//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Thumb instruction set. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Thumb specific DAG Nodes. // def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def imm_sr_XFORM: SDNodeXForm<imm, [{ unsigned Imm = N->getZExtValue(); return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), SDLoc(N), MVT::i32); }]>; def ThumbSRImmAsmOperand: AsmOperandClass { let Name = "ImmThumbSR"; } def imm_sr : Operand<i32>, PatLeaf<(imm), [{ uint64_t Imm = N->getZExtValue(); return Imm > 0 && Imm <= 32; }], imm_sr_XFORM> { let PrintMethod = "printThumbSRImm"; let ParserMatchClass = ThumbSRImmAsmOperand; } def imm_comp_XFORM : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), SDLoc(N), MVT::i32); }]>; def imm0_7_neg : PatLeaf<(i32 imm), [{ return (uint32_t)-N->getZExtValue() < 8; }], imm_neg_XFORM>; def imm0_255_comp : PatLeaf<(i32 imm), [{ return ~((uint32_t)N->getZExtValue()) < 256; }]>; def imm8_255 : ImmLeaf<i32, [{ return Imm >= 8 && Imm < 256; }]>; def imm8_255_neg : PatLeaf<(i32 imm), [{ unsigned Val = -N->getZExtValue(); return Val >= 8 && Val < 256; }], imm_neg_XFORM>; // Break imm's up into two pieces: an immediate + a left shift. This uses // thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt // to get the val/shift pieces. def thumb_immshifted : PatLeaf<(imm), [{ return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue()); }]>; def thumb_immshifted_val : SDNodeXForm<imm, [{ unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue()); return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); }]>; def thumb_immshifted_shamt : SDNodeXForm<imm, [{ unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue()); return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); }]>; // Scaled 4 immediate. def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; } def t_imm0_1020s4 : Operand<i32> { let PrintMethod = "printThumbS4ImmOperand"; let ParserMatchClass = t_imm0_1020s4_asmoperand; let OperandType = "OPERAND_IMMEDIATE"; } def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; } def t_imm0_508s4 : Operand<i32> { let PrintMethod = "printThumbS4ImmOperand"; let ParserMatchClass = t_imm0_508s4_asmoperand; let OperandType = "OPERAND_IMMEDIATE"; } // Alias use only, so no printer is necessary. def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; } def t_imm0_508s4_neg : Operand<i32> { let ParserMatchClass = t_imm0_508s4_neg_asmoperand; let OperandType = "OPERAND_IMMEDIATE"; } // Define Thumb specific addressing modes. // unsigned 8-bit, 2-scaled memory offset class OperandUnsignedOffset_b8s2 : AsmOperandClass { let Name = "UnsignedOffset_b8s2"; let PredicateMethod = "isUnsignedOffset<8, 2>"; } def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2; // thumb style PC relative operand. signed, 8 bits magnitude, // two bits shift. can be represented as either [pc, #imm], #imm, // or relocatable expression... def ThumbMemPC : AsmOperandClass { let Name = "ThumbMemPC"; } let OperandType = "OPERAND_PCREL" in { def t_brtarget : Operand<OtherVT> { let EncoderMethod = "getThumbBRTargetOpValue"; let DecoderMethod = "DecodeThumbBROperand"; } // ADR instruction labels. def t_adrlabel : Operand<i32> { let EncoderMethod = "getThumbAdrLabelOpValue"; let PrintMethod = "printAdrLabelOperand<2>"; let ParserMatchClass = UnsignedOffset_b8s2; } def t_bcctarget : Operand<i32> { let EncoderMethod = "getThumbBCCTargetOpValue"; let DecoderMethod = "DecodeThumbBCCTargetOperand"; } def t_cbtarget : Operand<i32> { let EncoderMethod = "getThumbCBTargetOpValue"; let DecoderMethod = "DecodeThumbCmpBROperand"; } def t_bltarget : Operand<i32> { let EncoderMethod = "getThumbBLTargetOpValue"; let DecoderMethod = "DecodeThumbBLTargetOperand"; } def t_blxtarget : Operand<i32> { let EncoderMethod = "getThumbBLXTargetOpValue"; let DecoderMethod = "DecodeThumbBLXOffset"; } // t_addrmode_pc := <label> => pc + imm8 * 4 // def t_addrmode_pc : MemOperand { let EncoderMethod = "getAddrModePCOpValue"; let DecoderMethod = "DecodeThumbAddrModePC"; let PrintMethod = "printThumbLdrLabelOperand"; let ParserMatchClass = ThumbMemPC; } } // t_addrmode_rr := reg + reg // def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; } def t_addrmode_rr : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> { let EncoderMethod = "getThumbAddrModeRegRegOpValue"; let PrintMethod = "printThumbAddrModeRROperand"; let DecoderMethod = "DecodeThumbAddrModeRR"; let ParserMatchClass = t_addrmode_rr_asm_operand; let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); } // t_addrmode_rrs := reg + reg // // We use separate scaled versions because the Select* functions need // to explicitly check for a matching constant and return false here so that // the reg+imm forms will match instead. This is a horrible way to do that, // as it forces tight coupling between the methods, but it's how selectiondag // currently works. def t_addrmode_rrs1 : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> { let EncoderMethod = "getThumbAddrModeRegRegOpValue"; let PrintMethod = "printThumbAddrModeRROperand"; let DecoderMethod = "DecodeThumbAddrModeRR"; let ParserMatchClass = t_addrmode_rr_asm_operand; let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); } def t_addrmode_rrs2 : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> { let EncoderMethod = "getThumbAddrModeRegRegOpValue"; let DecoderMethod = "DecodeThumbAddrModeRR"; let PrintMethod = "printThumbAddrModeRROperand"; let ParserMatchClass = t_addrmode_rr_asm_operand; let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); } def t_addrmode_rrs4 : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> { let EncoderMethod = "getThumbAddrModeRegRegOpValue"; let DecoderMethod = "DecodeThumbAddrModeRR"; let PrintMethod = "printThumbAddrModeRROperand"; let ParserMatchClass = t_addrmode_rr_asm_operand; let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); } // t_addrmode_is4 := reg + imm5 * 4 // def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; } def t_addrmode_is4 : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> { let EncoderMethod = "getAddrModeISOpValue"; let DecoderMethod = "DecodeThumbAddrModeIS"; let PrintMethod = "printThumbAddrModeImm5S4Operand"; let ParserMatchClass = t_addrmode_is4_asm_operand; let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); } // t_addrmode_is2 := reg + imm5 * 2 // def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; } def t_addrmode_is2 : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> { let EncoderMethod = "getAddrModeISOpValue"; let DecoderMethod = "DecodeThumbAddrModeIS"; let PrintMethod = "printThumbAddrModeImm5S2Operand"; let ParserMatchClass = t_addrmode_is2_asm_operand; let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); } // t_addrmode_is1 := reg + imm5 // def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; } def t_addrmode_is1 : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> { let EncoderMethod = "getAddrModeISOpValue"; let DecoderMethod = "DecodeThumbAddrModeIS"; let PrintMethod = "printThumbAddrModeImm5S1Operand"; let ParserMatchClass = t_addrmode_is1_asm_operand; let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); } // t_addrmode_sp := sp + imm8 * 4 // // FIXME: This really shouldn't have an explicit SP operand at all. It should // be implicit, just like in the instruction encoding itself. def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; } def t_addrmode_sp : MemOperand, ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> { let EncoderMethod = "getAddrModeThumbSPOpValue"; let DecoderMethod = "DecodeThumbAddrModeSP"; let PrintMethod = "printThumbAddrModeSPOperand"; let ParserMatchClass = t_addrmode_sp_asm_operand; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE // from removing one half of the matched pairs. That breaks PEI, which assumes // these will always be in pairs, and asserts if it finds otherwise. Better way? let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { def tADJCALLSTACKUP : PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary, [(ARMcallseq_end imm:$amt1, imm:$amt2)]>, Requires<[IsThumb, IsThumb1Only]>; def tADJCALLSTACKDOWN : PseudoInst<(outs), (ins i32imm:$amt), NoItinerary, [(ARMcallseq_start imm:$amt)]>, Requires<[IsThumb, IsThumb1Only]>; } class T1SystemEncoding<bits<8> opc> : T1Encoding<0b101111> { let Inst{9-8} = 0b11; let Inst{7-0} = opc; } def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm", [(int_arm_hint imm0_15:$imm)]>, T1SystemEncoding<0x00>, Requires<[IsThumb, HasV6M]> { bits<4> imm; let Inst{7-4} = imm; } class tHintAlias<string Asm, dag Result> : tInstAlias<Asm, Result> { let Predicates = [IsThumb, HasV6M]; } def : tHintAlias<"nop$p", (tHINT 0, pred:$p)>; // A8.6.110 def : tHintAlias<"yield$p", (tHINT 1, pred:$p)>; // A8.6.410 def : tHintAlias<"wfe$p", (tHINT 2, pred:$p)>; // A8.6.408 def : tHintAlias<"wfi$p", (tHINT 3, pred:$p)>; // A8.6.409 def : tHintAlias<"sev$p", (tHINT 4, pred:$p)>; // A8.6.157 def : tInstAlias<"sevl$p", (tHINT 5, pred:$p)> { let Predicates = [IsThumb2, HasV8]; } // The imm operand $val can be used by a debugger to store more information // about the breakpoint. def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val", []>, T1Encoding<0b101111> { let Inst{9-8} = 0b10; // A8.6.22 bits<8> val; let Inst{7-0} = val; } // default immediate for breakpoint mnemonic def : InstAlias<"bkpt", (tBKPT 0)>, Requires<[IsThumb]>; def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val", []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> { let Inst{9-6} = 0b1010; bits<6> val; let Inst{5-0} = val; } def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end", []>, T1Encoding<0b101101>, Requires<[IsNotMClass]>, Deprecated<HasV8Ops> { bits<1> end; // A8.6.156 let Inst{9-5} = 0b10010; let Inst{4} = 1; let Inst{3} = end; let Inst{2-0} = 0b000; } // Change Processor State is a system instruction -- for disassembly only. def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags), NoItinerary, "cps$imod $iflags", []>, T1Misc<0b0110011> { // A8.6.38 & B6.1.1 bit imod; bits<3> iflags; let Inst{4} = imod; let Inst{3} = 0; let Inst{2-0} = iflags; let DecoderMethod = "DecodeThumbCPS"; } // For both thumb1 and thumb2. let isNotDuplicable = 1, isCodeGenOnly = 1 in def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "", [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>, T1Special<{0,0,?,?}>, Sched<[WriteALU]> { // A8.6.6 bits<3> dst; let Inst{6-3} = 0b1111; // Rm = pc let Inst{2-0} = dst; } // ADD <Rd>, sp, #<imm8> // FIXME: This should not be marked as having side effects, and it should be // rematerializable. Clearing the side effect bit causes miscompilations, // probably because the instruction can be moved around. def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm), IIC_iALUi, "add", "\t$dst, $sp, $imm", []>, T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> { // A6.2 & A8.6.8 bits<3> dst; bits<8> imm; let Inst{10-8} = dst; let Inst{7-0} = imm; let DecoderMethod = "DecodeThumbAddSpecialReg"; } // Thumb1 frame lowering is rather fragile, we hope to be able to use // tADDrSPi, but we may need to insert a sequence that clobbers CPSR. def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset), NoItinerary, []>, Requires<[IsThumb, IsThumb1Only]> { let Defs = [CPSR]; } // ADD sp, sp, #<imm7> def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), IIC_iALUi, "add", "\t$Rdn, $imm", []>, T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> { // A6.2.5 & A8.6.8 bits<7> imm; let Inst{6-0} = imm; let DecoderMethod = "DecodeThumbAddSPImm"; } // SUB sp, sp, #<imm7> // FIXME: The encoding and the ASM string don't match up. def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), IIC_iALUi, "sub", "\t$Rdn, $imm", []>, T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> { // A6.2.5 & A8.6.214 bits<7> imm; let Inst{6-0} = imm; let DecoderMethod = "DecodeThumbAddSPImm"; } def : tInstAlias<"add${p} sp, $imm", (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; def : tInstAlias<"add${p} sp, sp, $imm", (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; // Can optionally specify SP as a three operand instruction. def : tInstAlias<"add${p} sp, sp, $imm", (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>; def : tInstAlias<"sub${p} sp, sp, $imm", (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>; // ADD <Rm>, sp def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr, "add", "\t$Rdn, $sp, $Rn", []>, T1Special<{0,0,?,?}>, Sched<[WriteALU]> { // A8.6.9 Encoding T1 bits<4> Rdn; let Inst{7} = Rdn{3}; let Inst{6-3} = 0b1101; let Inst{2-0} = Rdn{2-0}; let DecoderMethod = "DecodeThumbAddSPReg"; } // ADD sp, <Rm> def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr, "add", "\t$Rdn, $Rm", []>, T1Special<{0,0,?,?}>, Sched<[WriteALU]> { // A8.6.9 Encoding T2 bits<4> Rm; let Inst{7} = 1; let Inst{6-3} = Rm; let Inst{2-0} = 0b101; let DecoderMethod = "DecodeThumbAddSPReg"; } //===----------------------------------------------------------------------===// // Control Flow Instructions. // // Indirect branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>, T1Special<{1,1,0,?}>, Sched<[WriteBr]> { // A6.2.3 & A8.6.25 bits<4> Rm; let Inst{6-3} = Rm; let Inst{2-0} = 0b000; let Unpredictable{2-0} = 0b111; } } let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br, [(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>; // Alternative return instruction used by vararg functions. def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p), 2, IIC_Br, [], (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; } // All calls clobber the non-callee saved registers. SP is marked as a use to // prevent stack-pointer assignments that appear immediately before calls from // potentially appearing dead. let isCall = 1, Defs = [LR], Uses = [SP] in { // Also used for Thumb2 def tBL : TIx2<0b11110, 0b11, 1, (outs), (ins pred:$p, t_bltarget:$func), IIC_Br, "bl${p}\t$func", [(ARMtcall tglobaladdr:$func)]>, Requires<[IsThumb]>, Sched<[WriteBrL]> { bits<24> func; let Inst{26} = func{23}; let Inst{25-16} = func{20-11}; let Inst{13} = func{22}; let Inst{11} = func{21}; let Inst{10-0} = func{10-0}; } // ARMv5T and above, also used for Thumb2 def tBLXi : TIx2<0b11110, 0b11, 0, (outs), (ins pred:$p, t_blxtarget:$func), IIC_Br, "blx${p}\t$func", [(ARMcall tglobaladdr:$func)]>, Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> { bits<24> func; let Inst{26} = func{23}; let Inst{25-16} = func{20-11}; let Inst{13} = func{22}; let Inst{11} = func{21}; let Inst{10-1} = func{10-1}; let Inst{0} = 0; // func{0} is assumed zero } // Also used for Thumb2 def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br, "blx${p}\t$func", [(ARMtcall GPR:$func)]>, Requires<[IsThumb, HasV5T]>, T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24; bits<4> func; let Inst{6-3} = func; let Inst{2-0} = 0b000; } // ARMv4T def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func), 4, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>; } let isBranch = 1, isTerminator = 1, isBarrier = 1 in { let isPredicable = 1 in def tB : T1pI<(outs), (ins t_brtarget:$target), IIC_Br, "b", "\t$target", [(br bb:$target)]>, T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> { bits<11> target; let Inst{10-0} = target; let AsmMatchConverter = "cvtThumbBranches"; } // Far jump // Just a pseudo for a tBL instruction. Needed to let regalloc know about // the clobber of LR. let Defs = [LR] in def tBfar : tPseudoExpand<(outs), (ins t_bltarget:$target, pred:$p), 4, IIC_Br, [], (tBL pred:$p, t_bltarget:$target)>, Sched<[WriteBrTbl]>; def tBR_JTr : tPseudoInst<(outs), (ins tGPR:$target, i32imm:$jt), 0, IIC_Br, [(ARMbrjt tGPR:$target, tjumptable:$jt)]>, Sched<[WriteBrTbl]> { let Size = 2; list<Predicate> Predicates = [IsThumb, IsThumb1Only]; } } // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( let isBranch = 1, isTerminator = 1 in def tBcc : T1I<(outs), (ins t_bcctarget:$target, pred:$p), IIC_Br, "b${p}\t$target", [/*(ARMbrcond bb:$target, imm:$cc)*/]>, T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> { bits<4> p; bits<8> target; let Inst{11-8} = p; let Inst{7-0} = target; let AsmMatchConverter = "cvtThumbBranches"; } // Tail calls let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { // IOS versions. let Uses = [SP] in { def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst), 4, IIC_Br, [], (tBX GPR:$dst, (ops 14, zero_reg))>, Requires<[IsThumb]>, Sched<[WriteBr]>; } // tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls // on MachO), so it's in ARMInstrThumb2.td. // Non-MachO version: let Uses = [SP] in { def tTAILJMPdND : tPseudoExpand<(outs), (ins t_brtarget:$dst, pred:$p), 4, IIC_Br, [], (tB t_brtarget:$dst, pred:$p)>, Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>; } } // A8.6.218 Supervisor Call (Software Interrupt) // A8.6.16 B: Encoding T1 // If Inst{11-8} == 0b1111 then SEE SVC let isCall = 1, Uses = [SP] in def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br, "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> { bits<8> imm; let Inst{15-12} = 0b1101; let Inst{11-8} = 0b1111; let Inst{7-0} = imm; } // The assembler uses 0xDEFE for a trap instruction. let isBarrier = 1, isTerminator = 1 in def tTRAP : TI<(outs), (ins), IIC_Br, "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> { let Inst = 0xdefe; } //===----------------------------------------------------------------------===// // Load Store Instructions. // // PC-relative loads need to be matched first as constant pool accesses need to // always be PC-relative. We do this using AddedComplexity, as the pattern is // simpler than the patterns of the other load instructions. let canFoldAsLoad = 1, isReMaterializable = 1, AddedComplexity = 10 in def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i, "ldr", "\t$Rt, $addr", [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>, T1Encoding<{0,1,0,0,1,?}> { // A6.2 & A8.6.59 bits<3> Rt; bits<8> addr; let Inst{10-8} = Rt; let Inst{7-0} = addr; } // SP-relative loads should be matched before standard immediate-offset loads as // it means we avoid having to move SP to another register. let canFoldAsLoad = 1 in def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i, "ldr", "\t$Rt, $addr", [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>, T1LdStSP<{1,?,?}> { bits<3> Rt; bits<8> addr; let Inst{10-8} = Rt; let Inst{7-0} = addr; } // Loads: reg/reg and reg/imm5 let canFoldAsLoad = 1, isReMaterializable = 1 in multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, Operand AddrMode_r, Operand AddrMode_i, AddrMode am, InstrItinClass itin_r, InstrItinClass itin_i, string asm, PatFrag opnode> { // Immediate-offset loads should be matched before register-offset loads as // when the offset is a constant it's simpler to first check if it fits in the // immediate offset field then fall back to register-offset if it doesn't. def i : // reg/imm5 T1pILdStEncodeImm<imm_opc, 1 /* Load */, (outs tGPR:$Rt), (ins AddrMode_i:$addr), am, itin_i, asm, "\t$Rt, $addr", [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>; // Register-offset loads are matched last. def r : // reg/reg T1pILdStEncode<reg_opc, (outs tGPR:$Rt), (ins AddrMode_r:$addr), am, itin_r, asm, "\t$Rt, $addr", [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>; } // Stores: reg/reg and reg/imm5 multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, Operand AddrMode_r, Operand AddrMode_i, AddrMode am, InstrItinClass itin_r, InstrItinClass itin_i, string asm, PatFrag opnode> { def i : // reg/imm5 T1pILdStEncodeImm<imm_opc, 0 /* Store */, (outs), (ins tGPR:$Rt, AddrMode_i:$addr), am, itin_i, asm, "\t$Rt, $addr", [(opnode tGPR:$Rt, AddrMode_i:$addr)]>; def r : // reg/reg T1pILdStEncode<reg_opc, (outs), (ins tGPR:$Rt, AddrMode_r:$addr), am, itin_r, asm, "\t$Rt, $addr", [(opnode tGPR:$Rt, AddrMode_r:$addr)]>; } // A8.6.57 & A8.6.60 defm tLDR : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rr, t_addrmode_is4, AddrModeT1_4, IIC_iLoad_r, IIC_iLoad_i, "ldr", UnOpFrag<(load node:$Src)>>; // A8.6.64 & A8.6.61 defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rr, t_addrmode_is1, AddrModeT1_1, IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb", UnOpFrag<(zextloadi8 node:$Src)>>; // A8.6.76 & A8.6.73 defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rr, t_addrmode_is2, AddrModeT1_2, IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh", UnOpFrag<(zextloadi16 node:$Src)>>; let AddedComplexity = 10 in def tLDRSB : // A8.6.80 T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr), AddrModeT1_1, IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr", [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr:$addr))]>; let AddedComplexity = 10 in def tLDRSH : // A8.6.84 T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr), AddrModeT1_2, IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr", [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr:$addr))]>; def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i, "str", "\t$Rt, $addr", [(store tGPR:$Rt, t_addrmode_sp:$addr)]>, T1LdStSP<{0,?,?}> { bits<3> Rt; bits<8> addr; let Inst{10-8} = Rt; let Inst{7-0} = addr; } // A8.6.194 & A8.6.192 defm tSTR : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rr, t_addrmode_is4, AddrModeT1_4, IIC_iStore_r, IIC_iStore_i, "str", BinOpFrag<(store node:$LHS, node:$RHS)>>; // A8.6.197 & A8.6.195 defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rr, t_addrmode_is1, AddrModeT1_1, IIC_iStore_bh_r, IIC_iStore_bh_i, "strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; // A8.6.207 & A8.6.205 defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rr, t_addrmode_is2, AddrModeT1_2, IIC_iStore_bh_r, IIC_iStore_bh_i, "strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>; //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // // These require base address to be written back or one of the loaded regs. let hasSideEffects = 0 in { let mayLoad = 1, hasExtraDefRegAllocReq = 1 in def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> { bits<3> Rn; bits<8> regs; let Inst{10-8} = Rn; let Inst{7-0} = regs; } // Writeback version is just a pseudo, as there's no encoding difference. // Writeback happens iff the base register is not in the destination register // list. let mayLoad = 1, hasExtraDefRegAllocReq = 1 in def tLDMIA_UPD : InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain, "$Rn = $wb", IIC_iLoad_mu>, PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> { let Size = 2; let OutOperandList = (outs GPR:$wb); let InOperandList = (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops); let Pattern = []; let isCodeGenOnly = 1; let isPseudo = 1; list<Predicate> Predicates = [IsThumb]; } // There is no non-writeback version of STM for Thumb. let mayStore = 1, hasExtraSrcRegAllocReq = 1 in def tSTMIA_UPD : Thumb1I<(outs GPR:$wb), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), AddrModeNone, 2, IIC_iStore_mu, "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>, T1Encoding<{1,1,0,0,0,?}> { bits<3> Rn; bits<8> regs; let Inst{10-8} = Rn; let Inst{7-0} = regs; } } // hasSideEffects def : InstAlias<"ldm${p} $Rn!, $regs", (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)>, Requires<[IsThumb, IsThumb1Only]>; let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), IIC_iPop, "pop${p}\t$regs", []>, T1Misc<{1,1,0,?,?,?,?}> { bits<16> regs; let Inst{8} = regs{15}; let Inst{7-0} = regs{7-0}; } let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), IIC_iStore_m, "push${p}\t$regs", []>, T1Misc<{0,1,0,?,?,?,?}> { bits<16> regs; let Inst{8} = regs{14}; let Inst{7-0} = regs{7-0}; } //===----------------------------------------------------------------------===// // Arithmetic Instructions. // // Helper classes for encoding T1pI patterns: class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : T1pI<oops, iops, itin, opc, asm, pattern>, T1DataProcessing<opA> { bits<3> Rm; bits<3> Rn; let Inst{5-3} = Rm; let Inst{2-0} = Rn; } class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : T1pI<oops, iops, itin, opc, asm, pattern>, T1Misc<opA> { bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // Helper classes for encoding T1sI patterns: class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : T1sI<oops, iops, itin, opc, asm, pattern>, T1DataProcessing<opA> { bits<3> Rd; bits<3> Rn; let Inst{5-3} = Rn; let Inst{2-0} = Rd; } class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : T1sI<oops, iops, itin, opc, asm, pattern>, T1General<opA> { bits<3> Rm; bits<3> Rn; bits<3> Rd; let Inst{8-6} = Rm; let Inst{5-3} = Rn; let Inst{2-0} = Rd; } class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : T1sI<oops, iops, itin, opc, asm, pattern>, T1General<opA> { bits<3> Rd; bits<3> Rm; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // Helper classes for encoding T1sIt patterns: class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : T1sIt<oops, iops, itin, opc, asm, pattern>, T1DataProcessing<opA> { bits<3> Rdn; bits<3> Rm; let Inst{5-3} = Rm; let Inst{2-0} = Rdn; } class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list<dag> pattern> : T1sIt<oops, iops, itin, opc, asm, pattern>, T1General<opA> { bits<3> Rdn; bits<8> imm8; let Inst{10-8} = Rdn; let Inst{7-0} = imm8; } // Add with carry register let isCommutable = 1, Uses = [CPSR] in def tADC : // A8.6.2 T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, "adc", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // Add immediate def tADDi3 : // A8.6.4 T1 T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), IIC_iALUi, "add", "\t$Rd, $Rm, $imm3", [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>, Sched<[WriteALU]> { bits<3> imm3; let Inst{8-6} = imm3; } def tADDi8 : // A8.6.4 T2 T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi, "add", "\t$Rdn, $imm8", [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>, Sched<[WriteALU]>; // Add register let isCommutable = 1 in def tADDrr : // A8.6.6 T1 T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, "add", "\t$Rd, $Rn, $Rm", [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; let hasSideEffects = 0 in def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr, "add", "\t$Rdn, $Rm", []>, T1Special<{0,0,?,?}>, Sched<[WriteALU]> { // A8.6.6 T2 bits<4> Rdn; bits<4> Rm; let Inst{7} = Rdn{3}; let Inst{6-3} = Rm; let Inst{2-0} = Rdn{2-0}; } // AND register let isCommutable = 1 in def tAND : // A8.6.12 T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iBITr, "and", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // ASR immediate def tASRri : // A8.6.14 T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), IIC_iMOVsi, "asr", "\t$Rd, $Rm, $imm5", [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>, Sched<[WriteALU]> { bits<5> imm5; let Inst{10-6} = imm5; } // ASR register def tASRrr : // A8.6.15 T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iMOVsr, "asr", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // BIC register def tBIC : // A8.6.20 T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iBITr, "bic", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>, Sched<[WriteALU]>; // CMN register let isCompare = 1, Defs = [CPSR] in { //FIXME: Disable CMN, as CCodes are backwards from compare expectations // Compare-to-zero still works out, just not the relationals //def tCMN : // A8.6.33 // T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs), // IIC_iCMPr, // "cmn", "\t$lhs, $rhs", // [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>; def tCMNz : // A8.6.33 T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iCMPr, "cmn", "\t$Rn, $Rm", [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>; } // isCompare = 1, Defs = [CPSR] // CMP immediate let isCompare = 1, Defs = [CPSR] in { def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi, "cmp", "\t$Rn, $imm8", [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>, T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> { // A8.6.35 bits<3> Rn; bits<8> imm8; let Inst{10-8} = Rn; let Inst{7-0} = imm8; } // CMP register def tCMPr : // A8.6.36 T1 T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iCMPr, "cmp", "\t$Rn, $Rm", [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>; def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr, "cmp", "\t$Rn, $Rm", []>, T1Special<{0,1,?,?}>, Sched<[WriteCMP]> { // A8.6.36 T2 bits<4> Rm; bits<4> Rn; let Inst{7} = Rn{3}; let Inst{6-3} = Rm; let Inst{2-0} = Rn{2-0}; } } // isCompare = 1, Defs = [CPSR] // XOR register let isCommutable = 1 in def tEOR : // A8.6.45 T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iBITr, "eor", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // LSL immediate def tLSLri : // A8.6.88 T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5), IIC_iMOVsi, "lsl", "\t$Rd, $Rm, $imm5", [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>, Sched<[WriteALU]> { bits<5> imm5; let Inst{10-6} = imm5; } // LSL register def tLSLrr : // A8.6.89 T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iMOVsr, "lsl", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // LSR immediate def tLSRri : // A8.6.90 T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), IIC_iMOVsi, "lsr", "\t$Rd, $Rm, $imm5", [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>, Sched<[WriteALU]> { bits<5> imm5; let Inst{10-6} = imm5; } // LSR register def tLSRrr : // A8.6.91 T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iMOVsr, "lsr", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // Move register let isMoveImm = 1 in def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi, "mov", "\t$Rd, $imm8", [(set tGPR:$Rd, imm0_255:$imm8)]>, T1General<{1,0,0,?,?}>, Sched<[WriteALU]> { // A8.6.96 bits<3> Rd; bits<8> imm8; let Inst{10-8} = Rd; let Inst{7-0} = imm8; } // Because we have an explicit tMOVSr below, we need an alias to handle // the immediate "movs" form here. Blech. def : tInstAlias <"movs $Rdn, $imm", (tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>; // A7-73: MOV(2) - mov setting flag. let hasSideEffects = 0 in { def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone, 2, IIC_iMOVr, "mov", "\t$Rd, $Rm", "", []>, T1Special<{1,0,?,?}>, Sched<[WriteALU]> { // A8.6.97 bits<4> Rd; bits<4> Rm; let Inst{7} = Rd{3}; let Inst{6-3} = Rm; let Inst{2-0} = Rd{2-0}; } let Defs = [CPSR] in def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr, "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> { // A8.6.97 bits<3> Rd; bits<3> Rm; let Inst{15-6} = 0b0000000000; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } } // hasSideEffects // Multiply register let isCommutable = 1 in def tMUL : // A8.6.105 T1 Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2, IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd", [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>, T1DataProcessing<0b1101> { bits<3> Rd; bits<3> Rn; let Inst{5-3} = Rn; let Inst{2-0} = Rd; let AsmMatchConverter = "cvtThumbMultiply"; } def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn, pred:$p)>; // Move inverse register def tMVN : // A8.6.107 T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr, "mvn", "\t$Rd, $Rn", [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>; // Bitwise or register let isCommutable = 1 in def tORR : // A8.6.114 T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iBITr, "orr", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // Swaps def tREV : // A8.6.134 T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "rev", "\t$Rd, $Rm", [(set tGPR:$Rd, (bswap tGPR:$Rm))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; def tREV16 : // A8.6.135 T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "rev16", "\t$Rd, $Rm", [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; def tREVSH : // A8.6.136 T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "revsh", "\t$Rd, $Rm", [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; // Rotate right register def tROR : // A8.6.139 T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iMOVsr, "ror", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // Negate register def tRSB : // A8.6.141 T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iALUi, "rsb", "\t$Rd, $Rn, #0", [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>; // Subtract with carry register let Uses = [CPSR] in def tSBC : // A8.6.151 T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, "sbc", "\t$Rdn, $Rm", [(set tGPR:$Rdn, (sube tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // Subtract immediate def tSUBi3 : // A8.6.210 T1 T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), IIC_iALUi, "sub", "\t$Rd, $Rm, $imm3", [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>, Sched<[WriteALU]> { bits<3> imm3; let Inst{8-6} = imm3; } def tSUBi8 : // A8.6.210 T2 T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi, "sub", "\t$Rdn, $imm8", [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>, Sched<[WriteALU]>; // Subtract register def tSUBrr : // A8.6.212 T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, "sub", "\t$Rd, $Rn, $Rm", [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; // Sign-extend byte def tSXTB : // A8.6.222 T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "sxtb", "\t$Rd, $Rm", [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; // Sign-extend short def tSXTH : // A8.6.224 T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "sxth", "\t$Rd, $Rm", [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; // Test let isCompare = 1, isCommutable = 1, Defs = [CPSR] in def tTST : // A8.6.230 T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr, "tst", "\t$Rn, $Rm", [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>, Sched<[WriteALU]>; // A8.8.247 UDF - Undefined (Encoding T1) def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8", [(int_arm_undefined imm0_255:$imm8)]>, Encoding16 { bits<8> imm8; let Inst{15-12} = 0b1101; let Inst{11-8} = 0b1110; let Inst{7-0} = imm8; } // Zero-extend byte def tUXTB : // A8.6.262 T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "uxtb", "\t$Rd, $Rm", [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; // Zero-extend short def tUXTH : // A8.6.264 T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "uxth", "\t$Rd, $Rm", [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; // Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation. // Expanded after instruction selection into a branch sequence. let usesCustomInserter = 1 in // Expanded after instruction selection. def tMOVCCr_pseudo : PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p), NoItinerary, [(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>; // tLEApcrel - Load a pc-relative address into a register without offending the // assembler. def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p), IIC_iALUi, "adr{$p}\t$Rd, $addr", []>, T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> { bits<3> Rd; bits<8> addr; let Inst{10-8} = Rd; let Inst{7-0} = addr; let DecoderMethod = "DecodeThumbAddSpecialReg"; } let hasSideEffects = 0, isReMaterializable = 1 in def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p), 2, IIC_iALUi, []>, Sched<[WriteALU]>; let hasSideEffects = 1 in def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p), 2, IIC_iALUi, []>, Sched<[WriteALU]>; //===----------------------------------------------------------------------===// // TLS Instructions // // __aeabi_read_tp preserves the registers r1-r3. // This is a pseudo inst so that we can get the encoding right, // complete with fixup for the aeabi_read_tp function. let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br, [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>; //===----------------------------------------------------------------------===// // SJLJ Exception handling intrinsics // // eh_sjlj_setjmp() is an instruction sequence to store the return address and // save #0 in R0 for the non-longjmp case. Since by its nature we may be coming // from some other function to get here, and we're using the stack frame for the // containing function to save/restore registers, we can't keep anything live in // regs across the eh_sjlj_setjmp(), else it will almost certainly have been // tromped upon when we get here from a longjmp(). We force everything out of // registers except for our own input by listing the relevant registers in // Defs. By doing so, we also cause the prologue/epilogue code to actively // preserve all of the callee-saved resgisters, which is exactly what we want. // $val is a scratch register for our use. let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12, CPSR ], hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val), AddrModeNone, 0, NoItinerary, "","", [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>; // FIXME: Non-IOS version(s) let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1, Defs = [ R7, LR, SP ] in def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch), AddrModeNone, 0, IndexModeNone, Pseudo, NoItinerary, "", "", [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, Requires<[IsThumb]>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // Comparisons def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8), (tCMPi8 tGPR:$Rn, imm0_255:$imm8)>; def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm), (tCMPr tGPR:$Rn, tGPR:$Rm)>; // Add with carry def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs), (tADDi3 tGPR:$lhs, imm0_7:$rhs)>; def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs), (tADDi8 tGPR:$lhs, imm8_255:$rhs)>; def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs), (tADDrr tGPR:$lhs, tGPR:$rhs)>; // Subtract with carry def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs), (tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>; def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs), (tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>; def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs), (tSUBrr tGPR:$lhs, tGPR:$rhs)>; // Bswap 16 with load/store def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)), (tREV16 (tLDRHi t_addrmode_is2:$addr))>; def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rr:$addr)), (i32 16)), (tREV16 (tLDRHr t_addrmode_rr:$addr))>; def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), t_addrmode_is2:$addr), (tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>; def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), t_addrmode_rr:$addr), (tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rr:$addr)>; // ConstantPool def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>; // GlobalAddress def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr), IIC_iLoadiALU, [(set tGPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>, Requires<[IsThumb, DontUseMovt]>; def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src), IIC_iLoad_i, [(set tGPR:$dst, (ARMWrapper tglobaladdr:$src))]>, Requires<[IsThumb, DontUseMovt]>; // JumpTable def : T1Pat<(ARMWrapperJT tjumptable:$dst), (tLEApcrelJT tjumptable:$dst)>; // Direct calls def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>, Requires<[IsThumb]>; def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>, Requires<[IsThumb, HasV5T, IsNotMClass]>; // Indirect calls to ARM routines def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>, Requires<[IsThumb, HasV5T]>; // zextload i1 -> zextload i8 def : T1Pat<(zextloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; def : T1Pat<(zextloadi1 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; // extload from the stack -> word load from the stack, as it avoids having to // materialize the base in a separate register. This only works when a word // load puts the byte/halfword value in the same place in the register that the // byte/halfword load would, i.e. when little-endian. def : T1Pat<(extloadi1 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, Requires<[IsThumb, IsThumb1Only, IsLE]>; def : T1Pat<(extloadi8 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, Requires<[IsThumb, IsThumb1Only, IsLE]>; def : T1Pat<(extloadi16 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, Requires<[IsThumb, IsThumb1Only, IsLE]>; // extload -> zextload def : T1Pat<(extloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; def : T1Pat<(extloadi1 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; def : T1Pat<(extloadi8 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; def : T1Pat<(extloadi8 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>; def : T1Pat<(extloadi16 t_addrmode_rr:$addr), (tLDRHr t_addrmode_rr:$addr)>; // If it's impossible to use [r,r] address mode for sextload, select to // ldr{b|h} + sxt{b|h} instead. def : T1Pat<(sextloadi8 t_addrmode_is1:$addr), (tSXTB (tLDRBi t_addrmode_is1:$addr))>, Requires<[IsThumb, IsThumb1Only, HasV6]>; def : T1Pat<(sextloadi8 t_addrmode_rr:$addr), (tSXTB (tLDRBr t_addrmode_rr:$addr))>, Requires<[IsThumb, IsThumb1Only, HasV6]>; def : T1Pat<(sextloadi16 t_addrmode_is2:$addr), (tSXTH (tLDRHi t_addrmode_is2:$addr))>, Requires<[IsThumb, IsThumb1Only, HasV6]>; def : T1Pat<(sextloadi16 t_addrmode_rr:$addr), (tSXTH (tLDRHr t_addrmode_rr:$addr))>, Requires<[IsThumb, IsThumb1Only, HasV6]>; def : T1Pat<(sextloadi8 t_addrmode_is1:$addr), (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>; def : T1Pat<(sextloadi8 t_addrmode_rr:$addr), (tASRri (tLSLri (tLDRBr t_addrmode_rr:$addr), 24), 24)>; def : T1Pat<(sextloadi16 t_addrmode_is2:$addr), (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>; def : T1Pat<(sextloadi16 t_addrmode_rr:$addr), (tASRri (tLSLri (tLDRHr t_addrmode_rr:$addr), 16), 16)>; def : T1Pat<(atomic_load_8 t_addrmode_is1:$src), (tLDRBi t_addrmode_is1:$src)>; def : T1Pat<(atomic_load_8 t_addrmode_rr:$src), (tLDRBr t_addrmode_rr:$src)>; def : T1Pat<(atomic_load_16 t_addrmode_is2:$src), (tLDRHi t_addrmode_is2:$src)>; def : T1Pat<(atomic_load_16 t_addrmode_rr:$src), (tLDRHr t_addrmode_rr:$src)>; def : T1Pat<(atomic_load_32 t_addrmode_is4:$src), (tLDRi t_addrmode_is4:$src)>; def : T1Pat<(atomic_load_32 t_addrmode_rr:$src), (tLDRr t_addrmode_rr:$src)>; def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val), (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>; def : T1Pat<(atomic_store_8 t_addrmode_rr:$ptr, tGPR:$val), (tSTRBr tGPR:$val, t_addrmode_rr:$ptr)>; def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val), (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>; def : T1Pat<(atomic_store_16 t_addrmode_rr:$ptr, tGPR:$val), (tSTRHr tGPR:$val, t_addrmode_rr:$ptr)>; def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val), (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>; def : T1Pat<(atomic_store_32 t_addrmode_rr:$ptr, tGPR:$val), (tSTRr tGPR:$val, t_addrmode_rr:$ptr)>; // Large immediate handling. // Two piece imms. def : T1Pat<(i32 thumb_immshifted:$src), (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)), (thumb_immshifted_shamt imm:$src))>; def : T1Pat<(i32 imm0_255_comp:$src), (tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>; // Pseudo instruction that combines ldr from constpool and add pc. This should // be expanded into two instructions late to allow if-conversion and // scheduling. let isReMaterializable = 1 in def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp), NoItinerary, [(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)), imm:$cp))]>, Requires<[IsThumb, IsThumb1Only]>; // Pseudo-instruction for merged POP and return. // FIXME: remove when we have a way to marking a MI with these properties. let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, hasExtraDefRegAllocReq = 1 in def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops), 2, IIC_iPop_Br, [], (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>; // Indirect branch using "mov pc, $Rm" let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p), 2, IIC_Br, [(brind GPR:$Rm)], (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; } // In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00 // encoding is available on ARMv6K, but we don't differentiate that finely. def : InstAlias<"nop", (tMOVr R8, R8, 14, 0)>,Requires<[IsThumb, IsThumb1Only]>; // For round-trip assembly/disassembly, we have to handle a CPS instruction // without any iflags. That's not, strictly speaking, valid syntax, but it's // a useful extension and assembles to defined behaviour (the insn does // nothing). def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>; def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>; // "neg" is and alias for "rsb rd, rn, #0" def : tInstAlias<"neg${s}${p} $Rd, $Rm", (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>; // Implied destination operand forms for shifts. def : tInstAlias<"lsl${s}${p} $Rdm, $imm", (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>; def : tInstAlias<"lsr${s}${p} $Rdm, $imm", (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>; def : tInstAlias<"asr${s}${p} $Rdm, $imm", (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;