/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/opencv_modules.hpp" #ifndef HAVE_OPENCV_CUDEV #error "opencv_cudev is required" #else #include "opencv2/cudaarithm.hpp" #include "opencv2/cudev.hpp" #include "opencv2/core/private.cuda.hpp" using namespace cv; using namespace cv::cuda; using namespace cv::cudev; namespace { template <typename T, typename S, typename D> void reduceToRowImpl(const GpuMat& _src, GpuMat& _dst, int reduceOp, Stream& stream) { const GpuMat_<T>& src = (const GpuMat_<T>&) _src; GpuMat_<D>& dst = (GpuMat_<D>&) _dst; switch (reduceOp) { case cv::REDUCE_SUM: gridReduceToRow< Sum<S> >(src, dst, stream); break; case cv::REDUCE_AVG: gridReduceToRow< Avg<S> >(src, dst, stream); break; case cv::REDUCE_MIN: gridReduceToRow< Min<S> >(src, dst, stream); break; case cv::REDUCE_MAX: gridReduceToRow< Max<S> >(src, dst, stream); break; }; } template <typename T, typename S, typename D> void reduceToColumnImpl_(const GpuMat& _src, GpuMat& _dst, int reduceOp, Stream& stream) { const GpuMat_<T>& src = (const GpuMat_<T>&) _src; GpuMat_<D>& dst = (GpuMat_<D>&) _dst; switch (reduceOp) { case cv::REDUCE_SUM: gridReduceToColumn< Sum<S> >(src, dst, stream); break; case cv::REDUCE_AVG: gridReduceToColumn< Avg<S> >(src, dst, stream); break; case cv::REDUCE_MIN: gridReduceToColumn< Min<S> >(src, dst, stream); break; case cv::REDUCE_MAX: gridReduceToColumn< Max<S> >(src, dst, stream); break; }; } template <typename T, typename S, typename D> void reduceToColumnImpl(const GpuMat& src, GpuMat& dst, int reduceOp, Stream& stream) { typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int reduceOp, Stream& stream); static const func_t funcs[4] = { reduceToColumnImpl_<T, S, D>, reduceToColumnImpl_<typename MakeVec<T, 2>::type, typename MakeVec<S, 2>::type, typename MakeVec<D, 2>::type>, reduceToColumnImpl_<typename MakeVec<T, 3>::type, typename MakeVec<S, 3>::type, typename MakeVec<D, 3>::type>, reduceToColumnImpl_<typename MakeVec<T, 4>::type, typename MakeVec<S, 4>::type, typename MakeVec<D, 4>::type> }; funcs[src.channels() - 1](src, dst, reduceOp, stream); } } void cv::cuda::reduce(InputArray _src, OutputArray _dst, int dim, int reduceOp, int dtype, Stream& stream) { GpuMat src = getInputMat(_src, stream); CV_Assert( src.channels() <= 4 ); CV_Assert( dim == 0 || dim == 1 ); CV_Assert( reduceOp == REDUCE_SUM || reduceOp == REDUCE_AVG || reduceOp == REDUCE_MAX || reduceOp == REDUCE_MIN ); if (dtype < 0) dtype = src.depth(); GpuMat dst = getOutputMat(_dst, 1, dim == 0 ? src.cols : src.rows, CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()), stream); if (dim == 0) { typedef void (*func_t)(const GpuMat& _src, GpuMat& _dst, int reduceOp, Stream& stream); static const func_t funcs[7][7] = { { reduceToRowImpl<uchar, int, uchar>, 0 /*reduceToRowImpl<uchar, int, schar>*/, 0 /*reduceToRowImpl<uchar, int, ushort>*/, 0 /*reduceToRowImpl<uchar, int, short>*/, reduceToRowImpl<uchar, int, int>, reduceToRowImpl<uchar, float, float>, reduceToRowImpl<uchar, double, double> }, { 0 /*reduceToRowImpl<schar, int, uchar>*/, 0 /*reduceToRowImpl<schar, int, schar>*/, 0 /*reduceToRowImpl<schar, int, ushort>*/, 0 /*reduceToRowImpl<schar, int, short>*/, 0 /*reduceToRowImpl<schar, int, int>*/, 0 /*reduceToRowImpl<schar, float, float>*/, 0 /*reduceToRowImpl<schar, double, double>*/ }, { 0 /*reduceToRowImpl<ushort, int, uchar>*/, 0 /*reduceToRowImpl<ushort, int, schar>*/, reduceToRowImpl<ushort, int, ushort>, 0 /*reduceToRowImpl<ushort, int, short>*/, reduceToRowImpl<ushort, int, int>, reduceToRowImpl<ushort, float, float>, reduceToRowImpl<ushort, double, double> }, { 0 /*reduceToRowImpl<short, int, uchar>*/, 0 /*reduceToRowImpl<short, int, schar>*/, 0 /*reduceToRowImpl<short, int, ushort>*/, reduceToRowImpl<short, int, short>, reduceToRowImpl<short, int, int>, reduceToRowImpl<short, float, float>, reduceToRowImpl<short, double, double> }, { 0 /*reduceToRowImpl<int, int, uchar>*/, 0 /*reduceToRowImpl<int, int, schar>*/, 0 /*reduceToRowImpl<int, int, ushort>*/, 0 /*reduceToRowImpl<int, int, short>*/, reduceToRowImpl<int, int, int>, reduceToRowImpl<int, float, float>, reduceToRowImpl<int, double, double> }, { 0 /*reduceToRowImpl<float, float, uchar>*/, 0 /*reduceToRowImpl<float, float, schar>*/, 0 /*reduceToRowImpl<float, float, ushort>*/, 0 /*reduceToRowImpl<float, float, short>*/, 0 /*reduceToRowImpl<float, float, int>*/, reduceToRowImpl<float, float, float>, reduceToRowImpl<float, double, double> }, { 0 /*reduceToRowImpl<double, double, uchar>*/, 0 /*reduceToRowImpl<double, double, schar>*/, 0 /*reduceToRowImpl<double, double, ushort>*/, 0 /*reduceToRowImpl<double, double, short>*/, 0 /*reduceToRowImpl<double, double, int>*/, 0 /*reduceToRowImpl<double, double, float>*/, reduceToRowImpl<double, double, double> } }; const func_t func = funcs[src.depth()][dst.depth()]; if (!func) CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported combination of input and output array formats"); GpuMat dst_cont = dst.reshape(1); func(src.reshape(1), dst_cont, reduceOp, stream); } else { typedef void (*func_t)(const GpuMat& _src, GpuMat& _dst, int reduceOp, Stream& stream); static const func_t funcs[7][7] = { { reduceToColumnImpl<uchar, int, uchar>, 0 /*reduceToColumnImpl<uchar, int, schar>*/, 0 /*reduceToColumnImpl<uchar, int, ushort>*/, 0 /*reduceToColumnImpl<uchar, int, short>*/, reduceToColumnImpl<uchar, int, int>, reduceToColumnImpl<uchar, float, float>, reduceToColumnImpl<uchar, double, double> }, { 0 /*reduceToColumnImpl<schar, int, uchar>*/, 0 /*reduceToColumnImpl<schar, int, schar>*/, 0 /*reduceToColumnImpl<schar, int, ushort>*/, 0 /*reduceToColumnImpl<schar, int, short>*/, 0 /*reduceToColumnImpl<schar, int, int>*/, 0 /*reduceToColumnImpl<schar, float, float>*/, 0 /*reduceToColumnImpl<schar, double, double>*/ }, { 0 /*reduceToColumnImpl<ushort, int, uchar>*/, 0 /*reduceToColumnImpl<ushort, int, schar>*/, reduceToColumnImpl<ushort, int, ushort>, 0 /*reduceToColumnImpl<ushort, int, short>*/, reduceToColumnImpl<ushort, int, int>, reduceToColumnImpl<ushort, float, float>, reduceToColumnImpl<ushort, double, double> }, { 0 /*reduceToColumnImpl<short, int, uchar>*/, 0 /*reduceToColumnImpl<short, int, schar>*/, 0 /*reduceToColumnImpl<short, int, ushort>*/, reduceToColumnImpl<short, int, short>, reduceToColumnImpl<short, int, int>, reduceToColumnImpl<short, float, float>, reduceToColumnImpl<short, double, double> }, { 0 /*reduceToColumnImpl<int, int, uchar>*/, 0 /*reduceToColumnImpl<int, int, schar>*/, 0 /*reduceToColumnImpl<int, int, ushort>*/, 0 /*reduceToColumnImpl<int, int, short>*/, reduceToColumnImpl<int, int, int>, reduceToColumnImpl<int, float, float>, reduceToColumnImpl<int, double, double> }, { 0 /*reduceToColumnImpl<float, float, uchar>*/, 0 /*reduceToColumnImpl<float, float, schar>*/, 0 /*reduceToColumnImpl<float, float, ushort>*/, 0 /*reduceToColumnImpl<float, float, short>*/, 0 /*reduceToColumnImpl<float, float, int>*/, reduceToColumnImpl<float, float, float>, reduceToColumnImpl<float, double, double> }, { 0 /*reduceToColumnImpl<double, double, uchar>*/, 0 /*reduceToColumnImpl<double, double, schar>*/, 0 /*reduceToColumnImpl<double, double, ushort>*/, 0 /*reduceToColumnImpl<double, double, short>*/, 0 /*reduceToColumnImpl<double, double, int>*/, 0 /*reduceToColumnImpl<double, double, float>*/, reduceToColumnImpl<double, double, double> } }; const func_t func = funcs[src.depth()][dst.depth()]; if (!func) CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported combination of input and output array formats"); func(src, dst, reduceOp, stream); } syncOutput(dst, _dst, stream); } #endif