//===----- HexagonMCDuplexInfo.cpp - Instruction bundle checking ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements duplexing of instructions to reduce code size // //===----------------------------------------------------------------------===// #include "HexagonBaseInfo.h" #include "MCTargetDesc/HexagonMCInstrInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <map> using namespace llvm; using namespace Hexagon; #define DEBUG_TYPE "hexagon-mcduplex-info" // pair table of subInstructions with opcodes static const std::pair<unsigned, unsigned> opcodeData[] = { std::make_pair((unsigned)V4_SA1_addi, 0), std::make_pair((unsigned)V4_SA1_addrx, 6144), std::make_pair((unsigned)V4_SA1_addsp, 3072), std::make_pair((unsigned)V4_SA1_and1, 4608), std::make_pair((unsigned)V4_SA1_clrf, 6768), std::make_pair((unsigned)V4_SA1_clrfnew, 6736), std::make_pair((unsigned)V4_SA1_clrt, 6752), std::make_pair((unsigned)V4_SA1_clrtnew, 6720), std::make_pair((unsigned)V4_SA1_cmpeqi, 6400), std::make_pair((unsigned)V4_SA1_combine0i, 7168), std::make_pair((unsigned)V4_SA1_combine1i, 7176), std::make_pair((unsigned)V4_SA1_combine2i, 7184), std::make_pair((unsigned)V4_SA1_combine3i, 7192), std::make_pair((unsigned)V4_SA1_combinerz, 7432), std::make_pair((unsigned)V4_SA1_combinezr, 7424), std::make_pair((unsigned)V4_SA1_dec, 4864), std::make_pair((unsigned)V4_SA1_inc, 4352), std::make_pair((unsigned)V4_SA1_seti, 2048), std::make_pair((unsigned)V4_SA1_setin1, 6656), std::make_pair((unsigned)V4_SA1_sxtb, 5376), std::make_pair((unsigned)V4_SA1_sxth, 5120), std::make_pair((unsigned)V4_SA1_tfr, 4096), std::make_pair((unsigned)V4_SA1_zxtb, 5888), std::make_pair((unsigned)V4_SA1_zxth, 5632), std::make_pair((unsigned)V4_SL1_loadri_io, 0), std::make_pair((unsigned)V4_SL1_loadrub_io, 4096), std::make_pair((unsigned)V4_SL2_deallocframe, 7936), std::make_pair((unsigned)V4_SL2_jumpr31, 8128), std::make_pair((unsigned)V4_SL2_jumpr31_f, 8133), std::make_pair((unsigned)V4_SL2_jumpr31_fnew, 8135), std::make_pair((unsigned)V4_SL2_jumpr31_t, 8132), std::make_pair((unsigned)V4_SL2_jumpr31_tnew, 8134), std::make_pair((unsigned)V4_SL2_loadrb_io, 4096), std::make_pair((unsigned)V4_SL2_loadrd_sp, 7680), std::make_pair((unsigned)V4_SL2_loadrh_io, 0), std::make_pair((unsigned)V4_SL2_loadri_sp, 7168), std::make_pair((unsigned)V4_SL2_loadruh_io, 2048), std::make_pair((unsigned)V4_SL2_return, 8000), std::make_pair((unsigned)V4_SL2_return_f, 8005), std::make_pair((unsigned)V4_SL2_return_fnew, 8007), std::make_pair((unsigned)V4_SL2_return_t, 8004), std::make_pair((unsigned)V4_SL2_return_tnew, 8006), std::make_pair((unsigned)V4_SS1_storeb_io, 4096), std::make_pair((unsigned)V4_SS1_storew_io, 0), std::make_pair((unsigned)V4_SS2_allocframe, 7168), std::make_pair((unsigned)V4_SS2_storebi0, 4608), std::make_pair((unsigned)V4_SS2_storebi1, 4864), std::make_pair((unsigned)V4_SS2_stored_sp, 2560), std::make_pair((unsigned)V4_SS2_storeh_io, 0), std::make_pair((unsigned)V4_SS2_storew_sp, 2048), std::make_pair((unsigned)V4_SS2_storewi0, 4096), std::make_pair((unsigned)V4_SS2_storewi1, 4352)}; static std::map<unsigned, unsigned> subinstOpcodeMap(std::begin(opcodeData), std::end(opcodeData)); bool HexagonMCInstrInfo::isDuplexPairMatch(unsigned Ga, unsigned Gb) { switch (Ga) { case HexagonII::HSIG_None: default: return false; case HexagonII::HSIG_L1: return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); case HexagonII::HSIG_L2: return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || Gb == HexagonII::HSIG_A); case HexagonII::HSIG_S1: return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); case HexagonII::HSIG_S2: return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || Gb == HexagonII::HSIG_A); case HexagonII::HSIG_A: return (Gb == HexagonII::HSIG_A); case HexagonII::HSIG_Compound: return (Gb == HexagonII::HSIG_Compound); } return false; } unsigned HexagonMCInstrInfo::iClassOfDuplexPair(unsigned Ga, unsigned Gb) { switch (Ga) { case HexagonII::HSIG_None: default: break; case HexagonII::HSIG_L1: switch (Gb) { default: break; case HexagonII::HSIG_L1: return 0; case HexagonII::HSIG_A: return 0x4; } case HexagonII::HSIG_L2: switch (Gb) { default: break; case HexagonII::HSIG_L1: return 0x1; case HexagonII::HSIG_L2: return 0x2; case HexagonII::HSIG_A: return 0x5; } case HexagonII::HSIG_S1: switch (Gb) { default: break; case HexagonII::HSIG_L1: return 0x8; case HexagonII::HSIG_L2: return 0x9; case HexagonII::HSIG_S1: return 0xA; case HexagonII::HSIG_A: return 0x6; } case HexagonII::HSIG_S2: switch (Gb) { default: break; case HexagonII::HSIG_L1: return 0xC; case HexagonII::HSIG_L2: return 0xD; case HexagonII::HSIG_S1: return 0xB; case HexagonII::HSIG_S2: return 0xE; case HexagonII::HSIG_A: return 0x7; } case HexagonII::HSIG_A: switch (Gb) { default: break; case HexagonII::HSIG_A: return 0x3; } case HexagonII::HSIG_Compound: switch (Gb) { case HexagonII::HSIG_Compound: return 0xFFFFFFFF; } } return 0xFFFFFFFF; } unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) { unsigned DstReg, PredReg, SrcReg, Src1Reg, Src2Reg; switch (MCI.getOpcode()) { default: return HexagonII::HSIG_None; // // Group L1: // // Rd = memw(Rs+#u4:2) // Rd = memub(Rs+#u4:0) case Hexagon::L2_loadri_io: DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); // Special case this one from Group L2. // Rd = memw(r29+#u5:2) if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg && inRange<5, 2>(MCI, 2)) { return HexagonII::HSIG_L2; } // Rd = memw(Rs+#u4:2) if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && inRange<4, 2>(MCI, 2)) { return HexagonII::HSIG_L1; } } break; case Hexagon::L2_loadrub_io: // Rd = memub(Rs+#u4:0) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && inRange<4>(MCI, 2)) { return HexagonII::HSIG_L1; } break; // // Group L2: // // Rd = memh/memuh(Rs+#u3:1) // Rd = memb(Rs+#u3:0) // Rd = memw(r29+#u5:2) - Handled above. // Rdd = memd(r29+#u5:3) // deallocframe // [if ([!]p0[.new])] dealloc_return // [if ([!]p0[.new])] jumpr r31 case Hexagon::L2_loadrh_io: case Hexagon::L2_loadruh_io: // Rd = memh/memuh(Rs+#u3:1) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && inRange<3, 1>(MCI, 2)) { return HexagonII::HSIG_L2; } break; case Hexagon::L2_loadrb_io: // Rd = memb(Rs+#u3:0) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && inRange<3>(MCI, 2)) { return HexagonII::HSIG_L2; } break; case Hexagon::L2_loadrd_io: // Rdd = memd(r29+#u5:3) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg && inRange<5, 3>(MCI, 2)) { return HexagonII::HSIG_L2; } break; case Hexagon::L4_return: case Hexagon::L2_deallocframe: return HexagonII::HSIG_L2; case Hexagon::EH_RETURN_JMPR: case Hexagon::J2_jumpr: case Hexagon::JMPret: // jumpr r31 // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>. DstReg = MCI.getOperand(0).getReg(); if (Hexagon::R31 == DstReg) { return HexagonII::HSIG_L2; } break; case Hexagon::J2_jumprt: case Hexagon::J2_jumprf: case Hexagon::J2_jumprtnew: case Hexagon::J2_jumprfnew: case Hexagon::JMPrett: case Hexagon::JMPretf: case Hexagon::JMPrettnew: case Hexagon::JMPretfnew: case Hexagon::JMPrettnewpt: case Hexagon::JMPretfnewpt: DstReg = MCI.getOperand(1).getReg(); SrcReg = MCI.getOperand(0).getReg(); // [if ([!]p0[.new])] jumpr r31 if ((HexagonMCInstrInfo::isPredReg(SrcReg) && (Hexagon::P0 == SrcReg)) && (Hexagon::R31 == DstReg)) { return HexagonII::HSIG_L2; } break; case Hexagon::L4_return_t: case Hexagon::L4_return_f: case Hexagon::L4_return_tnew_pnt: case Hexagon::L4_return_fnew_pnt: case Hexagon::L4_return_tnew_pt: case Hexagon::L4_return_fnew_pt: // [if ([!]p0[.new])] dealloc_return SrcReg = MCI.getOperand(0).getReg(); if (Hexagon::P0 == SrcReg) { return HexagonII::HSIG_L2; } break; // // Group S1: // // memw(Rs+#u4:2) = Rt // memb(Rs+#u4:0) = Rt case Hexagon::S2_storeri_io: // Special case this one from Group S2. // memw(r29+#u5:2) = Rt Src1Reg = MCI.getOperand(0).getReg(); Src2Reg = MCI.getOperand(2).getReg(); if (HexagonMCInstrInfo::isIntReg(Src1Reg) && HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && Hexagon::R29 == Src1Reg && inRange<5, 2>(MCI, 1)) { return HexagonII::HSIG_S2; } // memw(Rs+#u4:2) = Rt if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && inRange<4, 2>(MCI, 1)) { return HexagonII::HSIG_S1; } break; case Hexagon::S2_storerb_io: // memb(Rs+#u4:0) = Rt Src1Reg = MCI.getOperand(0).getReg(); Src2Reg = MCI.getOperand(2).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && inRange<4>(MCI, 1)) { return HexagonII::HSIG_S1; } break; // // Group S2: // // memh(Rs+#u3:1) = Rt // memw(r29+#u5:2) = Rt // memd(r29+#s6:3) = Rtt // memw(Rs+#u4:2) = #U1 // memb(Rs+#u4) = #U1 // allocframe(#u5:3) case Hexagon::S2_storerh_io: // memh(Rs+#u3:1) = Rt Src1Reg = MCI.getOperand(0).getReg(); Src2Reg = MCI.getOperand(2).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) && inRange<3, 1>(MCI, 1)) { return HexagonII::HSIG_S2; } break; case Hexagon::S2_storerd_io: // memd(r29+#s6:3) = Rtt Src1Reg = MCI.getOperand(0).getReg(); Src2Reg = MCI.getOperand(2).getReg(); if (HexagonMCInstrInfo::isDblRegForSubInst(Src2Reg) && HexagonMCInstrInfo::isIntReg(Src1Reg) && Hexagon::R29 == Src1Reg && inSRange<6, 3>(MCI, 1)) { return HexagonII::HSIG_S2; } break; case Hexagon::S4_storeiri_io: // memw(Rs+#u4:2) = #U1 Src1Reg = MCI.getOperand(0).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && inRange<4, 2>(MCI, 1) && inRange<1>(MCI, 2)) { return HexagonII::HSIG_S2; } break; case Hexagon::S4_storeirb_io: // memb(Rs+#u4) = #U1 Src1Reg = MCI.getOperand(0).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) && inRange<4>(MCI, 1) && inRange<1>(MCI, 2)) { return HexagonII::HSIG_S2; } break; case Hexagon::S2_allocframe: if (inRange<5, 3>(MCI, 0)) return HexagonII::HSIG_S2; break; // // Group A: // // Rx = add(Rx,#s7) // Rd = Rs // Rd = #u6 // Rd = #-1 // if ([!]P0[.new]) Rd = #0 // Rd = add(r29,#u6:2) // Rx = add(Rx,Rs) // P0 = cmp.eq(Rs,#u2) // Rdd = combine(#0,Rs) // Rdd = combine(Rs,#0) // Rdd = combine(#u2,#U2) // Rd = add(Rs,#1) // Rd = add(Rs,#-1) // Rd = sxth/sxtb/zxtb/zxth(Rs) // Rd = and(Rs,#1) case Hexagon::A2_addi: DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { // Rd = add(r29,#u6:2) if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg && inRange<6, 2>(MCI, 2)) { return HexagonII::HSIG_A; } // Rx = add(Rx,#s7) if (DstReg == SrcReg) { return HexagonII::HSIG_A; } // Rd = add(Rs,#1) // Rd = add(Rs,#-1) if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && (minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == -1)) { return HexagonII::HSIG_A; } } break; case Hexagon::A2_add: // Rx = add(Rx,Rs) DstReg = MCI.getOperand(0).getReg(); Src1Reg = MCI.getOperand(1).getReg(); Src2Reg = MCI.getOperand(2).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) && HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg)) { return HexagonII::HSIG_A; } break; case Hexagon::A2_andir: DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && (minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == 255)) { return HexagonII::HSIG_A; } break; case Hexagon::A2_tfr: // Rd = Rs DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) { return HexagonII::HSIG_A; } break; case Hexagon::A2_tfrsi: DstReg = MCI.getOperand(0).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { return HexagonII::HSIG_A; } break; case Hexagon::C2_cmoveit: case Hexagon::C2_cmovenewit: case Hexagon::C2_cmoveif: case Hexagon::C2_cmovenewif: // if ([!]P0[.new]) Rd = #0 // Actual form: // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>; DstReg = MCI.getOperand(0).getReg(); // Rd PredReg = MCI.getOperand(1).getReg(); // P0 if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && Hexagon::P0 == PredReg && minConstant(MCI, 2) == 0) { return HexagonII::HSIG_A; } break; case Hexagon::C2_cmpeqi: // P0 = cmp.eq(Rs,#u2) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (Hexagon::P0 == DstReg && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && inRange<2>(MCI, 2)) { return HexagonII::HSIG_A; } break; case Hexagon::A2_combineii: case Hexagon::A4_combineii: // Rdd = combine(#u2,#U2) DstReg = MCI.getOperand(0).getReg(); if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && inRange<2>(MCI, 1) && inRange<2>(MCI, 2)) { return HexagonII::HSIG_A; } break; case Hexagon::A4_combineri: // Rdd = combine(Rs,#0) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && minConstant(MCI, 2) == 0) { return HexagonII::HSIG_A; } break; case Hexagon::A4_combineir: // Rdd = combine(#0,Rs) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(2).getReg(); if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) && minConstant(MCI, 1) == 0) { return HexagonII::HSIG_A; } break; case Hexagon::A2_sxtb: case Hexagon::A2_sxth: case Hexagon::A2_zxtb: case Hexagon::A2_zxth: // Rd = sxth/sxtb/zxtb/zxth(Rs) DstReg = MCI.getOperand(0).getReg(); SrcReg = MCI.getOperand(1).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) { return HexagonII::HSIG_A; } break; } return HexagonII::HSIG_None; } bool HexagonMCInstrInfo::subInstWouldBeExtended(MCInst const &potentialDuplex) { unsigned DstReg, SrcReg; switch (potentialDuplex.getOpcode()) { case Hexagon::A2_addi: // testing for case of: Rx = add(Rx,#s7) DstReg = potentialDuplex.getOperand(0).getReg(); SrcReg = potentialDuplex.getOperand(1).getReg(); if (DstReg == SrcReg && HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { int64_t Value; if (!potentialDuplex.getOperand(2).getExpr()->evaluateAsAbsolute(Value)) return true; if (!isShiftedInt<7, 0>(Value)) return true; } break; case Hexagon::A2_tfrsi: DstReg = potentialDuplex.getOperand(0).getReg(); if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) { int64_t Value; if (!potentialDuplex.getOperand(1).getExpr()->evaluateAsAbsolute(Value)) return true; // Check for case of Rd = #-1. if (Value == -1) return false; // Check for case of Rd = #u6. if (!isShiftedUInt<6, 0>(Value)) return true; } break; default: break; } return false; } /// non-Symmetrical. See if these two instructions are fit for duplex pair. bool HexagonMCInstrInfo::isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa, bool ExtendedA, MCInst const &MIb, bool ExtendedB, bool bisReversable) { // Slot 1 cannot be extended in duplexes PRM 10.5 if (ExtendedA) return false; // Only A2_addi and A2_tfrsi can be extended in duplex form PRM 10.5 if (ExtendedB) { unsigned Opcode = MIb.getOpcode(); if ((Opcode != Hexagon::A2_addi) && (Opcode != Hexagon::A2_tfrsi)) return false; } unsigned MIaG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIa), MIbG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIb); // If a duplex contains 2 insns in the same group, the insns must be // ordered such that the numerically smaller opcode is in slot 1. if ((MIaG != HexagonII::HSIG_None) && (MIaG == MIbG) && bisReversable) { MCInst SubInst0 = HexagonMCInstrInfo::deriveSubInst(MIa); MCInst SubInst1 = HexagonMCInstrInfo::deriveSubInst(MIb); unsigned zeroedSubInstS0 = subinstOpcodeMap.find(SubInst0.getOpcode())->second; unsigned zeroedSubInstS1 = subinstOpcodeMap.find(SubInst1.getOpcode())->second; if (zeroedSubInstS0 < zeroedSubInstS1) // subinstS0 (maps to slot 0) must be greater than // subinstS1 (maps to slot 1) return false; } // allocframe must always be in slot 0 if (MIb.getOpcode() == Hexagon::S2_allocframe) return false; if ((MIaG != HexagonII::HSIG_None) && (MIbG != HexagonII::HSIG_None)) { // Prevent 2 instructions with extenders from duplexing // Note that MIb (slot1) can be extended and MIa (slot0) // can never be extended if (subInstWouldBeExtended(MIa)) return false; // If duplexing produces an extender, but the original did not // have an extender, do not duplex. if (subInstWouldBeExtended(MIb) && !ExtendedB) return false; } // If jumpr r31 appears, it must be in slot 0, and never slot 1 (MIb). if (MIbG == HexagonII::HSIG_L2) { if ((MIb.getNumOperands() > 1) && MIb.getOperand(1).isReg() && (MIb.getOperand(1).getReg() == Hexagon::R31)) return false; if ((MIb.getNumOperands() > 0) && MIb.getOperand(0).isReg() && (MIb.getOperand(0).getReg() == Hexagon::R31)) return false; } // If a store appears, it must be in slot 0 (MIa) 1st, and then slot 1 (MIb); // therefore, not duplexable if slot 1 is a store, and slot 0 is not. if ((MIbG == HexagonII::HSIG_S1) || (MIbG == HexagonII::HSIG_S2)) { if ((MIaG != HexagonII::HSIG_S1) && (MIaG != HexagonII::HSIG_S2)) return false; } return (isDuplexPairMatch(MIaG, MIbG)); } /// Symmetrical. See if these two instructions are fit for duplex pair. bool HexagonMCInstrInfo::isDuplexPair(MCInst const &MIa, MCInst const &MIb) { unsigned MIaG = getDuplexCandidateGroup(MIa), MIbG = getDuplexCandidateGroup(MIb); return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG)); } inline static void addOps(MCInst &subInstPtr, MCInst const &Inst, unsigned opNum) { if (Inst.getOperand(opNum).isReg()) { switch (Inst.getOperand(opNum).getReg()) { default: llvm_unreachable("Not Duplexable Register"); break; case Hexagon::R0: case Hexagon::R1: case Hexagon::R2: case Hexagon::R3: case Hexagon::R4: case Hexagon::R5: case Hexagon::R6: case Hexagon::R7: case Hexagon::D0: case Hexagon::D1: case Hexagon::D2: case Hexagon::D3: case Hexagon::R16: case Hexagon::R17: case Hexagon::R18: case Hexagon::R19: case Hexagon::R20: case Hexagon::R21: case Hexagon::R22: case Hexagon::R23: case Hexagon::D8: case Hexagon::D9: case Hexagon::D10: case Hexagon::D11: subInstPtr.addOperand(Inst.getOperand(opNum)); break; } } else subInstPtr.addOperand(Inst.getOperand(opNum)); } MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) { MCInst Result; bool Absolute; int64_t Value; switch (Inst.getOpcode()) { default: // dbgs() << "opcode: "<< Inst->getOpcode() << "\n"; llvm_unreachable("Unimplemented subinstruction \n"); break; case Hexagon::A2_addi: Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value); assert(Absolute);(void)Absolute; if (Value == 1) { Result.setOpcode(Hexagon::V4_SA1_inc); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; } // 1,2 SUBInst $Rd = add($Rs, #1) else if (Value == -1) { Result.setOpcode(Hexagon::V4_SA1_dec); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; } // 1,2 SUBInst $Rd = add($Rs,#-1) else if (Inst.getOperand(1).getReg() == Hexagon::R29) { Result.setOpcode(Hexagon::V4_SA1_addsp); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; } // 1,3 SUBInst $Rd = add(r29, #$u6_2) else { Result.setOpcode(Hexagon::V4_SA1_addi); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; } // 1,2,3 SUBInst $Rx = add($Rx, #$s7) case Hexagon::A2_add: Result.setOpcode(Hexagon::V4_SA1_addrx); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst $Rx = add($_src_, $Rs) case Hexagon::S2_allocframe: Result.setOpcode(Hexagon::V4_SS2_allocframe); addOps(Result, Inst, 0); break; // 1 SUBInst allocframe(#$u5_3) case Hexagon::A2_andir: if (minConstant(Inst, 2) == 255) { Result.setOpcode(Hexagon::V4_SA1_zxtb); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 $Rd = and($Rs, #255) } else { Result.setOpcode(Hexagon::V4_SA1_and1); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst $Rd = and($Rs, #1) } case Hexagon::C2_cmpeqi: Result.setOpcode(Hexagon::V4_SA1_cmpeqi); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 2,3 SUBInst p0 = cmp.eq($Rs, #$u2) case Hexagon::A4_combineii: case Hexagon::A2_combineii: Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value); assert(Absolute);(void)Absolute; if (Value == 1) { Result.setOpcode(Hexagon::V4_SA1_combine1i); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; // 1,3 SUBInst $Rdd = combine(#1, #$u2) } if (Value == 3) { Result.setOpcode(Hexagon::V4_SA1_combine3i); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; // 1,3 SUBInst $Rdd = combine(#3, #$u2) } if (Value == 0) { Result.setOpcode(Hexagon::V4_SA1_combine0i); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; // 1,3 SUBInst $Rdd = combine(#0, #$u2) } if (Value == 2) { Result.setOpcode(Hexagon::V4_SA1_combine2i); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; // 1,3 SUBInst $Rdd = combine(#2, #$u2) } case Hexagon::A4_combineir: Result.setOpcode(Hexagon::V4_SA1_combinezr); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; // 1,3 SUBInst $Rdd = combine(#0, $Rs) case Hexagon::A4_combineri: Result.setOpcode(Hexagon::V4_SA1_combinerz); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst $Rdd = combine($Rs, #0) case Hexagon::L4_return_tnew_pnt: case Hexagon::L4_return_tnew_pt: Result.setOpcode(Hexagon::V4_SL2_return_tnew); break; // none SUBInst if (p0.new) dealloc_return:nt case Hexagon::L4_return_fnew_pnt: case Hexagon::L4_return_fnew_pt: Result.setOpcode(Hexagon::V4_SL2_return_fnew); break; // none SUBInst if (!p0.new) dealloc_return:nt case Hexagon::L4_return_f: Result.setOpcode(Hexagon::V4_SL2_return_f); break; // none SUBInst if (!p0) dealloc_return case Hexagon::L4_return_t: Result.setOpcode(Hexagon::V4_SL2_return_t); break; // none SUBInst if (p0) dealloc_return case Hexagon::L4_return: Result.setOpcode(Hexagon::V4_SL2_return); break; // none SUBInst dealloc_return case Hexagon::L2_deallocframe: Result.setOpcode(Hexagon::V4_SL2_deallocframe); break; // none SUBInst deallocframe case Hexagon::EH_RETURN_JMPR: case Hexagon::J2_jumpr: case Hexagon::JMPret: Result.setOpcode(Hexagon::V4_SL2_jumpr31); break; // none SUBInst jumpr r31 case Hexagon::J2_jumprf: case Hexagon::JMPretf: Result.setOpcode(Hexagon::V4_SL2_jumpr31_f); break; // none SUBInst if (!p0) jumpr r31 case Hexagon::J2_jumprfnew: case Hexagon::JMPretfnewpt: case Hexagon::JMPretfnew: Result.setOpcode(Hexagon::V4_SL2_jumpr31_fnew); break; // none SUBInst if (!p0.new) jumpr:nt r31 case Hexagon::J2_jumprt: case Hexagon::JMPrett: Result.setOpcode(Hexagon::V4_SL2_jumpr31_t); break; // none SUBInst if (p0) jumpr r31 case Hexagon::J2_jumprtnew: case Hexagon::JMPrettnewpt: case Hexagon::JMPrettnew: Result.setOpcode(Hexagon::V4_SL2_jumpr31_tnew); break; // none SUBInst if (p0.new) jumpr:nt r31 case Hexagon::L2_loadrb_io: Result.setOpcode(Hexagon::V4_SL2_loadrb_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst $Rd = memb($Rs + #$u3_0) case Hexagon::L2_loadrd_io: Result.setOpcode(Hexagon::V4_SL2_loadrd_sp); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; // 1,3 SUBInst $Rdd = memd(r29 + #$u5_3) case Hexagon::L2_loadrh_io: Result.setOpcode(Hexagon::V4_SL2_loadrh_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst $Rd = memh($Rs + #$u3_1) case Hexagon::L2_loadrub_io: Result.setOpcode(Hexagon::V4_SL1_loadrub_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst $Rd = memub($Rs + #$u4_0) case Hexagon::L2_loadruh_io: Result.setOpcode(Hexagon::V4_SL2_loadruh_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst $Rd = memuh($Rs + #$u3_1) case Hexagon::L2_loadri_io: if (Inst.getOperand(1).getReg() == Hexagon::R29) { Result.setOpcode(Hexagon::V4_SL2_loadri_sp); addOps(Result, Inst, 0); addOps(Result, Inst, 2); break; // 2 1,3 SUBInst $Rd = memw(r29 + #$u5_2) } else { Result.setOpcode(Hexagon::V4_SL1_loadri_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst $Rd = memw($Rs + #$u4_2) } case Hexagon::S4_storeirb_io: Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value); assert(Absolute);(void)Absolute; if (Value == 0) { Result.setOpcode(Hexagon::V4_SS2_storebi0); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst memb($Rs + #$u4_0)=#0 } else if (Value == 1) { Result.setOpcode(Hexagon::V4_SS2_storebi1); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 2 1,2 SUBInst memb($Rs + #$u4_0)=#1 } case Hexagon::S2_storerb_io: Result.setOpcode(Hexagon::V4_SS1_storeb_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt case Hexagon::S2_storerd_io: Result.setOpcode(Hexagon::V4_SS2_stored_sp); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 2,3 SUBInst memd(r29 + #$s6_3) = $Rtt case Hexagon::S2_storerh_io: Result.setOpcode(Hexagon::V4_SS2_storeh_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt case Hexagon::S4_storeiri_io: Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value); assert(Absolute);(void)Absolute; if (Value == 0) { Result.setOpcode(Hexagon::V4_SS2_storewi0); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#0 } else if (Value == 1) { Result.setOpcode(Hexagon::V4_SS2_storewi1); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#1 } else if (Inst.getOperand(0).getReg() == Hexagon::R29) { Result.setOpcode(Hexagon::V4_SS2_storew_sp); addOps(Result, Inst, 1); addOps(Result, Inst, 2); break; // 1 2,3 SUBInst memw(r29 + #$u5_2) = $Rt } case Hexagon::S2_storeri_io: if (Inst.getOperand(0).getReg() == Hexagon::R29) { Result.setOpcode(Hexagon::V4_SS2_storew_sp); addOps(Result, Inst, 1); addOps(Result, Inst, 2); // 1,2,3 SUBInst memw(sp + #$u5_2) = $Rt } else { Result.setOpcode(Hexagon::V4_SS1_storew_io); addOps(Result, Inst, 0); addOps(Result, Inst, 1); addOps(Result, Inst, 2); // 1,2,3 SUBInst memw($Rs + #$u4_2) = $Rt } break; case Hexagon::A2_sxtb: Result.setOpcode(Hexagon::V4_SA1_sxtb); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst $Rd = sxtb($Rs) case Hexagon::A2_sxth: Result.setOpcode(Hexagon::V4_SA1_sxth); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst $Rd = sxth($Rs) case Hexagon::A2_tfr: Result.setOpcode(Hexagon::V4_SA1_tfr); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst $Rd = $Rs case Hexagon::C2_cmovenewif: Result.setOpcode(Hexagon::V4_SA1_clrfnew); addOps(Result, Inst, 0); break; // 2 SUBInst if (!p0.new) $Rd = #0 case Hexagon::C2_cmovenewit: Result.setOpcode(Hexagon::V4_SA1_clrtnew); addOps(Result, Inst, 0); break; // 2 SUBInst if (p0.new) $Rd = #0 case Hexagon::C2_cmoveif: Result.setOpcode(Hexagon::V4_SA1_clrf); addOps(Result, Inst, 0); break; // 2 SUBInst if (!p0) $Rd = #0 case Hexagon::C2_cmoveit: Result.setOpcode(Hexagon::V4_SA1_clrt); addOps(Result, Inst, 0); break; // 2 SUBInst if (p0) $Rd = #0 case Hexagon::A2_tfrsi: Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value); if (Absolute && Value == -1) { Result.setOpcode(Hexagon::V4_SA1_setin1); addOps(Result, Inst, 0); break; // 2 1 SUBInst $Rd = #-1 } else { Result.setOpcode(Hexagon::V4_SA1_seti); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst $Rd = #$u6 } case Hexagon::A2_zxtb: Result.setOpcode(Hexagon::V4_SA1_zxtb); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 $Rd = and($Rs, #255) case Hexagon::A2_zxth: Result.setOpcode(Hexagon::V4_SA1_zxth); addOps(Result, Inst, 0); addOps(Result, Inst, 1); break; // 1,2 SUBInst $Rd = zxth($Rs) } return Result; } static bool isStoreInst(unsigned opCode) { switch (opCode) { case Hexagon::S2_storeri_io: case Hexagon::S2_storerb_io: case Hexagon::S2_storerh_io: case Hexagon::S2_storerd_io: case Hexagon::S4_storeiri_io: case Hexagon::S4_storeirb_io: case Hexagon::S2_allocframe: return true; default: return false; } } SmallVector<DuplexCandidate, 8> HexagonMCInstrInfo::getDuplexPossibilties(MCInstrInfo const &MCII, MCInst const &MCB) { assert(isBundle(MCB)); SmallVector<DuplexCandidate, 8> duplexToTry; // Use an "order matters" version of isDuplexPair. unsigned numInstrInPacket = MCB.getNumOperands(); for (unsigned distance = 1; distance < numInstrInPacket; ++distance) { for (unsigned j = HexagonMCInstrInfo::bundleInstructionsOffset, k = j + distance; (j < numInstrInPacket) && (k < numInstrInPacket); ++j, ++k) { // Check if reversable. bool bisReversable = true; if (isStoreInst(MCB.getOperand(j).getInst()->getOpcode()) && isStoreInst(MCB.getOperand(k).getInst()->getOpcode())) { DEBUG(dbgs() << "skip out of order write pair: " << k << "," << j << "\n"); bisReversable = false; } if (HexagonMCInstrInfo::isMemReorderDisabled(MCB)) // }:mem_noshuf bisReversable = false; // Try in order. if (isOrderedDuplexPair( MCII, *MCB.getOperand(k).getInst(), HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1), *MCB.getOperand(j).getInst(), HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1), bisReversable)) { // Get iClass. unsigned iClass = iClassOfDuplexPair( getDuplexCandidateGroup(*MCB.getOperand(k).getInst()), getDuplexCandidateGroup(*MCB.getOperand(j).getInst())); // Save off pairs for duplex checking. duplexToTry.push_back(DuplexCandidate(j, k, iClass)); DEBUG(dbgs() << "adding pair: " << j << "," << k << ":" << MCB.getOperand(j).getInst()->getOpcode() << "," << MCB.getOperand(k).getInst()->getOpcode() << "\n"); continue; } else { DEBUG(dbgs() << "skipping pair: " << j << "," << k << ":" << MCB.getOperand(j).getInst()->getOpcode() << "," << MCB.getOperand(k).getInst()->getOpcode() << "\n"); } // Try reverse. if (bisReversable) { if (isOrderedDuplexPair( MCII, *MCB.getOperand(j).getInst(), HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1), *MCB.getOperand(k).getInst(), HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1), bisReversable)) { // Get iClass. unsigned iClass = iClassOfDuplexPair( getDuplexCandidateGroup(*MCB.getOperand(j).getInst()), getDuplexCandidateGroup(*MCB.getOperand(k).getInst())); // Save off pairs for duplex checking. duplexToTry.push_back(DuplexCandidate(k, j, iClass)); DEBUG(dbgs() << "adding pair:" << k << "," << j << ":" << MCB.getOperand(j).getInst()->getOpcode() << "," << MCB.getOperand(k).getInst()->getOpcode() << "\n"); } else { DEBUG(dbgs() << "skipping pair: " << k << "," << j << ":" << MCB.getOperand(j).getInst()->getOpcode() << "," << MCB.getOperand(k).getInst()->getOpcode() << "\n"); } } } } return duplexToTry; }