/* This sample demonstrates the way you can perform independed tasks on the different GPUs */ // Disable some warnings which are caused with CUDA headers #if defined(_MSC_VER) #pragma warning(disable: 4201 4408 4100) #endif #include <iostream> #include "cvconfig.h" #include "opencv2/core/core.hpp" #include "opencv2/cudaarithm.hpp" #ifdef HAVE_TBB # include "tbb/tbb_stddef.h" # if TBB_VERSION_MAJOR*100 + TBB_VERSION_MINOR >= 202 # include "tbb/tbb.h" # include "tbb/task.h" # undef min # undef max # else # undef HAVE_TBB # endif #endif #if !defined(HAVE_CUDA) || !defined(HAVE_TBB) || defined(__arm__) int main() { #if !defined(HAVE_CUDA) std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n"; #endif #if !defined(HAVE_TBB) std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n"; #endif #if defined(__arm__) std::cout << "Unsupported for ARM CUDA library." << std::endl; #endif return 0; } #else #include <cuda.h> #include <cuda_runtime.h> using namespace std; using namespace cv; using namespace cv::cuda; struct Worker { void operator()(int device_id) const; }; void destroyContexts(); #define safeCall(expr) safeCall_(expr, #expr, __FILE__, __LINE__) inline void safeCall_(int code, const char* expr, const char* file, int line) { if (code != CUDA_SUCCESS) { std::cout << "CUDA driver API error: code " << code << ", expr " << expr << ", file " << file << ", line " << line << endl; destroyContexts(); exit(-1); } } // Each GPU is associated with its own context CUcontext contexts[2]; int main() { int num_devices = getCudaEnabledDeviceCount(); if (num_devices < 2) { std::cout << "Two or more GPUs are required\n"; return -1; } for (int i = 0; i < num_devices; ++i) { cv::cuda::printShortCudaDeviceInfo(i); DeviceInfo dev_info(i); if (!dev_info.isCompatible()) { std::cout << "CUDA module isn't built for GPU #" << i << " (" << dev_info.name() << ", CC " << dev_info.majorVersion() << dev_info.minorVersion() << "\n"; return -1; } } // Init CUDA Driver API safeCall(cuInit(0)); // Create context for GPU #0 CUdevice device; safeCall(cuDeviceGet(&device, 0)); safeCall(cuCtxCreate(&contexts[0], 0, device)); CUcontext prev_context; safeCall(cuCtxPopCurrent(&prev_context)); // Create context for GPU #1 safeCall(cuDeviceGet(&device, 1)); safeCall(cuCtxCreate(&contexts[1], 0, device)); safeCall(cuCtxPopCurrent(&prev_context)); // Execute calculation in two threads using two GPUs int devices[] = {0, 1}; tbb::parallel_do(devices, devices + 2, Worker()); destroyContexts(); return 0; } void Worker::operator()(int device_id) const { // Set the proper context safeCall(cuCtxPushCurrent(contexts[device_id])); Mat src(1000, 1000, CV_32F); Mat dst; RNG rng(0); rng.fill(src, RNG::UNIFORM, 0, 1); // CPU works cv::transpose(src, dst); // GPU works GpuMat d_src(src); GpuMat d_dst; cuda::transpose(d_src, d_dst); // Check results bool passed = cv::norm(dst - Mat(d_dst), NORM_INF) < 1e-3; std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): " << (passed ? "passed" : "FAILED") << endl; // Deallocate data here, otherwise deallocation will be performed // after context is extracted from the stack d_src.release(); d_dst.release(); CUcontext prev_context; safeCall(cuCtxPopCurrent(&prev_context)); } void destroyContexts() { safeCall(cuCtxDestroy(contexts[0])); safeCall(cuCtxDestroy(contexts[1])); } #endif