/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include "opencv2/core/cuda/common.hpp" #include "opencv2/core/cuda/functional.hpp" #include "opencv2/core/cuda/emulation.hpp" #include "opencv2/core/cuda/scan.hpp" #include "opencv2/core/cuda/reduce.hpp" #include "opencv2/core/cuda/saturate_cast.hpp" using namespace cv::cuda; using namespace cv::cuda::device; namespace clahe { __global__ void calcLutKernel(const PtrStepb src, PtrStepb lut, const int2 tileSize, const int tilesX, const int clipLimit, const float lutScale) { __shared__ int smem[512]; const int tx = blockIdx.x; const int ty = blockIdx.y; const unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x; smem[tid] = 0; __syncthreads(); for (int i = threadIdx.y; i < tileSize.y; i += blockDim.y) { const uchar* srcPtr = src.ptr(ty * tileSize.y + i) + tx * tileSize.x; for (int j = threadIdx.x; j < tileSize.x; j += blockDim.x) { const int data = srcPtr[j]; Emulation::smem::atomicAdd(&smem[data], 1); } } __syncthreads(); int tHistVal = smem[tid]; __syncthreads(); if (clipLimit > 0) { // clip histogram bar int clipped = 0; if (tHistVal > clipLimit) { clipped = tHistVal - clipLimit; tHistVal = clipLimit; } // find number of overall clipped samples reduce<256>(smem, clipped, tid, plus<int>()); // broadcast evaluated value __shared__ int totalClipped; if (tid == 0) totalClipped = clipped; __syncthreads(); // redistribute clipped samples evenly int redistBatch = totalClipped / 256; tHistVal += redistBatch; int residual = totalClipped - redistBatch * 256; if (tid < residual) ++tHistVal; } const int lutVal = blockScanInclusive<256>(tHistVal, smem, tid); lut(ty * tilesX + tx, tid) = saturate_cast<uchar>(__float2int_rn(lutScale * lutVal)); } void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(tilesX, tilesY); calcLutKernel<<<grid, block, 0, stream>>>(src, lut, tileSize, tilesX, clipLimit, lutScale); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } __global__ void tranformKernel(const PtrStepSzb src, PtrStepb dst, const PtrStepb lut, const int2 tileSize, const int tilesX, const int tilesY) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= src.cols || y >= src.rows) return; const float tyf = (static_cast<float>(y) / tileSize.y) - 0.5f; int ty1 = __float2int_rd(tyf); int ty2 = ty1 + 1; const float ya = tyf - ty1; ty1 = ::max(ty1, 0); ty2 = ::min(ty2, tilesY - 1); const float txf = (static_cast<float>(x) / tileSize.x) - 0.5f; int tx1 = __float2int_rd(txf); int tx2 = tx1 + 1; const float xa = txf - tx1; tx1 = ::max(tx1, 0); tx2 = ::min(tx2, tilesX - 1); const int srcVal = src(y, x); float res = 0; res += lut(ty1 * tilesX + tx1, srcVal) * ((1.0f - xa) * (1.0f - ya)); res += lut(ty1 * tilesX + tx2, srcVal) * ((xa) * (1.0f - ya)); res += lut(ty2 * tilesX + tx1, srcVal) * ((1.0f - xa) * (ya)); res += lut(ty2 * tilesX + tx2, srcVal) * ((xa) * (ya)); dst(y, x) = saturate_cast<uchar>(res); } void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y)); cudaSafeCall( cudaFuncSetCacheConfig(tranformKernel, cudaFuncCachePreferL1) ); tranformKernel<<<grid, block, 0, stream>>>(src, dst, lut, tileSize, tilesX, tilesY); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } } #endif // CUDA_DISABLER