//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMFrameLowering.h" #include "ARMTargetMachine.h" #include "ARMTargetObjectFile.h" #include "ARMTargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; static cl::opt<bool> DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, cl::desc("Inhibit optimization of S->D register accesses on A15"), cl::init(false)); static cl::opt<bool> EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, cl::desc("Run SimplifyCFG after expanding atomic operations" " to make use of cmpxchg flow-based information"), cl::init(true)); static cl::opt<bool> EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, cl::desc("Enable ARM load/store optimization pass"), cl::init(true)); // FIXME: Unify control over GlobalMerge. static cl::opt<cl::boolOrDefault> EnableGlobalMerge("arm-global-merge", cl::Hidden, cl::desc("Enable the global merge pass")); extern "C" void LLVMInitializeARMTarget() { // Register the target. RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget); RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget); RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget); RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget); } static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { if (TT.isOSBinFormatMachO()) return make_unique<TargetLoweringObjectFileMachO>(); if (TT.isOSWindows()) return make_unique<TargetLoweringObjectFileCOFF>(); return make_unique<ARMElfTargetObjectFile>(); } static ARMBaseTargetMachine::ARMABI computeTargetABI(const Triple &TT, StringRef CPU, const TargetOptions &Options) { if (Options.MCOptions.getABIName() == "aapcs16") return ARMBaseTargetMachine::ARM_ABI_AAPCS16; else if (Options.MCOptions.getABIName().startswith("aapcs")) return ARMBaseTargetMachine::ARM_ABI_AAPCS; else if (Options.MCOptions.getABIName().startswith("apcs")) return ARMBaseTargetMachine::ARM_ABI_APCS; assert(Options.MCOptions.getABIName().empty() && "Unknown target-abi option!"); ARMBaseTargetMachine::ARMABI TargetABI = ARMBaseTargetMachine::ARM_ABI_UNKNOWN; // FIXME: This is duplicated code from the front end and should be unified. if (TT.isOSBinFormatMachO()) { if (TT.getEnvironment() == llvm::Triple::EABI || (TT.getOS() == llvm::Triple::UnknownOS && TT.isOSBinFormatMachO()) || CPU.startswith("cortex-m")) { TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; } else if (TT.isWatchOS()) { TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16; } else { TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; } } else if (TT.isOSWindows()) { // FIXME: this is invalid for WindowsCE TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; } else { // Select the default based on the platform. switch (TT.getEnvironment()) { case llvm::Triple::Android: case llvm::Triple::GNUEABI: case llvm::Triple::GNUEABIHF: case llvm::Triple::EABIHF: case llvm::Triple::EABI: TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; break; case llvm::Triple::GNU: TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; break; default: if (TT.isOSNetBSD()) TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; else TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; break; } } return TargetABI; } static std::string computeDataLayout(const Triple &TT, StringRef CPU, const TargetOptions &Options, bool isLittle) { auto ABI = computeTargetABI(TT, CPU, Options); std::string Ret = ""; if (isLittle) // Little endian. Ret += "e"; else // Big endian. Ret += "E"; Ret += DataLayout::getManglingComponent(TT); // Pointers are 32 bits and aligned to 32 bits. Ret += "-p:32:32"; // ABIs other than APCS have 64 bit integers with natural alignment. if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) Ret += "-i64:64"; // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 // bits, others to 64 bits. We always try to align to 64 bits. if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) Ret += "-f64:32:64"; // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others // to 64. We always ty to give them natural alignment. if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) Ret += "-v64:32:64-v128:32:128"; else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) Ret += "-v128:64:128"; // Try to align aggregates to 32 bits (the default is 64 bits, which has no // particular hardware support on 32-bit ARM). Ret += "-a:0:32"; // Integer registers are 32 bits. Ret += "-n32"; // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit // aligned everywhere else. if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) Ret += "-S128"; else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) Ret += "-S64"; else Ret += "-S32"; return Ret; } /// TargetMachine ctor - Create an ARM architecture model. /// ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, CPU, FS, Options, RM, CM, OL), TargetABI(computeTargetABI(TT, CPU, Options)), TLOF(createTLOF(getTargetTriple())), Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) { // Default to triple-appropriate float ABI if (Options.FloatABIType == FloatABI::Default) this->Options.FloatABIType = Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft; // Default to triple-appropriate EABI if (Options.EABIVersion == EABI::Default || Options.EABIVersion == EABI::Unknown) { if (Subtarget.isTargetGNUAEABI()) this->Options.EABIVersion = EABI::GNU; else this->Options.EABIVersion = EABI::EABI5; } } ARMBaseTargetMachine::~ARMBaseTargetMachine() {} const ARMSubtarget * ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString().str() : TargetCPU; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString().str() : TargetFS; // FIXME: This is related to the code below to reset the target options, // we need to know whether or not the soft float flag is set on the // function before we can generate a subtarget. We also need to use // it as a key for the subtarget since that can be the only difference // between two functions. bool SoftFloat = F.hasFnAttribute("use-soft-float") && F.getFnAttribute("use-soft-float").getValueAsString() == "true"; // If the soft float attribute is set on the function turn on the soft float // subtarget feature. if (SoftFloat) FS += FS.empty() ? "+soft-float" : ",+soft-float"; auto &I = SubtargetMap[CPU + FS]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle); } return I.get(); } TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() { return TargetIRAnalysis([this](const Function &F) { return TargetTransformInfo(ARMTTIImpl(this, F)); }); } void ARMTargetMachine::anchor() {} ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) { initAsmInfo(); if (!Subtarget.hasARMOps()) report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not " "support ARM mode execution!"); } void ARMLETargetMachine::anchor() {} ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} void ARMBETargetMachine::anchor() {} ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} void ThumbTargetMachine::anchor() {} ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) { initAsmInfo(); } void ThumbLETargetMachine::anchor() {} ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} void ThumbBETargetMachine::anchor() {} ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} namespace { /// ARM Code Generator Pass Configuration Options. class ARMPassConfig : public TargetPassConfig { public: ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} ARMBaseTargetMachine &getARMTargetMachine() const { return getTM<ARMBaseTargetMachine>(); } void addIRPasses() override; bool addPreISel() override; bool addInstSelector() override; void addPreRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; }; } // namespace TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { return new ARMPassConfig(this, PM); } void ARMPassConfig::addIRPasses() { if (TM->Options.ThreadModel == ThreadModel::Single) addPass(createLowerAtomicPass()); else addPass(createAtomicExpandPass(TM)); // Cmpxchg instructions are often used with a subsequent comparison to // determine whether it succeeded. We can exploit existing control-flow in // ldrex/strex loops to simplify this, but it needs tidying up. if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) addPass(createCFGSimplificationPass(-1, [this](const Function &F) { const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); })); TargetPassConfig::addIRPasses(); // Match interleaved memory accesses to ldN/stN intrinsics. if (TM->getOptLevel() != CodeGenOpt::None) addPass(createInterleavedAccessPass(TM)); } bool ARMPassConfig::addPreISel() { if ((TM->getOptLevel() != CodeGenOpt::None && EnableGlobalMerge == cl::BOU_UNSET) || EnableGlobalMerge == cl::BOU_TRUE) { // FIXME: This is using the thumb1 only constant value for // maximal global offset for merging globals. We may want // to look into using the old value for non-thumb1 code of // 4095 based on the TargetMachine, but this starts to become // tricky when doing code gen per function. bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && (EnableGlobalMerge == cl::BOU_UNSET); // Merging of extern globals is enabled by default on non-Mach-O as we // expect it to be generally either beneficial or harmless. On Mach-O it // is disabled as we emit the .subsections_via_symbols directive which // means that merging extern globals is not safe. bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, MergeExternalByDefault)); } return false; } bool ARMPassConfig::addInstSelector() { addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); return false; } void ARMPassConfig::addPreRegAlloc() { if (getOptLevel() != CodeGenOpt::None) { addPass(createMLxExpansionPass()); if (EnableARMLoadStoreOpt) addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); if (!DisableA15SDOptimization) addPass(createA15SDOptimizerPass()); } } void ARMPassConfig::addPreSched2() { if (getOptLevel() != CodeGenOpt::None) { if (EnableARMLoadStoreOpt) addPass(createARMLoadStoreOptimizationPass()); addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass)); } // Expand some pseudo instructions into multiple instructions to allow // proper scheduling. addPass(createARMExpandPseudoPass()); if (getOptLevel() != CodeGenOpt::None) { // in v8, IfConversion depends on Thumb instruction widths addPass(createThumb2SizeReductionPass([this](const Function &F) { return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); })); addPass(createIfConverter([this](const Function &F) { return !this->TM->getSubtarget<ARMSubtarget>(F).isThumb1Only(); })); } addPass(createThumb2ITBlockPass()); } void ARMPassConfig::addPreEmitPass() { addPass(createThumb2SizeReductionPass()); // Constant island pass work on unbundled instructions. addPass(createUnpackMachineBundles([this](const Function &F) { return this->TM->getSubtarget<ARMSubtarget>(F).isThumb2(); })); // Don't optimize barriers at -O0. if (getOptLevel() != CodeGenOpt::None) addPass(createARMOptimizeBarriersPass()); addPass(createARMConstantIslandPass()); }