//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MapValue function, which is shared by various parts of // the lib/Transforms/Utils library. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/ValueMapper.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" using namespace llvm; // Out of line method to get vtable etc for class. void ValueMapTypeRemapper::anchor() {} void ValueMaterializer::anchor() {} void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) { } Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { ValueToValueMapTy::iterator I = VM.find(V); // If the value already exists in the map, use it. if (I != VM.end() && I->second) return I->second; // If we have a materializer and it can materialize a value, use that. if (Materializer) { if (Value *NewV = Materializer->materializeDeclFor(const_cast<Value *>(V))) { VM[V] = NewV; if (auto *NewGV = dyn_cast<GlobalValue>(NewV)) Materializer->materializeInitFor( NewGV, const_cast<GlobalValue *>(cast<GlobalValue>(V))); return NewV; } } // Global values do not need to be seeded into the VM if they // are using the identity mapping. if (isa<GlobalValue>(V)) { if (Flags & RF_NullMapMissingGlobalValues) { assert(!(Flags & RF_IgnoreMissingEntries) && "Illegal to specify both RF_NullMapMissingGlobalValues and " "RF_IgnoreMissingEntries"); return nullptr; } return VM[V] = const_cast<Value*>(V); } if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { // Inline asm may need *type* remapping. FunctionType *NewTy = IA->getFunctionType(); if (TypeMapper) { NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); if (NewTy != IA->getFunctionType()) V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), IA->hasSideEffects(), IA->isAlignStack()); } return VM[V] = const_cast<Value*>(V); } if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { const Metadata *MD = MDV->getMetadata(); // If this is a module-level metadata and we know that nothing at the module // level is changing, then use an identity mapping. if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges)) return VM[V] = const_cast<Value *>(V); auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer); if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries))) return VM[V] = const_cast<Value *>(V); // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert((MappedMD || (Flags & RF_NullMapMissingGlobalValues)) && // "Referenced metadata value not in value map"); return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); } // Okay, this either must be a constant (which may or may not be mappable) or // is something that is not in the mapping table. Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); if (!C) return nullptr; if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { Function *F = cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer)); BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, Flags, TypeMapper, Materializer)); return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); } // Otherwise, we have some other constant to remap. Start by checking to see // if all operands have an identity remapping. unsigned OpNo = 0, NumOperands = C->getNumOperands(); Value *Mapped = nullptr; for (; OpNo != NumOperands; ++OpNo) { Value *Op = C->getOperand(OpNo); Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer); if (Mapped != C) break; } // See if the type mapper wants to remap the type as well. Type *NewTy = C->getType(); if (TypeMapper) NewTy = TypeMapper->remapType(NewTy); // If the result type and all operands match up, then just insert an identity // mapping. if (OpNo == NumOperands && NewTy == C->getType()) return VM[V] = C; // Okay, we need to create a new constant. We've already processed some or // all of the operands, set them all up now. SmallVector<Constant*, 8> Ops; Ops.reserve(NumOperands); for (unsigned j = 0; j != OpNo; ++j) Ops.push_back(cast<Constant>(C->getOperand(j))); // If one of the operands mismatch, push it and the other mapped operands. if (OpNo != NumOperands) { Ops.push_back(cast<Constant>(Mapped)); // Map the rest of the operands that aren't processed yet. for (++OpNo; OpNo != NumOperands; ++OpNo) Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, Flags, TypeMapper, Materializer)); } Type *NewSrcTy = nullptr; if (TypeMapper) if (auto *GEPO = dyn_cast<GEPOperator>(C)) NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); if (isa<ConstantArray>(C)) return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); if (isa<ConstantStruct>(C)) return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); if (isa<ConstantVector>(C)) return VM[V] = ConstantVector::get(Ops); // If this is a no-operand constant, it must be because the type was remapped. if (isa<UndefValue>(C)) return VM[V] = UndefValue::get(NewTy); if (isa<ConstantAggregateZero>(C)) return VM[V] = ConstantAggregateZero::get(NewTy); assert(isa<ConstantPointerNull>(C)); return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); } static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key, Metadata *Val, ValueMaterializer *Materializer, RemapFlags Flags) { VM.MD()[Key].reset(Val); if (Materializer && !(Flags & RF_HaveUnmaterializedMetadata)) { auto *N = dyn_cast_or_null<MDNode>(Val); // Need to invoke this once we have non-temporary MD. if (!N || !N->isTemporary()) Materializer->replaceTemporaryMetadata(Key, Val); } return Val; } static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD, ValueMaterializer *Materializer, RemapFlags Flags) { return mapToMetadata(VM, MD, const_cast<Metadata *>(MD), Materializer, Flags); } static Metadata *MapMetadataImpl(const Metadata *MD, SmallVectorImpl<MDNode *> &DistinctWorklist, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer); static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl<MDNode *> &DistinctWorklist, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { if (!Op) return nullptr; if (Materializer && !Materializer->isMetadataNeeded(Op)) return nullptr; if (Metadata *MappedOp = MapMetadataImpl(Op, DistinctWorklist, VM, Flags, TypeMapper, Materializer)) return MappedOp; // Use identity map if MappedOp is null and we can ignore missing entries. if (Flags & RF_IgnoreMissingEntries) return Op; // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert((Flags & RF_NullMapMissingGlobalValues) && // "Referenced metadata not in value map!"); return nullptr; } /// Resolve uniquing cycles involving the given metadata. static void resolveCycles(Metadata *MD, bool MDMaterialized) { if (auto *N = dyn_cast_or_null<MDNode>(MD)) { if (!MDMaterialized && N->isTemporary()) return; if (!N->isResolved()) N->resolveCycles(MDMaterialized); } } /// Remap the operands of an MDNode. /// /// If \c Node is temporary, uniquing cycles are ignored. If \c Node is /// distinct, uniquing cycles are resolved as they're found. /// /// \pre \c Node.isDistinct() or \c Node.isTemporary(). static bool remapOperands(MDNode &Node, SmallVectorImpl<MDNode *> &DistinctWorklist, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(!Node.isUniqued() && "Expected temporary or distinct node"); const bool IsDistinct = Node.isDistinct(); bool AnyChanged = false; for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) { Metadata *Old = Node.getOperand(I); Metadata *New = mapMetadataOp(Old, DistinctWorklist, VM, Flags, TypeMapper, Materializer); if (Old != New) { AnyChanged = true; Node.replaceOperandWith(I, New); // Resolve uniquing cycles underneath distinct nodes on the fly so they // don't infect later operands. if (IsDistinct) resolveCycles(New, !(Flags & RF_HaveUnmaterializedMetadata)); } } return AnyChanged; } /// Map a distinct MDNode. /// /// Whether distinct nodes change is independent of their operands. If \a /// RF_MoveDistinctMDs, then they are reused, and their operands remapped in /// place; effectively, they're moved from one graph to another. Otherwise, /// they're cloned/duplicated, and the new copy's operands are remapped. static Metadata *mapDistinctNode(const MDNode *Node, SmallVectorImpl<MDNode *> &DistinctWorklist, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(Node->isDistinct() && "Expected distinct node"); MDNode *NewMD; if (Flags & RF_MoveDistinctMDs) NewMD = const_cast<MDNode *>(Node); else NewMD = MDNode::replaceWithDistinct(Node->clone()); // Remap operands later. DistinctWorklist.push_back(NewMD); return mapToMetadata(VM, Node, NewMD, Materializer, Flags); } /// \brief Map a uniqued MDNode. /// /// Uniqued nodes may not need to be recreated (they may map to themselves). static Metadata *mapUniquedNode(const MDNode *Node, SmallVectorImpl<MDNode *> &DistinctWorklist, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isUniqued()) && "Expected uniqued node"); // Create a temporary node and map it upfront in case we have a uniquing // cycle. If necessary, this mapping will get updated by RAUW logic before // returning. auto ClonedMD = Node->clone(); mapToMetadata(VM, Node, ClonedMD.get(), Materializer, Flags); if (!remapOperands(*ClonedMD, DistinctWorklist, VM, Flags, TypeMapper, Materializer)) { // No operands changed, so use the original. ClonedMD->replaceAllUsesWith(const_cast<MDNode *>(Node)); // Even though replaceAllUsesWith would have replaced the value map // entry, we need to explictly map with the final non-temporary node // to replace any temporary metadata via the callback. return mapToSelf(VM, Node, Materializer, Flags); } // Uniquify the cloned node. Explicitly map it with the final non-temporary // node so that replacement of temporary metadata via the callback occurs. return mapToMetadata(VM, Node, MDNode::replaceWithUniqued(std::move(ClonedMD)), Materializer, Flags); } static Metadata *MapMetadataImpl(const Metadata *MD, SmallVectorImpl<MDNode *> &DistinctWorklist, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { // If the value already exists in the map, use it. if (Metadata *NewMD = VM.MD().lookup(MD).get()) return NewMD; if (isa<MDString>(MD)) return mapToSelf(VM, MD, Materializer, Flags); if (isa<ConstantAsMetadata>(MD)) if ((Flags & RF_NoModuleLevelChanges)) return mapToSelf(VM, MD, Materializer, Flags); if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) { Value *MappedV = MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer); if (VMD->getValue() == MappedV || (!MappedV && (Flags & RF_IgnoreMissingEntries))) return mapToSelf(VM, MD, Materializer, Flags); // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert((MappedV || (Flags & RF_NullMapMissingGlobalValues)) && // "Referenced metadata not in value map!"); if (MappedV) return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV), Materializer, Flags); return nullptr; } // Note: this cast precedes the Flags check so we always get its associated // assertion. const MDNode *Node = cast<MDNode>(MD); // If this is a module-level metadata and we know that nothing at the // module level is changing, then use an identity mapping. if (Flags & RF_NoModuleLevelChanges) return mapToSelf(VM, MD, Materializer, Flags); // Require resolved nodes whenever metadata might be remapped. assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isResolved()) && "Unexpected unresolved node"); if (Materializer && Node->isTemporary()) { assert(Flags & RF_HaveUnmaterializedMetadata); Metadata *TempMD = Materializer->mapTemporaryMetadata(const_cast<Metadata *>(MD)); // If the above callback returned an existing temporary node, use it // instead of the current temporary node. This happens when earlier // function importing passes already created and saved a temporary // metadata node for the same value id. if (TempMD) { mapToMetadata(VM, MD, TempMD, Materializer, Flags); return TempMD; } } if (Node->isDistinct()) return mapDistinctNode(Node, DistinctWorklist, VM, Flags, TypeMapper, Materializer); return mapUniquedNode(Node, DistinctWorklist, VM, Flags, TypeMapper, Materializer); } Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { SmallVector<MDNode *, 8> DistinctWorklist; Metadata *NewMD = MapMetadataImpl(MD, DistinctWorklist, VM, Flags, TypeMapper, Materializer); // When there are no module-level changes, it's possible that the metadata // graph has temporaries. Skip the logic to resolve cycles, since it's // unnecessary (and invalid) in that case. if (Flags & RF_NoModuleLevelChanges) return NewMD; // Resolve cycles involving the entry metadata. resolveCycles(NewMD, !(Flags & RF_HaveUnmaterializedMetadata)); // Remap the operands of distinct MDNodes. while (!DistinctWorklist.empty()) remapOperands(*DistinctWorklist.pop_back_val(), DistinctWorklist, VM, Flags, TypeMapper, Materializer); return NewMD; } MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags, TypeMapper, Materializer)); } /// RemapInstruction - Convert the instruction operands from referencing the /// current values into those specified by VMap. /// void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer){ // Remap operands. for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer); // If we aren't ignoring missing entries, assert that something happened. if (V) *op = V; else assert((Flags & RF_IgnoreMissingEntries) && "Referenced value not in value map!"); } // Remap phi nodes' incoming blocks. if (PHINode *PN = dyn_cast<PHINode>(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); // If we aren't ignoring missing entries, assert that something happened. if (V) PN->setIncomingBlock(i, cast<BasicBlock>(V)); else assert((Flags & RF_IgnoreMissingEntries) && "Referenced block not in value map!"); } } // Remap attached metadata. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; I->getAllMetadata(MDs); for (const auto &MI : MDs) { MDNode *Old = MI.second; MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer); if (New != Old) I->setMetadata(MI.first, New); } if (!TypeMapper) return; // If the instruction's type is being remapped, do so now. if (auto CS = CallSite(I)) { SmallVector<Type *, 3> Tys; FunctionType *FTy = CS.getFunctionType(); Tys.reserve(FTy->getNumParams()); for (Type *Ty : FTy->params()) Tys.push_back(TypeMapper->remapType(Ty)); CS.mutateFunctionType(FunctionType::get( TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); return; } if (auto *AI = dyn_cast<AllocaInst>(I)) AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { GEP->setSourceElementType( TypeMapper->remapType(GEP->getSourceElementType())); GEP->setResultElementType( TypeMapper->remapType(GEP->getResultElementType())); } I->mutateType(TypeMapper->remapType(I->getType())); }