//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // CodeEmitterGen uses the descriptions of instructions and their fields to // construct an automated code emitter: a function that, given a MachineInstr, // returns the (currently, 32-bit unsigned) value of the instruction. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <map> #include <string> #include <vector> using namespace llvm; namespace { class CodeEmitterGen { RecordKeeper &Records; public: CodeEmitterGen(RecordKeeper &R) : Records(R) {} void run(raw_ostream &o); private: int getVariableBit(const std::string &VarName, BitsInit *BI, int bit); std::string getInstructionCase(Record *R, CodeGenTarget &Target); void AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, unsigned &NumberedOp, std::set<unsigned> &NamedOpIndices, std::string &Case, CodeGenTarget &Target); }; // If the VarBitInit at position 'bit' matches the specified variable then // return the variable bit position. Otherwise return -1. int CodeEmitterGen::getVariableBit(const std::string &VarName, BitsInit *BI, int bit) { if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) { if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar())) if (VI->getName() == VarName) return VBI->getBitNum(); } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) { if (VI->getName() == VarName) return 0; } return -1; } void CodeEmitterGen:: AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, unsigned &NumberedOp, std::set<unsigned> &NamedOpIndices, std::string &Case, CodeGenTarget &Target) { CodeGenInstruction &CGI = Target.getInstruction(R); // Determine if VarName actually contributes to the Inst encoding. int bit = BI->getNumBits()-1; // Scan for a bit that this contributed to. for (; bit >= 0; ) { if (getVariableBit(VarName, BI, bit) != -1) break; --bit; } // If we found no bits, ignore this value, otherwise emit the call to get the // operand encoding. if (bit < 0) return; // If the operand matches by name, reference according to that // operand number. Non-matching operands are assumed to be in // order. unsigned OpIdx; if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { // Get the machine operand number for the indicated operand. OpIdx = CGI.Operands[OpIdx].MIOperandNo; assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) && "Explicitly used operand also marked as not emitted!"); } else { unsigned NumberOps = CGI.Operands.size(); /// If this operand is not supposed to be emitted by the /// generated emitter, skip it. while (NumberedOp < NumberOps && (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || (!NamedOpIndices.empty() && NamedOpIndices.count( CGI.Operands.getSubOperandNumber(NumberedOp).first)))) { ++NumberedOp; if (NumberedOp >= CGI.Operands.back().MIOperandNo + CGI.Operands.back().MINumOperands) { errs() << "Too few operands in record " << R->getName() << " (no match for variable " << VarName << "):\n"; errs() << *R; errs() << '\n'; return; } } OpIdx = NumberedOp++; } std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx); std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName; // If the source operand has a custom encoder, use it. This will // get the encoding for all of the suboperands. if (!EncoderMethodName.empty()) { // A custom encoder has all of the information for the // sub-operands, if there are more than one, so only // query the encoder once per source operand. if (SO.second == 0) { Case += " // op: " + VarName + "\n" + " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); Case += ", Fixups, STI"; Case += ");\n"; } } else { Case += " // op: " + VarName + "\n" + " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; Case += ", Fixups, STI"; Case += ");\n"; } for (; bit >= 0; ) { int varBit = getVariableBit(VarName, BI, bit); // If this bit isn't from a variable, skip it. if (varBit == -1) { --bit; continue; } // Figure out the consecutive range of bits covered by this operand, in // order to generate better encoding code. int beginInstBit = bit; int beginVarBit = varBit; int N = 1; for (--bit; bit >= 0;) { varBit = getVariableBit(VarName, BI, bit); if (varBit == -1 || varBit != (beginVarBit - N)) break; ++N; --bit; } uint64_t opMask = ~(uint64_t)0 >> (64-N); int opShift = beginVarBit - N + 1; opMask <<= opShift; opShift = beginInstBit - beginVarBit; if (opShift > 0) { Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) << " + itostr(opShift) + ";\n"; } else if (opShift < 0) { Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) >> " + itostr(-opShift) + ";\n"; } else { Case += " Value |= op & UINT64_C(" + utostr(opMask) + ");\n"; } } } std::string CodeEmitterGen::getInstructionCase(Record *R, CodeGenTarget &Target) { std::string Case; BitsInit *BI = R->getValueAsBitsInit("Inst"); const std::vector<RecordVal> &Vals = R->getValues(); unsigned NumberedOp = 0; std::set<unsigned> NamedOpIndices; // Collect the set of operand indices that might correspond to named // operand, and skip these when assigning operands based on position. if (Target.getInstructionSet()-> getValueAsBit("noNamedPositionallyEncodedOperands")) { CodeGenInstruction &CGI = Target.getInstruction(R); for (unsigned i = 0, e = Vals.size(); i != e; ++i) { unsigned OpIdx; if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) continue; NamedOpIndices.insert(OpIdx); } } // Loop over all of the fields in the instruction, determining which are the // operands to the instruction. for (unsigned i = 0, e = Vals.size(); i != e; ++i) { // Ignore fixed fields in the record, we're looking for values like: // bits<5> RST = { ?, ?, ?, ?, ? }; if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) continue; AddCodeToMergeInOperand(R, BI, Vals[i].getName(), NumberedOp, NamedOpIndices, Case, Target); } std::string PostEmitter = R->getValueAsString("PostEncoderMethod"); if (!PostEmitter.empty()) { Case += " Value = " + PostEmitter + "(MI, Value"; Case += ", STI"; Case += ");\n"; } return Case; } void CodeEmitterGen::run(raw_ostream &o) { CodeGenTarget Target(Records); std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); // For little-endian instruction bit encodings, reverse the bit order Target.reverseBitsForLittleEndianEncoding(); const std::vector<const CodeGenInstruction*> &NumberedInstructions = Target.getInstructionsByEnumValue(); // Emit function declaration o << "uint64_t " << Target.getName(); o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" << " SmallVectorImpl<MCFixup> &Fixups,\n" << " const MCSubtargetInfo &STI) const {\n"; // Emit instruction base values o << " static const uint64_t InstBits[] = {\n"; for (std::vector<const CodeGenInstruction*>::const_iterator IN = NumberedInstructions.begin(), EN = NumberedInstructions.end(); IN != EN; ++IN) { const CodeGenInstruction *CGI = *IN; Record *R = CGI->TheDef; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) { o << " UINT64_C(0),\n"; continue; } BitsInit *BI = R->getValueAsBitsInit("Inst"); // Start by filling in fixed values. uint64_t Value = 0; for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e-i-1))) Value |= (uint64_t)B->getValue() << (e-i-1); } o << " UINT64_C(" << Value << ")," << '\t' << "// " << R->getName() << "\n"; } o << " UINT64_C(0)\n };\n"; // Map to accumulate all the cases. std::map<std::string, std::vector<std::string> > CaseMap; // Construct all cases statement for each opcode for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end(); IC != EC; ++IC) { Record *R = *IC; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; const std::string &InstName = R->getValueAsString("Namespace") + "::" + R->getName(); std::string Case = getInstructionCase(R, Target); CaseMap[Case].push_back(InstName); } // Emit initial function code o << " const unsigned opcode = MI.getOpcode();\n" << " uint64_t Value = InstBits[opcode];\n" << " uint64_t op = 0;\n" << " (void)op; // suppress warning\n" << " switch (opcode) {\n"; // Emit each case statement std::map<std::string, std::vector<std::string> >::iterator IE, EE; for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { const std::string &Case = IE->first; std::vector<std::string> &InstList = IE->second; for (int i = 0, N = InstList.size(); i < N; i++) { if (i) o << "\n"; o << " case " << InstList[i] << ":"; } o << " {\n"; o << Case; o << " break;\n" << " }\n"; } // Default case: unhandled opcode o << " default:\n" << " std::string msg;\n" << " raw_string_ostream Msg(msg);\n" << " Msg << \"Not supported instr: \" << MI;\n" << " report_fatal_error(Msg.str());\n" << " }\n" << " return Value;\n" << "}\n\n"; } } // End anonymous namespace namespace llvm { void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Machine Code Emitter", OS); CodeEmitterGen(RK).run(OS); } } // End llvm namespace