "llvm/ProfileData/InstrProfData.inc" }; void InstrProfWriter::writeRecordInText(const InstrProfRecord &Func, InstrProfSymtab &Symtab, raw_fd_ostream &OS) { OS << Func.Name << "\n"; OS << "# Func Hash:\n" << Func.Hash << "\n"; OS << "# Num Counters:\n" << Func.Counts.size() << "\n"; OS << "# Counter Values:\n"; for (uint64_t Count : Func.Counts) OS << Count << "\n"; uint32_t NumValueKinds = Func.getNumValueKinds(); if (!NumValueKinds) { OS << "\n"; return; } OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n"; for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) { uint32_t NS = Func.getNumValueSites(VK); if (!NS) continue; OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n"; OS << "# NumValueSites:\n" << NS << "\n"; for (uint32_t S = 0; S < NS; S++) { uint32_t ND = Func.getNumValueDataForSite(VK, S); OS << ND << "\n"; std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S); for (uint32_t I = 0; I < ND; I++) { if (VK == IPVK_IndirectCallTarget) OS << Symtab.getFuncName(VD[I].Value) << ":" << VD[I].Count << "\n"; else OS << VD[I].Value << ":" << VD[I].Count << "\n"; } } } OS << "\n"; } void InstrProfWriter::writeText(raw_fd_ostream &OS) { InstrProfSymtab Symtab; for (const auto &I : FunctionData) Symtab.addFuncName(I.getKey()); Symtab.finalizeSymtab(); for (const auto &I : FunctionData) for (const auto &Func : I.getValue()) writeRecordInText(Func.second, Symtab, OS); } std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() { std::string Data; llvm::raw_string_ostream OS(Data); // Write the hash table. auto TableStart = writeImpl(OS); OS.flush(); // Go back and fill in the hash table start. using namespace support; uint64_t Bytes = endian::byte_swap<uint64_t, little>(TableStart.second); Data.replace(TableStart.first, sizeof(uint64_t), (const char *)&Bytes, sizeof(uint64_t)); // Return this in an aligned memory buffer. return MemoryBuffer::getMemBufferCopy(Data); }