/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include <cfloat> #include "opencv2/core/cuda/common.hpp" #include "opencv2/core/cuda/border_interpolate.hpp" #include "opencv2/core/cuda/vec_traits.hpp" #include "opencv2/core/cuda/vec_math.hpp" #include "opencv2/core/cuda/saturate_cast.hpp" #include "opencv2/core/cuda/filters.hpp" namespace cv { namespace cuda { namespace device { // kernels template <typename T> __global__ void resize_nearest(const PtrStep<T> src, PtrStepSz<T> dst, const float fy, const float fx) { const int dst_x = blockDim.x * blockIdx.x + threadIdx.x; const int dst_y = blockDim.y * blockIdx.y + threadIdx.y; if (dst_x < dst.cols && dst_y < dst.rows) { const float src_x = dst_x * fx; const float src_y = dst_y * fy; dst(dst_y, dst_x) = src(__float2int_rz(src_y), __float2int_rz(src_x)); } } template <typename T> __global__ void resize_linear(const PtrStepSz<T> src, PtrStepSz<T> dst, const float fy, const float fx) { typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type; const int dst_x = blockDim.x * blockIdx.x + threadIdx.x; const int dst_y = blockDim.y * blockIdx.y + threadIdx.y; if (dst_x < dst.cols && dst_y < dst.rows) { const float src_x = dst_x * fx; const float src_y = dst_y * fy; work_type out = VecTraits<work_type>::all(0); const int x1 = __float2int_rd(src_x); const int y1 = __float2int_rd(src_y); const int x2 = x1 + 1; const int y2 = y1 + 1; const int x2_read = ::min(x2, src.cols - 1); const int y2_read = ::min(y2, src.rows - 1); T src_reg = src(y1, x1); out = out + src_reg * ((x2 - src_x) * (y2 - src_y)); src_reg = src(y1, x2_read); out = out + src_reg * ((src_x - x1) * (y2 - src_y)); src_reg = src(y2_read, x1); out = out + src_reg * ((x2 - src_x) * (src_y - y1)); src_reg = src(y2_read, x2_read); out = out + src_reg * ((src_x - x1) * (src_y - y1)); dst(dst_y, dst_x) = saturate_cast<T>(out); } } template <class Ptr2D, typename T> __global__ void resize(const Ptr2D src, PtrStepSz<T> dst, const float fy, const float fx) { const int dst_x = blockDim.x * blockIdx.x + threadIdx.x; const int dst_y = blockDim.y * blockIdx.y + threadIdx.y; if (dst_x < dst.cols && dst_y < dst.rows) { const float src_x = dst_x * fx; const float src_y = dst_y * fy; dst(dst_y, dst_x) = src(src_y, src_x); } } template <typename Ptr2D, typename T> __global__ void resize_area(const Ptr2D src, PtrStepSz<T> dst) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < dst.cols && y < dst.rows) { dst(y, x) = src(y, x); } } // textures template <typename T> struct TextureAccessor; #define OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(type) \ texture<type, cudaTextureType2D, cudaReadModeElementType> tex_resize_##type (0, cudaFilterModePoint, cudaAddressModeClamp); \ template <> struct TextureAccessor<type> \ { \ typedef type elem_type; \ typedef int index_type; \ int xoff; \ int yoff; \ __device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const \ { \ return tex2D(tex_resize_##type, x + xoff, y + yoff); \ } \ __host__ static void bind(const PtrStepSz<type>& mat) \ { \ bindTexture(&tex_resize_##type, mat); \ } \ }; OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(uchar) OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(uchar4) OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(ushort) OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(ushort4) OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(short) OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(short4) OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(float) OPENCV_CUDA_IMPLEMENT_RESIZE_TEX(float4) #undef OPENCV_CUDA_IMPLEMENT_RESIZE_TEX template <typename T> TextureAccessor<T> texAccessor(const PtrStepSz<T>& mat, int yoff, int xoff) { TextureAccessor<T>::bind(mat); TextureAccessor<T> t; t.xoff = xoff; t.yoff = yoff; return t; } // callers for nearest interpolation template <typename T> void call_resize_nearest_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); resize_nearest<<<grid, block, 0, stream>>>(src, dst, fy, fx); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <typename T> void call_resize_nearest_tex(const PtrStepSz<T>& /*src*/, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx) { const dim3 block(32, 8); const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); resize<<<grid, block>>>(texAccessor(srcWhole, yoff, xoff), dst, fy, fx); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } // callers for linear interpolation template <typename T> void call_resize_linear_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); resize_linear<<<grid, block, 0, stream>>>(src, dst, fy, fx); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <typename T> void call_resize_linear_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx) { const dim3 block(32, 8); const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); if (srcWhole.data == src.data) { TextureAccessor<T> texSrc = texAccessor(src, 0, 0); LinearFilter< TextureAccessor<T> > filteredSrc(texSrc); resize<<<grid, block>>>(filteredSrc, dst, fy, fx); } else { TextureAccessor<T> texSrc = texAccessor(srcWhole, yoff, xoff); BrdReplicate<T> brd(src.rows, src.cols); BorderReader<TextureAccessor<T>, BrdReplicate<T> > brdSrc(texSrc, brd); LinearFilter< BorderReader<TextureAccessor<T>, BrdReplicate<T> > > filteredSrc(brdSrc); resize<<<grid, block>>>(filteredSrc, dst, fy, fx); } cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } // callers for cubic interpolation template <typename T> void call_resize_cubic_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); BrdReplicate<T> brd(src.rows, src.cols); BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd); CubicFilter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filteredSrc(brdSrc); resize<<<grid, block, 0, stream>>>(filteredSrc, dst, fy, fx); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <typename T> void call_resize_cubic_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx) { const dim3 block(32, 8); const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); if (srcWhole.data == src.data) { TextureAccessor<T> texSrc = texAccessor(src, 0, 0); CubicFilter< TextureAccessor<T> > filteredSrc(texSrc); resize<<<grid, block>>>(filteredSrc, dst, fy, fx); } else { TextureAccessor<T> texSrc = texAccessor(srcWhole, yoff, xoff); BrdReplicate<T> brd(src.rows, src.cols); BorderReader<TextureAccessor<T>, BrdReplicate<T> > brdSrc(texSrc, brd); CubicFilter< BorderReader<TextureAccessor<T>, BrdReplicate<T> > > filteredSrc(brdSrc); resize<<<grid, block>>>(filteredSrc, dst, fy, fx); } cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } // ResizeNearestDispatcher template <typename T> struct ResizeNearestDispatcher { static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& /*srcWhole*/, int /*yoff*/, int /*xoff*/, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { call_resize_nearest_glob(src, dst, fy, fx, stream); } }; template <typename T> struct SelectImplForNearest { static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { if (stream) call_resize_nearest_glob(src, dst, fy, fx, stream); else { if (fx > 1 || fy > 1) call_resize_nearest_glob(src, dst, fy, fx, 0); else call_resize_nearest_tex(src, srcWhole, yoff, xoff, dst, fy, fx); } } }; template <> struct ResizeNearestDispatcher<uchar> : SelectImplForNearest<uchar> {}; template <> struct ResizeNearestDispatcher<uchar4> : SelectImplForNearest<uchar4> {}; template <> struct ResizeNearestDispatcher<ushort> : SelectImplForNearest<ushort> {}; template <> struct ResizeNearestDispatcher<ushort4> : SelectImplForNearest<ushort4> {}; template <> struct ResizeNearestDispatcher<short> : SelectImplForNearest<short> {}; template <> struct ResizeNearestDispatcher<short4> : SelectImplForNearest<short4> {}; template <> struct ResizeNearestDispatcher<float> : SelectImplForNearest<float> {}; template <> struct ResizeNearestDispatcher<float4> : SelectImplForNearest<float4> {}; // ResizeLinearDispatcher template <typename T> struct ResizeLinearDispatcher { static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& /*srcWhole*/, int /*yoff*/, int /*xoff*/, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { call_resize_linear_glob(src, dst, fy, fx, stream); } }; template <typename T> struct SelectImplForLinear { static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { if (stream) call_resize_linear_glob(src, dst, fy, fx, stream); else { if (fx > 1 || fy > 1) call_resize_linear_glob(src, dst, fy, fx, 0); else call_resize_linear_tex(src, srcWhole, yoff, xoff, dst, fy, fx); } } }; template <> struct ResizeLinearDispatcher<uchar> : SelectImplForLinear<uchar> {}; template <> struct ResizeLinearDispatcher<uchar4> : SelectImplForLinear<uchar4> {}; template <> struct ResizeLinearDispatcher<ushort> : SelectImplForLinear<ushort> {}; template <> struct ResizeLinearDispatcher<ushort4> : SelectImplForLinear<ushort4> {}; template <> struct ResizeLinearDispatcher<short> : SelectImplForLinear<short> {}; template <> struct ResizeLinearDispatcher<short4> : SelectImplForLinear<short4> {}; template <> struct ResizeLinearDispatcher<float> : SelectImplForLinear<float> {}; template <> struct ResizeLinearDispatcher<float4> : SelectImplForLinear<float4> {}; // ResizeCubicDispatcher template <typename T> struct ResizeCubicDispatcher { static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& /*srcWhole*/, int /*yoff*/, int /*xoff*/, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { call_resize_cubic_glob(src, dst, fy, fx, stream); } }; template <typename T> struct SelectImplForCubic { static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { if (stream) call_resize_cubic_glob(src, dst, fy, fx, stream); else call_resize_cubic_tex(src, srcWhole, yoff, xoff, dst, fy, fx); } }; template <> struct ResizeCubicDispatcher<uchar> : SelectImplForCubic<uchar> {}; template <> struct ResizeCubicDispatcher<uchar4> : SelectImplForCubic<uchar4> {}; template <> struct ResizeCubicDispatcher<ushort> : SelectImplForCubic<ushort> {}; template <> struct ResizeCubicDispatcher<ushort4> : SelectImplForCubic<ushort4> {}; template <> struct ResizeCubicDispatcher<short> : SelectImplForCubic<short> {}; template <> struct ResizeCubicDispatcher<short4> : SelectImplForCubic<short4> {}; template <> struct ResizeCubicDispatcher<float> : SelectImplForCubic<float> {}; template <> struct ResizeCubicDispatcher<float4> : SelectImplForCubic<float4> {}; // ResizeAreaDispatcher template <typename T> struct ResizeAreaDispatcher { static void call(const PtrStepSz<T>& src, const PtrStepSz<T>&, int, int, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream) { const int iscale_x = (int) round(fx); const int iscale_y = (int) round(fy); const dim3 block(32, 8); const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); if (std::abs(fx - iscale_x) < FLT_MIN && std::abs(fy - iscale_y) < FLT_MIN) { BrdConstant<T> brd(src.rows, src.cols); BorderReader< PtrStep<T>, BrdConstant<T> > brdSrc(src, brd); IntegerAreaFilter< BorderReader< PtrStep<T>, BrdConstant<T> > > filteredSrc(brdSrc, fx, fy); resize_area<<<grid, block, 0, stream>>>(filteredSrc, dst); } else { BrdConstant<T> brd(src.rows, src.cols); BorderReader< PtrStep<T>, BrdConstant<T> > brdSrc(src, brd); AreaFilter< BorderReader< PtrStep<T>, BrdConstant<T> > > filteredSrc(brdSrc, fx, fy); resize_area<<<grid, block, 0, stream>>>(filteredSrc, dst); } cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; // resize template <typename T> void resize(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream) { typedef void (*func_t)(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream); static const func_t funcs[4] = { ResizeNearestDispatcher<T>::call, ResizeLinearDispatcher<T>::call, ResizeCubicDispatcher<T>::call, ResizeAreaDispatcher<T>::call }; // change to linear if area interpolation upscaling if (interpolation == 3 && (fx <= 1.f || fy <= 1.f)) interpolation = 1; funcs[interpolation](static_cast< PtrStepSz<T> >(src), static_cast< PtrStepSz<T> >(srcWhole), yoff, xoff, static_cast< PtrStepSz<T> >(dst), fy, fx, stream); } template void resize<uchar >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<uchar3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<uchar4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<ushort >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<ushort3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<ushort4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<short >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<short3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<short4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<float >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<float3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); template void resize<float4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream); }}} #endif /* CUDA_DISABLER */