//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Implementation of the TargetInstrInfo class that is common to all /// AMD GPUs. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUTargetMachine.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #define GET_INSTRINFO_NAMED_OPS #define GET_INSTRMAP_INFO #include "AMDGPUGenInstrInfo.inc" // Pin the vtable to this file. void AMDGPUInstrInfo::anchor() {} AMDGPUInstrInfo::AMDGPUInstrInfo(const AMDGPUSubtarget &st) : AMDGPUGenInstrInfo(-1, -1), ST(st) {} const AMDGPURegisterInfo &AMDGPUInstrInfo::getRegisterInfo() const { return RI; } bool AMDGPUInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { // TODO: Implement this function return false; } unsigned AMDGPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } unsigned AMDGPUInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } bool AMDGPUInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { // TODO: Implement this function return false; } unsigned AMDGPUInstrInfo::isStoreFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } unsigned AMDGPUInstrInfo::isStoreFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } bool AMDGPUInstrInfo::hasStoreFromStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { // TODO: Implement this function return false; } MachineInstr * AMDGPUInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { // TODO: Implement this function return nullptr; } void AMDGPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { llvm_unreachable("Not Implemented"); } void AMDGPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { llvm_unreachable("Not Implemented"); } bool AMDGPUInstrInfo::expandPostRAPseudo (MachineBasicBlock::iterator MI) const { MachineBasicBlock *MBB = MI->getParent(); int OffsetOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::addr); // addr is a custom operand with multiple MI operands, and only the // first MI operand is given a name. int RegOpIdx = OffsetOpIdx + 1; int ChanOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::chan); if (isRegisterLoad(*MI)) { int DstOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst); unsigned RegIndex = MI->getOperand(RegOpIdx).getImm(); unsigned Channel = MI->getOperand(ChanOpIdx).getImm(); unsigned Address = calculateIndirectAddress(RegIndex, Channel); unsigned OffsetReg = MI->getOperand(OffsetOpIdx).getReg(); if (OffsetReg == AMDGPU::INDIRECT_BASE_ADDR) { buildMovInstr(MBB, MI, MI->getOperand(DstOpIdx).getReg(), getIndirectAddrRegClass()->getRegister(Address)); } else { buildIndirectRead(MBB, MI, MI->getOperand(DstOpIdx).getReg(), Address, OffsetReg); } } else if (isRegisterStore(*MI)) { int ValOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::val); unsigned RegIndex = MI->getOperand(RegOpIdx).getImm(); unsigned Channel = MI->getOperand(ChanOpIdx).getImm(); unsigned Address = calculateIndirectAddress(RegIndex, Channel); unsigned OffsetReg = MI->getOperand(OffsetOpIdx).getReg(); if (OffsetReg == AMDGPU::INDIRECT_BASE_ADDR) { buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address), MI->getOperand(ValOpIdx).getReg()); } else { buildIndirectWrite(MBB, MI, MI->getOperand(ValOpIdx).getReg(), calculateIndirectAddress(RegIndex, Channel), OffsetReg); } } else { return false; } MBB->erase(MI); return true; } MachineInstr *AMDGPUInstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex) const { // TODO: Implement this function return nullptr; } MachineInstr *AMDGPUInstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { // TODO: Implement this function return nullptr; } bool AMDGPUInstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl<MachineInstr*> &NewMIs) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode*> &NewNodes) const { // TODO: Implement this function return false; } unsigned AMDGPUInstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex) const { // TODO: Implement this function return 0; } bool AMDGPUInstrInfo::enableClusterLoads() const { return true; } // FIXME: This behaves strangely. If, for example, you have 32 load + stores, // the first 16 loads will be interleaved with the stores, and the next 16 will // be clustered as expected. It should really split into 2 16 store batches. // // Loads are clustered until this returns false, rather than trying to schedule // groups of stores. This also means we have to deal with saying different // address space loads should be clustered, and ones which might cause bank // conflicts. // // This might be deprecated so it might not be worth that much effort to fix. bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, int64_t Offset0, int64_t Offset1, unsigned NumLoads) const { assert(Offset1 > Offset0 && "Second offset should be larger than first offset!"); // If we have less than 16 loads in a row, and the offsets are within 64 // bytes, then schedule together. // A cacheline is 64 bytes (for global memory). return (NumLoads <= 16 && (Offset1 - Offset0) < 64); } bool AMDGPUInstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { // TODO: Implement this function return true; } void AMDGPUInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { // TODO: Implement this function } bool AMDGPUInstrInfo::isPredicated(const MachineInstr *MI) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, ArrayRef<MachineOperand> Pred2) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::DefinesPredicate(MachineInstr *MI, std::vector<MachineOperand> &Pred) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::isPredicable(MachineInstr *MI) const { // TODO: Implement this function return MI->getDesc().isPredicable(); } bool AMDGPUInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { // TODO: Implement this function return true; } bool AMDGPUInstrInfo::isRegisterStore(const MachineInstr &MI) const { return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_STORE; } bool AMDGPUInstrInfo::isRegisterLoad(const MachineInstr &MI) const { return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_LOAD; } int AMDGPUInstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const { const MachineRegisterInfo &MRI = MF.getRegInfo(); const MachineFrameInfo *MFI = MF.getFrameInfo(); int Offset = -1; if (MFI->getNumObjects() == 0) { return -1; } if (MRI.livein_empty()) { return 0; } const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass(); for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), LE = MRI.livein_end(); LI != LE; ++LI) { unsigned Reg = LI->first; if (TargetRegisterInfo::isVirtualRegister(Reg) || !IndirectRC->contains(Reg)) continue; unsigned RegIndex; unsigned RegEnd; for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd; ++RegIndex) { if (IndirectRC->getRegister(RegIndex) == Reg) break; } Offset = std::max(Offset, (int)RegIndex); } return Offset + 1; } int AMDGPUInstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const { int Offset = 0; const MachineFrameInfo *MFI = MF.getFrameInfo(); // Variable sized objects are not supported assert(!MFI->hasVarSizedObjects()); if (MFI->getNumObjects() == 0) { return -1; } unsigned IgnoredFrameReg; Offset = MF.getSubtarget().getFrameLowering()->getFrameIndexReference( MF, -1, IgnoredFrameReg); return getIndirectIndexBegin(MF) + Offset; } int AMDGPUInstrInfo::getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const { switch (Channels) { default: return Opcode; case 1: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_1); case 2: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_2); case 3: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_3); } } // Wrapper for Tablegen'd function. enum Subtarget is not defined in any // header files, so we need to wrap it in a function that takes unsigned // instead. namespace llvm { namespace AMDGPU { static int getMCOpcode(uint16_t Opcode, unsigned Gen) { return getMCOpcodeGen(Opcode, (enum Subtarget)Gen); } } } // This must be kept in sync with the SISubtarget class in SIInstrInfo.td enum SISubtarget { SI = 0, VI = 1 }; static enum SISubtarget AMDGPUSubtargetToSISubtarget(unsigned Gen) { switch (Gen) { default: return SI; case AMDGPUSubtarget::VOLCANIC_ISLANDS: return VI; } } int AMDGPUInstrInfo::pseudoToMCOpcode(int Opcode) const { int MCOp = AMDGPU::getMCOpcode( Opcode, AMDGPUSubtargetToSISubtarget(ST.getGeneration())); // -1 means that Opcode is already a native instruction. if (MCOp == -1) return Opcode; // (uint16_t)-1 means that Opcode is a pseudo instruction that has // no encoding in the given subtarget generation. if (MCOp == (uint16_t)-1) return -1; return MCOp; } ArrayRef<std::pair<int, const char *>> AMDGPUInstrInfo::getSerializableTargetIndices() const { static const std::pair<int, const char *> TargetIndices[] = { {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; return makeArrayRef(TargetIndices); }