// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. /** \mainpage V8 API Reference Guide * * V8 is Google's open source JavaScript engine. * * This set of documents provides reference material generated from the * V8 header file, include/v8.h. * * For other documentation see http://code.google.com/apis/v8/ */ #ifndef INCLUDE_V8_H_ #define INCLUDE_V8_H_ #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <utility> #include <vector> #include "v8-version.h" // NOLINT(build/include) #include "v8config.h" // NOLINT(build/include) // We reserve the V8_* prefix for macros defined in V8 public API and // assume there are no name conflicts with the embedder's code. #ifdef V8_OS_WIN // Setup for Windows DLL export/import. When building the V8 DLL the // BUILDING_V8_SHARED needs to be defined. When building a program which uses // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8 // static library or building a program which uses the V8 static library neither // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined. #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED) #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\ build configuration to ensure that at most one of these is set #endif #ifdef BUILDING_V8_SHARED # define V8_EXPORT __declspec(dllexport) #elif USING_V8_SHARED # define V8_EXPORT __declspec(dllimport) #else # define V8_EXPORT #endif // BUILDING_V8_SHARED #else // V8_OS_WIN // Setup for Linux shared library export. #if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED) # ifdef BUILDING_V8_SHARED # define V8_EXPORT __attribute__ ((visibility("default"))) # else # define V8_EXPORT # endif #else # define V8_EXPORT #endif #endif // V8_OS_WIN /** * The v8 JavaScript engine. */ namespace v8 { class AccessorSignature; class Array; class Boolean; class BooleanObject; class Context; class CpuProfiler; class Data; class Date; class External; class Function; class FunctionTemplate; class HeapProfiler; class ImplementationUtilities; class Int32; class Integer; class Isolate; template <class T> class Maybe; class Name; class Number; class NumberObject; class Object; class ObjectOperationDescriptor; class ObjectTemplate; class Platform; class Primitive; class Promise; class Proxy; class RawOperationDescriptor; class Script; class SharedArrayBuffer; class Signature; class StartupData; class StackFrame; class StackTrace; class String; class StringObject; class Symbol; class SymbolObject; class Private; class Uint32; class Utils; class Value; template <class T> class Local; template <class T> class MaybeLocal; template <class T> class Eternal; template<class T> class NonCopyablePersistentTraits; template<class T> class PersistentBase; template <class T, class M = NonCopyablePersistentTraits<T> > class Persistent; template <class T> class Global; template<class K, class V, class T> class PersistentValueMap; template <class K, class V, class T> class PersistentValueMapBase; template <class K, class V, class T> class GlobalValueMap; template<class V, class T> class PersistentValueVector; template<class T, class P> class WeakCallbackObject; class FunctionTemplate; class ObjectTemplate; class Data; template<typename T> class FunctionCallbackInfo; template<typename T> class PropertyCallbackInfo; class StackTrace; class StackFrame; class Isolate; class CallHandlerHelper; class EscapableHandleScope; template<typename T> class ReturnValue; namespace experimental { class FastAccessorBuilder; } // namespace experimental namespace internal { class Arguments; class Heap; class HeapObject; class Isolate; class Object; struct StreamedSource; template<typename T> class CustomArguments; class PropertyCallbackArguments; class FunctionCallbackArguments; class GlobalHandles; } // namespace internal /** * General purpose unique identifier. */ class UniqueId { public: explicit UniqueId(intptr_t data) : data_(data) {} bool operator==(const UniqueId& other) const { return data_ == other.data_; } bool operator!=(const UniqueId& other) const { return data_ != other.data_; } bool operator<(const UniqueId& other) const { return data_ < other.data_; } private: intptr_t data_; }; // --- Handles --- #define TYPE_CHECK(T, S) \ while (false) { \ *(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \ } /** * An object reference managed by the v8 garbage collector. * * All objects returned from v8 have to be tracked by the garbage * collector so that it knows that the objects are still alive. Also, * because the garbage collector may move objects, it is unsafe to * point directly to an object. Instead, all objects are stored in * handles which are known by the garbage collector and updated * whenever an object moves. Handles should always be passed by value * (except in cases like out-parameters) and they should never be * allocated on the heap. * * There are two types of handles: local and persistent handles. * Local handles are light-weight and transient and typically used in * local operations. They are managed by HandleScopes. Persistent * handles can be used when storing objects across several independent * operations and have to be explicitly deallocated when they're no * longer used. * * It is safe to extract the object stored in the handle by * dereferencing the handle (for instance, to extract the Object* from * a Local<Object>); the value will still be governed by a handle * behind the scenes and the same rules apply to these values as to * their handles. */ template <class T> class Local { public: V8_INLINE Local() : val_(0) {} template <class S> V8_INLINE Local(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { /** * This check fails when trying to convert between incompatible * handles. For example, converting from a Local<String> to a * Local<Number>. */ TYPE_CHECK(T, S); } /** * Returns true if the handle is empty. */ V8_INLINE bool IsEmpty() const { return val_ == 0; } /** * Sets the handle to be empty. IsEmpty() will then return true. */ V8_INLINE void Clear() { val_ = 0; } V8_INLINE T* operator->() const { return val_; } V8_INLINE T* operator*() const { return val_; } /** * Checks whether two handles are the same. * Returns true if both are empty, or if the objects * to which they refer are identical. * The handles' references are not checked. */ template <class S> V8_INLINE bool operator==(const Local<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; } template <class S> V8_INLINE bool operator==( const PersistentBase<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; } /** * Checks whether two handles are different. * Returns true if only one of the handles is empty, or if * the objects to which they refer are different. * The handles' references are not checked. */ template <class S> V8_INLINE bool operator!=(const Local<S>& that) const { return !operator==(that); } template <class S> V8_INLINE bool operator!=( const Persistent<S>& that) const { return !operator==(that); } template <class S> V8_INLINE static Local<T> Cast(Local<S> that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (that.IsEmpty()) return Local<T>(); #endif return Local<T>(T::Cast(*that)); } template <class S> V8_INLINE Local<S> As() { return Local<S>::Cast(*this); } /** * Create a local handle for the content of another handle. * The referee is kept alive by the local handle even when * the original handle is destroyed/disposed. */ V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that); V8_INLINE static Local<T> New(Isolate* isolate, const PersistentBase<T>& that); private: friend class Utils; template<class F> friend class Eternal; template<class F> friend class PersistentBase; template<class F, class M> friend class Persistent; template<class F> friend class Local; template <class F> friend class MaybeLocal; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; friend class String; friend class Object; friend class Context; friend class Private; template<class F> friend class internal::CustomArguments; friend Local<Primitive> Undefined(Isolate* isolate); friend Local<Primitive> Null(Isolate* isolate); friend Local<Boolean> True(Isolate* isolate); friend Local<Boolean> False(Isolate* isolate); friend class HandleScope; friend class EscapableHandleScope; template <class F1, class F2, class F3> friend class PersistentValueMapBase; template<class F1, class F2> friend class PersistentValueVector; template <class F> friend class ReturnValue; explicit V8_INLINE Local(T* that) : val_(that) {} V8_INLINE static Local<T> New(Isolate* isolate, T* that); T* val_; }; #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS) // Local is an alias for Local for historical reasons. template <class T> using Handle = Local<T>; #endif /** * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether * the Local<> is empty before it can be used. * * If an API method returns a MaybeLocal<>, the API method can potentially fail * either because an exception is thrown, or because an exception is pending, * e.g. because a previous API call threw an exception that hasn't been caught * yet, or because a TerminateExecution exception was thrown. In that case, an * empty MaybeLocal is returned. */ template <class T> class MaybeLocal { public: V8_INLINE MaybeLocal() : val_(nullptr) {} template <class S> V8_INLINE MaybeLocal(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { TYPE_CHECK(T, S); } V8_INLINE bool IsEmpty() const { return val_ == nullptr; } template <class S> V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const { out->val_ = IsEmpty() ? nullptr : this->val_; return !IsEmpty(); } // Will crash if the MaybeLocal<> is empty. V8_INLINE Local<T> ToLocalChecked(); template <class S> V8_INLINE Local<S> FromMaybe(Local<S> default_value) const { return IsEmpty() ? default_value : Local<S>(val_); } private: T* val_; }; // Eternal handles are set-once handles that live for the life of the isolate. template <class T> class Eternal { public: V8_INLINE Eternal() : index_(kInitialValue) { } template<class S> V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) { Set(isolate, handle); } // Can only be safely called if already set. V8_INLINE Local<T> Get(Isolate* isolate); V8_INLINE bool IsEmpty() { return index_ == kInitialValue; } template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle); private: static const int kInitialValue = -1; int index_; }; static const int kInternalFieldsInWeakCallback = 2; template <typename T> class WeakCallbackInfo { public: typedef void (*Callback)(const WeakCallbackInfo<T>& data); WeakCallbackInfo(Isolate* isolate, T* parameter, void* internal_fields[kInternalFieldsInWeakCallback], Callback* callback) : isolate_(isolate), parameter_(parameter), callback_(callback) { for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) { internal_fields_[i] = internal_fields[i]; } } V8_INLINE Isolate* GetIsolate() const { return isolate_; } V8_INLINE T* GetParameter() const { return parameter_; } V8_INLINE void* GetInternalField(int index) const; V8_INLINE V8_DEPRECATED("use indexed version", void* GetInternalField1() const) { return internal_fields_[0]; } V8_INLINE V8_DEPRECATED("use indexed version", void* GetInternalField2() const) { return internal_fields_[1]; } V8_DEPRECATED("Not realiable once SetSecondPassCallback() was used.", bool IsFirstPass() const) { return callback_ != nullptr; } // When first called, the embedder MUST Reset() the Global which triggered the // callback. The Global itself is unusable for anything else. No v8 other api // calls may be called in the first callback. Should additional work be // required, the embedder must set a second pass callback, which will be // called after all the initial callbacks are processed. // Calling SetSecondPassCallback on the second pass will immediately crash. void SetSecondPassCallback(Callback callback) const { *callback_ = callback; } private: Isolate* isolate_; T* parameter_; Callback* callback_; void* internal_fields_[kInternalFieldsInWeakCallback]; }; // kParameter will pass a void* parameter back to the callback, kInternalFields // will pass the first two internal fields back to the callback, kFinalizer // will pass a void* parameter back, but is invoked before the object is // actually collected, so it can be resurrected. In the last case, it is not // possible to request a second pass callback. enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer }; /** * An object reference that is independent of any handle scope. Where * a Local handle only lives as long as the HandleScope in which it was * allocated, a PersistentBase handle remains valid until it is explicitly * disposed. * * A persistent handle contains a reference to a storage cell within * the v8 engine which holds an object value and which is updated by * the garbage collector whenever the object is moved. A new storage * cell can be created using the constructor or PersistentBase::Reset and * existing handles can be disposed using PersistentBase::Reset. * */ template <class T> class PersistentBase { public: /** * If non-empty, destroy the underlying storage cell * IsEmpty() will return true after this call. */ V8_INLINE void Reset(); /** * If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const Local<S>& other); /** * If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other); V8_INLINE bool IsEmpty() const { return val_ == NULL; } V8_INLINE void Empty() { val_ = 0; } V8_INLINE Local<T> Get(Isolate* isolate) const { return Local<T>::New(isolate, *this); } template <class S> V8_INLINE bool operator==(const PersistentBase<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == NULL) return b == NULL; if (b == NULL) return false; return *a == *b; } template <class S> V8_INLINE bool operator==(const Local<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == NULL) return b == NULL; if (b == NULL) return false; return *a == *b; } template <class S> V8_INLINE bool operator!=(const PersistentBase<S>& that) const { return !operator==(that); } template <class S> V8_INLINE bool operator!=(const Local<S>& that) const { return !operator==(that); } /** * Install a finalization callback on this object. * NOTE: There is no guarantee as to *when* or even *if* the callback is * invoked. The invocation is performed solely on a best effort basis. * As always, GC-based finalization should *not* be relied upon for any * critical form of resource management! */ template <typename P> V8_INLINE void SetWeak(P* parameter, typename WeakCallbackInfo<P>::Callback callback, WeakCallbackType type); /** * Turns this handle into a weak phantom handle without finalization callback. * The handle will be reset automatically when the garbage collector detects * that the object is no longer reachable. * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall * returns how many phantom handles were reset by the garbage collector. */ V8_INLINE void SetWeak(); template<typename P> V8_INLINE P* ClearWeak(); // TODO(dcarney): remove this. V8_INLINE void ClearWeak() { ClearWeak<void>(); } /** * Allows the embedder to tell the v8 garbage collector that a certain object * is alive. Only allowed when the embedder is asked to trace its heap by * EmbedderHeapTracer. */ V8_INLINE void RegisterExternalReference(Isolate* isolate) const; /** * Marks the reference to this object independent. Garbage collector is free * to ignore any object groups containing this object. Weak callback for an * independent handle should not assume that it will be preceded by a global * GC prologue callback or followed by a global GC epilogue callback. */ V8_INLINE void MarkIndependent(); /** * Marks the reference to this object partially dependent. Partially dependent * handles only depend on other partially dependent handles and these * dependencies are provided through object groups. It provides a way to build * smaller object groups for young objects that represent only a subset of all * external dependencies. This mark is automatically cleared after each * garbage collection. */ V8_INLINE V8_DEPRECATED( "deprecated optimization, do not use partially dependent groups", void MarkPartiallyDependent()); /** * Marks the reference to this object as active. The scavenge garbage * collection should not reclaim the objects marked as active. * This bit is cleared after the each garbage collection pass. */ V8_INLINE void MarkActive(); V8_INLINE bool IsIndependent() const; /** Checks if the handle holds the only reference to an object. */ V8_INLINE bool IsNearDeath() const; /** Returns true if the handle's reference is weak. */ V8_INLINE bool IsWeak() const; /** * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface * description in v8-profiler.h for details. */ V8_INLINE void SetWrapperClassId(uint16_t class_id); /** * Returns the class ID previously assigned to this handle or 0 if no class ID * was previously assigned. */ V8_INLINE uint16_t WrapperClassId() const; private: friend class Isolate; friend class Utils; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template <class F> friend class Global; template<class F> friend class PersistentBase; template<class F> friend class ReturnValue; template <class F1, class F2, class F3> friend class PersistentValueMapBase; template<class F1, class F2> friend class PersistentValueVector; friend class Object; explicit V8_INLINE PersistentBase(T* val) : val_(val) {} PersistentBase(const PersistentBase& other) = delete; // NOLINT void operator=(const PersistentBase&) = delete; V8_INLINE static T* New(Isolate* isolate, T* that); T* val_; }; /** * Default traits for Persistent. This class does not allow * use of the copy constructor or assignment operator. * At present kResetInDestructor is not set, but that will change in a future * version. */ template<class T> class NonCopyablePersistentTraits { public: typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent; static const bool kResetInDestructor = false; template<class S, class M> V8_INLINE static void Copy(const Persistent<S, M>& source, NonCopyablePersistent* dest) { Uncompilable<Object>(); } // TODO(dcarney): come up with a good compile error here. template<class O> V8_INLINE static void Uncompilable() { TYPE_CHECK(O, Primitive); } }; /** * Helper class traits to allow copying and assignment of Persistent. * This will clone the contents of storage cell, but not any of the flags, etc. */ template<class T> struct CopyablePersistentTraits { typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent; static const bool kResetInDestructor = true; template<class S, class M> static V8_INLINE void Copy(const Persistent<S, M>& source, CopyablePersistent* dest) { // do nothing, just allow copy } }; /** * A PersistentBase which allows copy and assignment. * * Copy, assignment and destructor bevavior is controlled by the traits * class M. * * Note: Persistent class hierarchy is subject to future changes. */ template <class T, class M> class Persistent : public PersistentBase<T> { public: /** * A Persistent with no storage cell. */ V8_INLINE Persistent() : PersistentBase<T>(0) { } /** * Construct a Persistent from a Local. * When the Local is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Persistent(Isolate* isolate, Local<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /** * Construct a Persistent from a Persistent. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S, class M2> V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /** * The copy constructors and assignment operator create a Persistent * exactly as the Persistent constructor, but the Copy function from the * traits class is called, allowing the setting of flags based on the * copied Persistent. */ V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) { Copy(that); } template <class S, class M2> V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) { Copy(that); } V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT Copy(that); return *this; } template <class S, class M2> V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT Copy(that); return *this; } /** * The destructor will dispose the Persistent based on the * kResetInDestructor flags in the traits class. Since not calling dispose * can result in a memory leak, it is recommended to always set this flag. */ V8_INLINE ~Persistent() { if (M::kResetInDestructor) this->Reset(); } // TODO(dcarney): this is pretty useless, fix or remove template <class S> V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (!that.IsEmpty()) T::Cast(*that); #endif return reinterpret_cast<Persistent<T>&>(that); } // TODO(dcarney): this is pretty useless, fix or remove template <class S> V8_INLINE Persistent<S>& As() { // NOLINT return Persistent<S>::Cast(*this); } private: friend class Isolate; friend class Utils; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template<class F> friend class ReturnValue; explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {} V8_INLINE T* operator*() const { return this->val_; } template<class S, class M2> V8_INLINE void Copy(const Persistent<S, M2>& that); }; /** * A PersistentBase which has move semantics. * * Note: Persistent class hierarchy is subject to future changes. */ template <class T> class Global : public PersistentBase<T> { public: /** * A Global with no storage cell. */ V8_INLINE Global() : PersistentBase<T>(nullptr) {} /** * Construct a Global from a Local. * When the Local is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Global(Isolate* isolate, Local<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /** * Construct a Global from a PersistentBase. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) { TYPE_CHECK(T, S); } /** * Move constructor. */ V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) { // NOLINT other.val_ = nullptr; } V8_INLINE ~Global() { this->Reset(); } /** * Move via assignment. */ template <class S> V8_INLINE Global& operator=(Global<S>&& rhs) { // NOLINT TYPE_CHECK(T, S); if (this != &rhs) { this->Reset(); this->val_ = rhs.val_; rhs.val_ = nullptr; } return *this; } /** * Pass allows returning uniques from functions, etc. */ Global Pass() { return static_cast<Global&&>(*this); } // NOLINT /* * For compatibility with Chromium's base::Bind (base::Passed). */ typedef void MoveOnlyTypeForCPP03; private: template <class F> friend class ReturnValue; Global(const Global&) = delete; void operator=(const Global&) = delete; V8_INLINE T* operator*() const { return this->val_; } }; // UniquePersistent is an alias for Global for historical reason. template <class T> using UniquePersistent = Global<T>; /** * A stack-allocated class that governs a number of local handles. * After a handle scope has been created, all local handles will be * allocated within that handle scope until either the handle scope is * deleted or another handle scope is created. If there is already a * handle scope and a new one is created, all allocations will take * place in the new handle scope until it is deleted. After that, * new handles will again be allocated in the original handle scope. * * After the handle scope of a local handle has been deleted the * garbage collector will no longer track the object stored in the * handle and may deallocate it. The behavior of accessing a handle * for which the handle scope has been deleted is undefined. */ class V8_EXPORT HandleScope { public: explicit HandleScope(Isolate* isolate); ~HandleScope(); /** * Counts the number of allocated handles. */ static int NumberOfHandles(Isolate* isolate); V8_INLINE Isolate* GetIsolate() const { return reinterpret_cast<Isolate*>(isolate_); } protected: V8_INLINE HandleScope() {} void Initialize(Isolate* isolate); static internal::Object** CreateHandle(internal::Isolate* isolate, internal::Object* value); private: // Uses heap_object to obtain the current Isolate. static internal::Object** CreateHandle(internal::HeapObject* heap_object, internal::Object* value); // Make it hard to create heap-allocated or illegal handle scopes by // disallowing certain operations. HandleScope(const HandleScope&); void operator=(const HandleScope&); void* operator new(size_t size); void operator delete(void*, size_t); internal::Isolate* isolate_; internal::Object** prev_next_; internal::Object** prev_limit_; // Local::New uses CreateHandle with an Isolate* parameter. template<class F> friend class Local; // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with // a HeapObject* in their shortcuts. friend class Object; friend class Context; }; /** * A HandleScope which first allocates a handle in the current scope * which will be later filled with the escape value. */ class V8_EXPORT EscapableHandleScope : public HandleScope { public: explicit EscapableHandleScope(Isolate* isolate); V8_INLINE ~EscapableHandleScope() {} /** * Pushes the value into the previous scope and returns a handle to it. * Cannot be called twice. */ template <class T> V8_INLINE Local<T> Escape(Local<T> value) { internal::Object** slot = Escape(reinterpret_cast<internal::Object**>(*value)); return Local<T>(reinterpret_cast<T*>(slot)); } private: internal::Object** Escape(internal::Object** escape_value); // Make it hard to create heap-allocated or illegal handle scopes by // disallowing certain operations. EscapableHandleScope(const EscapableHandleScope&); void operator=(const EscapableHandleScope&); void* operator new(size_t size); void operator delete(void*, size_t); internal::Object** escape_slot_; }; class V8_EXPORT SealHandleScope { public: SealHandleScope(Isolate* isolate); ~SealHandleScope(); private: // Make it hard to create heap-allocated or illegal handle scopes by // disallowing certain operations. SealHandleScope(const SealHandleScope&); void operator=(const SealHandleScope&); void* operator new(size_t size); void operator delete(void*, size_t); internal::Isolate* isolate_; internal::Object** prev_limit_; int prev_sealed_level_; }; // --- Special objects --- /** * The superclass of values and API object templates. */ class V8_EXPORT Data { private: Data(); }; /** * The optional attributes of ScriptOrigin. */ class ScriptOriginOptions { public: V8_INLINE ScriptOriginOptions(bool is_embedder_debug_script = false, bool is_shared_cross_origin = false, bool is_opaque = false) : flags_((is_embedder_debug_script ? kIsEmbedderDebugScript : 0) | (is_shared_cross_origin ? kIsSharedCrossOrigin : 0) | (is_opaque ? kIsOpaque : 0)) {} V8_INLINE ScriptOriginOptions(int flags) : flags_(flags & (kIsEmbedderDebugScript | kIsSharedCrossOrigin | kIsOpaque)) {} bool IsEmbedderDebugScript() const { return (flags_ & kIsEmbedderDebugScript) != 0; } bool IsSharedCrossOrigin() const { return (flags_ & kIsSharedCrossOrigin) != 0; } bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; } int Flags() const { return flags_; } private: enum { kIsEmbedderDebugScript = 1, kIsSharedCrossOrigin = 1 << 1, kIsOpaque = 1 << 2 }; const int flags_; }; /** * The origin, within a file, of a script. */ class ScriptOrigin { public: V8_INLINE ScriptOrigin( Local<Value> resource_name, Local<Integer> resource_line_offset = Local<Integer>(), Local<Integer> resource_column_offset = Local<Integer>(), Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(), Local<Integer> script_id = Local<Integer>(), Local<Boolean> resource_is_embedder_debug_script = Local<Boolean>(), Local<Value> source_map_url = Local<Value>(), Local<Boolean> resource_is_opaque = Local<Boolean>()); V8_INLINE Local<Value> ResourceName() const; V8_INLINE Local<Integer> ResourceLineOffset() const; V8_INLINE Local<Integer> ResourceColumnOffset() const; /** * Returns true for embedder's debugger scripts */ V8_INLINE Local<Integer> ScriptID() const; V8_INLINE Local<Value> SourceMapUrl() const; V8_INLINE ScriptOriginOptions Options() const { return options_; } private: Local<Value> resource_name_; Local<Integer> resource_line_offset_; Local<Integer> resource_column_offset_; ScriptOriginOptions options_; Local<Integer> script_id_; Local<Value> source_map_url_; }; /** * A compiled JavaScript script, not yet tied to a Context. */ class V8_EXPORT UnboundScript { public: /** * Binds the script to the currently entered context. */ Local<Script> BindToCurrentContext(); int GetId(); Local<Value> GetScriptName(); /** * Data read from magic sourceURL comments. */ Local<Value> GetSourceURL(); /** * Data read from magic sourceMappingURL comments. */ Local<Value> GetSourceMappingURL(); /** * Returns zero based line number of the code_pos location in the script. * -1 will be returned if no information available. */ int GetLineNumber(int code_pos); static const int kNoScriptId = 0; }; /** * A compiled JavaScript script, tied to a Context which was active when the * script was compiled. */ class V8_EXPORT Script { public: /** * A shorthand for ScriptCompiler::Compile(). */ static V8_DEPRECATE_SOON( "Use maybe version", Local<Script> Compile(Local<String> source, ScriptOrigin* origin = nullptr)); static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, Local<String> source, ScriptOrigin* origin = nullptr); static Local<Script> V8_DEPRECATE_SOON("Use maybe version", Compile(Local<String> source, Local<String> file_name)); /** * Runs the script returning the resulting value. It will be run in the * context in which it was created (ScriptCompiler::CompileBound or * UnboundScript::BindToCurrentContext()). */ V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run()); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context); /** * Returns the corresponding context-unbound script. */ Local<UnboundScript> GetUnboundScript(); }; /** * For compiling scripts. */ class V8_EXPORT ScriptCompiler { public: /** * Compilation data that the embedder can cache and pass back to speed up * future compilations. The data is produced if the CompilerOptions passed to * the compilation functions in ScriptCompiler contains produce_data_to_cache * = true. The data to cache can then can be retrieved from * UnboundScript. */ struct V8_EXPORT CachedData { enum BufferPolicy { BufferNotOwned, BufferOwned }; CachedData() : data(NULL), length(0), rejected(false), buffer_policy(BufferNotOwned) {} // If buffer_policy is BufferNotOwned, the caller keeps the ownership of // data and guarantees that it stays alive until the CachedData object is // destroyed. If the policy is BufferOwned, the given data will be deleted // (with delete[]) when the CachedData object is destroyed. CachedData(const uint8_t* data, int length, BufferPolicy buffer_policy = BufferNotOwned); ~CachedData(); // TODO(marja): Async compilation; add constructors which take a callback // which will be called when V8 no longer needs the data. const uint8_t* data; int length; bool rejected; BufferPolicy buffer_policy; private: // Prevent copying. Not implemented. CachedData(const CachedData&); CachedData& operator=(const CachedData&); }; /** * Source code which can be then compiled to a UnboundScript or Script. */ class Source { public: // Source takes ownership of CachedData. V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin, CachedData* cached_data = NULL); V8_INLINE Source(Local<String> source_string, CachedData* cached_data = NULL); V8_INLINE ~Source(); // Ownership of the CachedData or its buffers is *not* transferred to the // caller. The CachedData object is alive as long as the Source object is // alive. V8_INLINE const CachedData* GetCachedData() const; private: friend class ScriptCompiler; // Prevent copying. Not implemented. Source(const Source&); Source& operator=(const Source&); Local<String> source_string; // Origin information Local<Value> resource_name; Local<Integer> resource_line_offset; Local<Integer> resource_column_offset; ScriptOriginOptions resource_options; Local<Value> source_map_url; // Cached data from previous compilation (if a kConsume*Cache flag is // set), or hold newly generated cache data (kProduce*Cache flags) are // set when calling a compile method. CachedData* cached_data; }; /** * For streaming incomplete script data to V8. The embedder should implement a * subclass of this class. */ class V8_EXPORT ExternalSourceStream { public: virtual ~ExternalSourceStream() {} /** * V8 calls this to request the next chunk of data from the embedder. This * function will be called on a background thread, so it's OK to block and * wait for the data, if the embedder doesn't have data yet. Returns the * length of the data returned. When the data ends, GetMoreData should * return 0. Caller takes ownership of the data. * * When streaming UTF-8 data, V8 handles multi-byte characters split between * two data chunks, but doesn't handle multi-byte characters split between * more than two data chunks. The embedder can avoid this problem by always * returning at least 2 bytes of data. * * If the embedder wants to cancel the streaming, they should make the next * GetMoreData call return 0. V8 will interpret it as end of data (and most * probably, parsing will fail). The streaming task will return as soon as * V8 has parsed the data it received so far. */ virtual size_t GetMoreData(const uint8_t** src) = 0; /** * V8 calls this method to set a 'bookmark' at the current position in * the source stream, for the purpose of (maybe) later calling * ResetToBookmark. If ResetToBookmark is called later, then subsequent * calls to GetMoreData should return the same data as they did when * SetBookmark was called earlier. * * The embedder may return 'false' to indicate it cannot provide this * functionality. */ virtual bool SetBookmark(); /** * V8 calls this to return to a previously set bookmark. */ virtual void ResetToBookmark(); }; /** * Source code which can be streamed into V8 in pieces. It will be parsed * while streaming. It can be compiled after the streaming is complete. * StreamedSource must be kept alive while the streaming task is ran (see * ScriptStreamingTask below). */ class V8_EXPORT StreamedSource { public: enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 }; StreamedSource(ExternalSourceStream* source_stream, Encoding encoding); ~StreamedSource(); // Ownership of the CachedData or its buffers is *not* transferred to the // caller. The CachedData object is alive as long as the StreamedSource // object is alive. const CachedData* GetCachedData() const; internal::StreamedSource* impl() const { return impl_; } private: // Prevent copying. Not implemented. StreamedSource(const StreamedSource&); StreamedSource& operator=(const StreamedSource&); internal::StreamedSource* impl_; }; /** * A streaming task which the embedder must run on a background thread to * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript. */ class ScriptStreamingTask { public: virtual ~ScriptStreamingTask() {} virtual void Run() = 0; }; enum CompileOptions { kNoCompileOptions = 0, kProduceParserCache, kConsumeParserCache, kProduceCodeCache, kConsumeCodeCache }; /** * Compiles the specified script (context-independent). * Cached data as part of the source object can be optionally produced to be * consumed later to speed up compilation of identical source scripts. * * Note that when producing cached data, the source must point to NULL for * cached data. When consuming cached data, the cached data must have been * produced by the same version of V8. * * \param source Script source code. * \return Compiled script object (context independent; for running it must be * bound to a context). */ static V8_DEPRECATED("Use maybe version", Local<UnboundScript> CompileUnbound( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions)); static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions); /** * Compiles the specified script (bound to current context). * * \param source Script source code. * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() * using pre_data speeds compilation if it's done multiple times. * Owned by caller, no references are kept when this function returns. * \return Compiled script object, bound to the context that was active * when this function was called. When run it will always use this * context. */ static V8_DEPRECATED( "Use maybe version", Local<Script> Compile(Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions)); static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, Source* source, CompileOptions options = kNoCompileOptions); /** * Returns a task which streams script data into V8, or NULL if the script * cannot be streamed. The user is responsible for running the task on a * background thread and deleting it. When ran, the task starts parsing the * script, and it will request data from the StreamedSource as needed. When * ScriptStreamingTask::Run exits, all data has been streamed and the script * can be compiled (see Compile below). * * This API allows to start the streaming with as little data as possible, and * the remaining data (for example, the ScriptOrigin) is passed to Compile. */ static ScriptStreamingTask* StartStreamingScript( Isolate* isolate, StreamedSource* source, CompileOptions options = kNoCompileOptions); /** * Compiles a streamed script (bound to current context). * * This can only be called after the streaming has finished * (ScriptStreamingTask has been run). V8 doesn't construct the source string * during streaming, so the embedder needs to pass the full source here. */ static V8_DEPRECATED("Use maybe version", Local<Script> Compile(Isolate* isolate, StreamedSource* source, Local<String> full_source_string, const ScriptOrigin& origin)); static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, StreamedSource* source, Local<String> full_source_string, const ScriptOrigin& origin); /** * Return a version tag for CachedData for the current V8 version & flags. * * This value is meant only for determining whether a previously generated * CachedData instance is still valid; the tag has no other meaing. * * Background: The data carried by CachedData may depend on the exact * V8 version number or currently compiler flags. This means when * persisting CachedData, the embedder must take care to not pass in * data from another V8 version, or the same version with different * features enabled. * * The easiest way to do so is to clear the embedder's cache on any * such change. * * Alternatively, this tag can be stored alongside the cached data and * compared when it is being used. */ static uint32_t CachedDataVersionTag(); /** * Compile an ES6 module. * * This is an unfinished experimental feature, and is only exposed * here for internal testing purposes. * Only parsing works at the moment. Do not use. * * TODO(adamk): Script is likely the wrong return value for this; * should return some new Module type. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Script> CompileModule( Local<Context> context, Source* source, CompileOptions options = kNoCompileOptions); /** * Compile a function for a given context. This is equivalent to running * * with (obj) { * return function(args) { ... } * } * * It is possible to specify multiple context extensions (obj in the above * example). */ static V8_DEPRECATE_SOON("Use maybe version", Local<Function> CompileFunctionInContext( Isolate* isolate, Source* source, Local<Context> context, size_t arguments_count, Local<String> arguments[], size_t context_extension_count, Local<Object> context_extensions[])); static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext( Local<Context> context, Source* source, size_t arguments_count, Local<String> arguments[], size_t context_extension_count, Local<Object> context_extensions[]); private: static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal( Isolate* isolate, Source* source, CompileOptions options, bool is_module); }; /** * An error message. */ class V8_EXPORT Message { public: Local<String> Get() const; V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const); V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine( Local<Context> context) const; /** * Returns the origin for the script from where the function causing the * error originates. */ ScriptOrigin GetScriptOrigin() const; /** * Returns the resource name for the script from where the function causing * the error originates. */ Local<Value> GetScriptResourceName() const; /** * Exception stack trace. By default stack traces are not captured for * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows * to change this option. */ Local<StackTrace> GetStackTrace() const; /** * Returns the number, 1-based, of the line where the error occurred. */ V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const); V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const; /** * Returns the index within the script of the first character where * the error occurred. */ int GetStartPosition() const; /** * Returns the index within the script of the last character where * the error occurred. */ int GetEndPosition() const; /** * Returns the index within the line of the first character where * the error occurred. */ V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const); V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const; /** * Returns the index within the line of the last character where * the error occurred. */ V8_DEPRECATED("Use maybe version", int GetEndColumn() const); V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const; /** * Passes on the value set by the embedder when it fed the script from which * this Message was generated to V8. */ bool IsSharedCrossOrigin() const; bool IsOpaque() const; // TODO(1245381): Print to a string instead of on a FILE. static void PrintCurrentStackTrace(Isolate* isolate, FILE* out); static const int kNoLineNumberInfo = 0; static const int kNoColumnInfo = 0; static const int kNoScriptIdInfo = 0; }; /** * Representation of a JavaScript stack trace. The information collected is a * snapshot of the execution stack and the information remains valid after * execution continues. */ class V8_EXPORT StackTrace { public: /** * Flags that determine what information is placed captured for each * StackFrame when grabbing the current stack trace. */ enum StackTraceOptions { kLineNumber = 1, kColumnOffset = 1 << 1 | kLineNumber, kScriptName = 1 << 2, kFunctionName = 1 << 3, kIsEval = 1 << 4, kIsConstructor = 1 << 5, kScriptNameOrSourceURL = 1 << 6, kScriptId = 1 << 7, kExposeFramesAcrossSecurityOrigins = 1 << 8, kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName, kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL }; /** * Returns a StackFrame at a particular index. */ Local<StackFrame> GetFrame(uint32_t index) const; /** * Returns the number of StackFrames. */ int GetFrameCount() const; /** * Returns StackTrace as a v8::Array that contains StackFrame objects. */ Local<Array> AsArray(); /** * Grab a snapshot of the current JavaScript execution stack. * * \param frame_limit The maximum number of stack frames we want to capture. * \param options Enumerates the set of things we will capture for each * StackFrame. */ static Local<StackTrace> CurrentStackTrace( Isolate* isolate, int frame_limit, StackTraceOptions options = kOverview); }; /** * A single JavaScript stack frame. */ class V8_EXPORT StackFrame { public: /** * Returns the number, 1-based, of the line for the associate function call. * This method will return Message::kNoLineNumberInfo if it is unable to * retrieve the line number, or if kLineNumber was not passed as an option * when capturing the StackTrace. */ int GetLineNumber() const; /** * Returns the 1-based column offset on the line for the associated function * call. * This method will return Message::kNoColumnInfo if it is unable to retrieve * the column number, or if kColumnOffset was not passed as an option when * capturing the StackTrace. */ int GetColumn() const; /** * Returns the id of the script for the function for this StackFrame. * This method will return Message::kNoScriptIdInfo if it is unable to * retrieve the script id, or if kScriptId was not passed as an option when * capturing the StackTrace. */ int GetScriptId() const; /** * Returns the name of the resource that contains the script for the * function for this StackFrame. */ Local<String> GetScriptName() const; /** * Returns the name of the resource that contains the script for the * function for this StackFrame or sourceURL value if the script name * is undefined and its source ends with //# sourceURL=... string or * deprecated //@ sourceURL=... string. */ Local<String> GetScriptNameOrSourceURL() const; /** * Returns the name of the function associated with this stack frame. */ Local<String> GetFunctionName() const; /** * Returns whether or not the associated function is compiled via a call to * eval(). */ bool IsEval() const; /** * Returns whether or not the associated function is called as a * constructor via "new". */ bool IsConstructor() const; }; // A StateTag represents a possible state of the VM. enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE }; // A RegisterState represents the current state of registers used // by the sampling profiler API. struct RegisterState { RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {} void* pc; // Instruction pointer. void* sp; // Stack pointer. void* fp; // Frame pointer. }; // The output structure filled up by GetStackSample API function. struct SampleInfo { size_t frames_count; // Number of frames collected. StateTag vm_state; // Current VM state. void* external_callback_entry; // External callback address if VM is // executing an external callback. }; /** * A JSON Parser and Stringifier. */ class V8_EXPORT JSON { public: /** * Tries to parse the string |json_string| and returns it as value if * successful. * * \param json_string The string to parse. * \return The corresponding value if successfully parsed. */ static V8_DEPRECATED("Use the maybe version taking context", Local<Value> Parse(Local<String> json_string)); static V8_DEPRECATE_SOON("Use the maybe version taking context", MaybeLocal<Value> Parse(Isolate* isolate, Local<String> json_string)); static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse( Local<Context> context, Local<String> json_string); /** * Tries to stringify the JSON-serializable object |json_object| and returns * it as string if successful. * * \param json_object The JSON-serializable object to stringify. * \return The corresponding string if successfully stringified. */ static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify( Local<Context> context, Local<Object> json_object, Local<String> gap = Local<String>()); }; /** * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap * but can be created without entering a v8::Context and hence shouldn't * escape to JavaScript. */ class V8_EXPORT NativeWeakMap : public Data { public: static Local<NativeWeakMap> New(Isolate* isolate); void Set(Local<Value> key, Local<Value> value); Local<Value> Get(Local<Value> key); bool Has(Local<Value> key); bool Delete(Local<Value> key); }; // --- Value --- /** * The superclass of all JavaScript values and objects. */ class V8_EXPORT Value : public Data { public: /** * Returns true if this value is the undefined value. See ECMA-262 * 4.3.10. */ V8_INLINE bool IsUndefined() const; /** * Returns true if this value is the null value. See ECMA-262 * 4.3.11. */ V8_INLINE bool IsNull() const; /** * Returns true if this value is true. */ bool IsTrue() const; /** * Returns true if this value is false. */ bool IsFalse() const; /** * Returns true if this value is a symbol or a string. * This is an experimental feature. */ bool IsName() const; /** * Returns true if this value is an instance of the String type. * See ECMA-262 8.4. */ V8_INLINE bool IsString() const; /** * Returns true if this value is a symbol. * This is an experimental feature. */ bool IsSymbol() const; /** * Returns true if this value is a function. */ bool IsFunction() const; /** * Returns true if this value is an array. Note that it will return false for * an Proxy for an array. */ bool IsArray() const; /** * Returns true if this value is an object. */ bool IsObject() const; /** * Returns true if this value is boolean. */ bool IsBoolean() const; /** * Returns true if this value is a number. */ bool IsNumber() const; /** * Returns true if this value is external. */ bool IsExternal() const; /** * Returns true if this value is a 32-bit signed integer. */ bool IsInt32() const; /** * Returns true if this value is a 32-bit unsigned integer. */ bool IsUint32() const; /** * Returns true if this value is a Date. */ bool IsDate() const; /** * Returns true if this value is an Arguments object. */ bool IsArgumentsObject() const; /** * Returns true if this value is a Boolean object. */ bool IsBooleanObject() const; /** * Returns true if this value is a Number object. */ bool IsNumberObject() const; /** * Returns true if this value is a String object. */ bool IsStringObject() const; /** * Returns true if this value is a Symbol object. * This is an experimental feature. */ bool IsSymbolObject() const; /** * Returns true if this value is a NativeError. */ bool IsNativeError() const; /** * Returns true if this value is a RegExp. */ bool IsRegExp() const; /** * Returns true if this value is a Generator function. * This is an experimental feature. */ bool IsGeneratorFunction() const; /** * Returns true if this value is a Generator object (iterator). * This is an experimental feature. */ bool IsGeneratorObject() const; /** * Returns true if this value is a Promise. * This is an experimental feature. */ bool IsPromise() const; /** * Returns true if this value is a Map. */ bool IsMap() const; /** * Returns true if this value is a Set. */ bool IsSet() const; /** * Returns true if this value is a Map Iterator. */ bool IsMapIterator() const; /** * Returns true if this value is a Set Iterator. */ bool IsSetIterator() const; /** * Returns true if this value is a WeakMap. */ bool IsWeakMap() const; /** * Returns true if this value is a WeakSet. */ bool IsWeakSet() const; /** * Returns true if this value is an ArrayBuffer. * This is an experimental feature. */ bool IsArrayBuffer() const; /** * Returns true if this value is an ArrayBufferView. * This is an experimental feature. */ bool IsArrayBufferView() const; /** * Returns true if this value is one of TypedArrays. * This is an experimental feature. */ bool IsTypedArray() const; /** * Returns true if this value is an Uint8Array. * This is an experimental feature. */ bool IsUint8Array() const; /** * Returns true if this value is an Uint8ClampedArray. * This is an experimental feature. */ bool IsUint8ClampedArray() const; /** * Returns true if this value is an Int8Array. * This is an experimental feature. */ bool IsInt8Array() const; /** * Returns true if this value is an Uint16Array. * This is an experimental feature. */ bool IsUint16Array() const; /** * Returns true if this value is an Int16Array. * This is an experimental feature. */ bool IsInt16Array() const; /** * Returns true if this value is an Uint32Array. * This is an experimental feature. */ bool IsUint32Array() const; /** * Returns true if this value is an Int32Array. * This is an experimental feature. */ bool IsInt32Array() const; /** * Returns true if this value is a Float32Array. * This is an experimental feature. */ bool IsFloat32Array() const; /** * Returns true if this value is a Float64Array. * This is an experimental feature. */ bool IsFloat64Array() const; /** * Returns true if this value is a SIMD Float32x4. * This is an experimental feature. */ bool IsFloat32x4() const; /** * Returns true if this value is a DataView. * This is an experimental feature. */ bool IsDataView() const; /** * Returns true if this value is a SharedArrayBuffer. * This is an experimental feature. */ bool IsSharedArrayBuffer() const; /** * Returns true if this value is a JavaScript Proxy. */ bool IsProxy() const; V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const; V8_DEPRECATE_SOON("Use maybe version", Local<Boolean> ToBoolean(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Number> ToNumber(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString(Isolate* isolate) const); V8_DEPRECATED("Use maybe version", Local<String> ToDetailString(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Integer> ToInteger(Isolate* isolate) const); V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Int32> ToInt32(Isolate* isolate) const); inline V8_DEPRECATE_SOON("Use maybe version", Local<Boolean> ToBoolean() const); inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const); inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const); inline V8_DEPRECATED("Use maybe version", Local<String> ToDetailString() const); inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const); inline V8_DEPRECATE_SOON("Use maybe version", Local<Integer> ToInteger() const); inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const); inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const); /** * Attempts to convert a string to an array index. * Returns an empty handle if the conversion fails. */ V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const); V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex( Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue( Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value( Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const; V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const); V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const); V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const); V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const); V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const); /** JS == */ V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const); V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context, Local<Value> that) const; bool StrictEquals(Local<Value> that) const; bool SameValue(Local<Value> that) const; template <class T> V8_INLINE static Value* Cast(T* value); Local<String> TypeOf(v8::Isolate*); private: V8_INLINE bool QuickIsUndefined() const; V8_INLINE bool QuickIsNull() const; V8_INLINE bool QuickIsString() const; bool FullIsUndefined() const; bool FullIsNull() const; bool FullIsString() const; }; /** * The superclass of primitive values. See ECMA-262 4.3.2. */ class V8_EXPORT Primitive : public Value { }; /** * A primitive boolean value (ECMA-262, 4.3.14). Either the true * or false value. */ class V8_EXPORT Boolean : public Primitive { public: bool Value() const; V8_INLINE static Boolean* Cast(v8::Value* obj); V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value); private: static void CheckCast(v8::Value* obj); }; /** * A superclass for symbols and strings. */ class V8_EXPORT Name : public Primitive { public: /** * Returns the identity hash for this object. The current implementation * uses an inline property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash(); V8_INLINE static Name* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); }; enum class NewStringType { kNormal, kInternalized }; /** * A JavaScript string value (ECMA-262, 4.3.17). */ class V8_EXPORT String : public Name { public: static const int kMaxLength = (1 << 28) - 16; enum Encoding { UNKNOWN_ENCODING = 0x1, TWO_BYTE_ENCODING = 0x0, ONE_BYTE_ENCODING = 0x4 }; /** * Returns the number of characters in this string. */ int Length() const; /** * Returns the number of bytes in the UTF-8 encoded * representation of this string. */ int Utf8Length() const; /** * Returns whether this string is known to contain only one byte data. * Does not read the string. * False negatives are possible. */ bool IsOneByte() const; /** * Returns whether this string contain only one byte data. * Will read the entire string in some cases. */ bool ContainsOnlyOneByte() const; /** * Write the contents of the string to an external buffer. * If no arguments are given, expects the buffer to be large * enough to hold the entire string and NULL terminator. Copies * the contents of the string and the NULL terminator into the * buffer. * * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop * before the end of the buffer. * * Copies up to length characters into the output buffer. * Only null-terminates if there is enough space in the buffer. * * \param buffer The buffer into which the string will be copied. * \param start The starting position within the string at which * copying begins. * \param length The number of characters to copy from the string. For * WriteUtf8 the number of bytes in the buffer. * \param nchars_ref The number of characters written, can be NULL. * \param options Various options that might affect performance of this or * subsequent operations. * \return The number of characters copied to the buffer excluding the null * terminator. For WriteUtf8: The number of bytes copied to the buffer * including the null terminator (if written). */ enum WriteOptions { NO_OPTIONS = 0, HINT_MANY_WRITES_EXPECTED = 1, NO_NULL_TERMINATION = 2, PRESERVE_ONE_BYTE_NULL = 4, // Used by WriteUtf8 to replace orphan surrogate code units with the // unicode replacement character. Needs to be set to guarantee valid UTF-8 // output. REPLACE_INVALID_UTF8 = 8 }; // 16-bit character codes. int Write(uint16_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; // One byte characters. int WriteOneByte(uint8_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; // UTF-8 encoded characters. int WriteUtf8(char* buffer, int length = -1, int* nchars_ref = NULL, int options = NO_OPTIONS) const; /** * A zero length string. */ V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate); /** * Returns true if the string is external */ bool IsExternal() const; /** * Returns true if the string is both external and one-byte. */ bool IsExternalOneByte() const; class V8_EXPORT ExternalStringResourceBase { // NOLINT public: virtual ~ExternalStringResourceBase() {} virtual bool IsCompressible() const { return false; } protected: ExternalStringResourceBase() {} /** * Internally V8 will call this Dispose method when the external string * resource is no longer needed. The default implementation will use the * delete operator. This method can be overridden in subclasses to * control how allocated external string resources are disposed. */ virtual void Dispose() { delete this; } private: // Disallow copying and assigning. ExternalStringResourceBase(const ExternalStringResourceBase&); void operator=(const ExternalStringResourceBase&); friend class v8::internal::Heap; }; /** * An ExternalStringResource is a wrapper around a two-byte string * buffer that resides outside V8's heap. Implement an * ExternalStringResource to manage the life cycle of the underlying * buffer. Note that the string data must be immutable. */ class V8_EXPORT ExternalStringResource : public ExternalStringResourceBase { public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalStringResource() {} /** * The string data from the underlying buffer. */ virtual const uint16_t* data() const = 0; /** * The length of the string. That is, the number of two-byte characters. */ virtual size_t length() const = 0; protected: ExternalStringResource() {} }; /** * An ExternalOneByteStringResource is a wrapper around an one-byte * string buffer that resides outside V8's heap. Implement an * ExternalOneByteStringResource to manage the life cycle of the * underlying buffer. Note that the string data must be immutable * and that the data must be Latin-1 and not UTF-8, which would require * special treatment internally in the engine and do not allow efficient * indexing. Use String::New or convert to 16 bit data for non-Latin1. */ class V8_EXPORT ExternalOneByteStringResource : public ExternalStringResourceBase { public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalOneByteStringResource() {} /** The string data from the underlying buffer.*/ virtual const char* data() const = 0; /** The number of Latin-1 characters in the string.*/ virtual size_t length() const = 0; protected: ExternalOneByteStringResource() {} }; /** * If the string is an external string, return the ExternalStringResourceBase * regardless of the encoding, otherwise return NULL. The encoding of the * string is returned in encoding_out. */ V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase( Encoding* encoding_out) const; /** * Get the ExternalStringResource for an external string. Returns * NULL if IsExternal() doesn't return true. */ V8_INLINE ExternalStringResource* GetExternalStringResource() const; /** * Get the ExternalOneByteStringResource for an external one-byte string. * Returns NULL if IsExternalOneByte() doesn't return true. */ const ExternalOneByteStringResource* GetExternalOneByteStringResource() const; V8_INLINE static String* Cast(v8::Value* obj); // TODO(dcarney): remove with deprecation of New functions. enum NewStringType { kNormalString = static_cast<int>(v8::NewStringType::kNormal), kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized) }; /** Allocates a new string from UTF-8 data.*/ static V8_DEPRECATE_SOON( "Use maybe version", Local<String> NewFromUtf8(Isolate* isolate, const char* data, NewStringType type = kNormalString, int length = -1)); /** Allocates a new string from UTF-8 data. Only returns an empty value when * length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8( Isolate* isolate, const char* data, v8::NewStringType type, int length = -1); /** Allocates a new string from Latin-1 data.*/ static V8_DEPRECATED( "Use maybe version", Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data, NewStringType type = kNormalString, int length = -1)); /** Allocates a new string from Latin-1 data. Only returns an empty value * when length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte( Isolate* isolate, const uint8_t* data, v8::NewStringType type, int length = -1); /** Allocates a new string from UTF-16 data.*/ static V8_DEPRECATE_SOON( "Use maybe version", Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data, NewStringType type = kNormalString, int length = -1)); /** Allocates a new string from UTF-16 data. Only returns an empty value when * length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte( Isolate* isolate, const uint16_t* data, v8::NewStringType type, int length = -1); /** * Creates a new string by concatenating the left and the right strings * passed in as parameters. */ static Local<String> Concat(Local<String> left, Local<String> right); /** * Creates a new external string using the data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static V8_DEPRECATED("Use maybe version", Local<String> NewExternal( Isolate* isolate, ExternalStringResource* resource)); static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte( Isolate* isolate, ExternalStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalStringResource* resource); /** * Creates a new external string using the one-byte data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static V8_DEPRECATE_SOON( "Use maybe version", Local<String> NewExternal(Isolate* isolate, ExternalOneByteStringResource* resource)); static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte( Isolate* isolate, ExternalOneByteStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalOneByteStringResource* resource); /** * Returns true if this string can be made external. */ bool CanMakeExternal(); /** * Converts an object to a UTF-8-encoded character array. Useful if * you want to print the object. If conversion to a string fails * (e.g. due to an exception in the toString() method of the object) * then the length() method returns 0 and the * operator returns * NULL. */ class V8_EXPORT Utf8Value { public: explicit Utf8Value(Local<v8::Value> obj); ~Utf8Value(); char* operator*() { return str_; } const char* operator*() const { return str_; } int length() const { return length_; } private: char* str_; int length_; // Disallow copying and assigning. Utf8Value(const Utf8Value&); void operator=(const Utf8Value&); }; /** * Converts an object to a two-byte string. * If conversion to a string fails (eg. due to an exception in the toString() * method of the object) then the length() method returns 0 and the * operator * returns NULL. */ class V8_EXPORT Value { public: explicit Value(Local<v8::Value> obj); ~Value(); uint16_t* operator*() { return str_; } const uint16_t* operator*() const { return str_; } int length() const { return length_; } private: uint16_t* str_; int length_; // Disallow copying and assigning. Value(const Value&); void operator=(const Value&); }; private: void VerifyExternalStringResourceBase(ExternalStringResourceBase* v, Encoding encoding) const; void VerifyExternalStringResource(ExternalStringResource* val) const; static void CheckCast(v8::Value* obj); }; /** * A JavaScript symbol (ECMA-262 edition 6) * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT Symbol : public Name { public: // Returns the print name string of the symbol, or undefined if none. Local<Value> Name() const; // Create a symbol. If name is not empty, it will be used as the description. static Local<Symbol> New(Isolate* isolate, Local<String> name = Local<String>()); // Access global symbol registry. // Note that symbols created this way are never collected, so // they should only be used for statically fixed properties. // Also, there is only one global name space for the names used as keys. // To minimize the potential for clashes, use qualified names as keys. static Local<Symbol> For(Isolate *isolate, Local<String> name); // Retrieve a global symbol. Similar to |For|, but using a separate // registry that is not accessible by (and cannot clash with) JavaScript code. static Local<Symbol> ForApi(Isolate *isolate, Local<String> name); // Well-known symbols static Local<Symbol> GetIterator(Isolate* isolate); static Local<Symbol> GetUnscopables(Isolate* isolate); static Local<Symbol> GetToStringTag(Isolate* isolate); static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate); V8_INLINE static Symbol* Cast(v8::Value* obj); private: Symbol(); static void CheckCast(v8::Value* obj); }; /** * A private symbol * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT Private : public Data { public: // Returns the print name string of the private symbol, or undefined if none. Local<Value> Name() const; // Create a private symbol. If name is not empty, it will be the description. static Local<Private> New(Isolate* isolate, Local<String> name = Local<String>()); // Retrieve a global private symbol. If a symbol with this name has not // been retrieved in the same isolate before, it is created. // Note that private symbols created this way are never collected, so // they should only be used for statically fixed properties. // Also, there is only one global name space for the names used as keys. // To minimize the potential for clashes, use qualified names as keys, // e.g., "Class#property". static Local<Private> ForApi(Isolate* isolate, Local<String> name); private: Private(); }; /** * A JavaScript number value (ECMA-262, 4.3.20) */ class V8_EXPORT Number : public Primitive { public: double Value() const; static Local<Number> New(Isolate* isolate, double value); V8_INLINE static Number* Cast(v8::Value* obj); private: Number(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a signed integer. */ class V8_EXPORT Integer : public Number { public: static Local<Integer> New(Isolate* isolate, int32_t value); static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value); int64_t Value() const; V8_INLINE static Integer* Cast(v8::Value* obj); private: Integer(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a 32-bit signed integer. */ class V8_EXPORT Int32 : public Integer { public: int32_t Value() const; V8_INLINE static Int32* Cast(v8::Value* obj); private: Int32(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a 32-bit unsigned integer. */ class V8_EXPORT Uint32 : public Integer { public: uint32_t Value() const; V8_INLINE static Uint32* Cast(v8::Value* obj); private: Uint32(); static void CheckCast(v8::Value* obj); }; enum PropertyAttribute { None = 0, ReadOnly = 1 << 0, DontEnum = 1 << 1, DontDelete = 1 << 2 }; /** * Accessor[Getter|Setter] are used as callback functions when * setting|getting a particular property. See Object and ObjectTemplate's * method SetAccessor. */ typedef void (*AccessorGetterCallback)( Local<String> property, const PropertyCallbackInfo<Value>& info); typedef void (*AccessorNameGetterCallback)( Local<Name> property, const PropertyCallbackInfo<Value>& info); typedef void (*AccessorSetterCallback)( Local<String> property, Local<Value> value, const PropertyCallbackInfo<void>& info); typedef void (*AccessorNameSetterCallback)( Local<Name> property, Local<Value> value, const PropertyCallbackInfo<void>& info); /** * Access control specifications. * * Some accessors should be accessible across contexts. These * accessors have an explicit access control parameter which specifies * the kind of cross-context access that should be allowed. * * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused. */ enum AccessControl { DEFAULT = 0, ALL_CAN_READ = 1, ALL_CAN_WRITE = 1 << 1, PROHIBITS_OVERWRITING = 1 << 2 }; /** * Property filter bits. They can be or'ed to build a composite filter. */ enum PropertyFilter { ALL_PROPERTIES = 0, ONLY_WRITABLE = 1, ONLY_ENUMERABLE = 2, ONLY_CONFIGURABLE = 4, SKIP_STRINGS = 8, SKIP_SYMBOLS = 16 }; /** * Keys/Properties filter enums: * * KeyCollectionMode limits the range of collected properties. kOwnOnly limits * the collected properties to the given Object only. kIncludesPrototypes will * include all keys of the objects's prototype chain as well. */ enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes }; /** * kIncludesIndices allows for integer indices to be collected, while * kSkipIndices will exclude integer indicies from being collected. */ enum class IndexFilter { kIncludeIndices, kSkipIndices }; /** * Integrity level for objects. */ enum class IntegrityLevel { kFrozen, kSealed }; /** * A JavaScript object (ECMA-262, 4.3.3) */ class V8_EXPORT Object : public Value { public: V8_DEPRECATE_SOON("Use maybe version", bool Set(Local<Value> key, Local<Value> value)); V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, Local<Value> key, Local<Value> value); V8_DEPRECATE_SOON("Use maybe version", bool Set(uint32_t index, Local<Value> value)); V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index, Local<Value> value); // Implements CreateDataProperty (ECMA-262, 7.3.4). // // Defines a configurable, writable, enumerable property with the given value // on the object unless the property already exists and is not configurable // or the object is not extensible. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, Local<Name> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, uint32_t index, Local<Value> value); // Implements DefineOwnProperty. // // In general, CreateDataProperty will be faster, however, does not allow // for specifying attributes. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty( Local<Context> context, Local<Name> key, Local<Value> value, PropertyAttribute attributes = None); // Sets an own property on this object bypassing interceptors and // overriding accessors or read-only properties. // // Note that if the object has an interceptor the property will be set // locally, but since the interceptor takes precedence the local property // will only be returned if the interceptor doesn't return a value. // // Note also that this only works for named properties. V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty", bool ForceSet(Local<Value> key, Local<Value> value, PropertyAttribute attribs = None)); V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty", Maybe<bool> ForceSet(Local<Context> context, Local<Value> key, Local<Value> value, PropertyAttribute attribs = None)); V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, Local<Value> key); V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, uint32_t index); /** * Gets the property attributes of a property which can be None or * any combination of ReadOnly, DontEnum and DontDelete. Returns * None when the property doesn't exist. */ V8_DEPRECATED("Use maybe version", PropertyAttribute GetPropertyAttributes(Local<Value> key)); V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes( Local<Context> context, Local<Value> key); /** * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3. */ V8_DEPRECATED("Use maybe version", Local<Value> GetOwnPropertyDescriptor(Local<String> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor( Local<Context> context, Local<String> key); V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key)); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); V8_DEPRECATED("Use maybe version", bool Has(uint32_t index)); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index); V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, uint32_t index); V8_DEPRECATED("Use maybe version", bool SetAccessor(Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None)); V8_DEPRECATED("Use maybe version", bool SetAccessor(Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, MaybeLocal<Value> data = MaybeLocal<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None); void SetAccessorProperty(Local<Name> name, Local<Function> getter, Local<Function> setter = Local<Function>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT); /** * Functionality for private properties. * This is an experimental feature, use at your own risk. * Note: Private properties are not inherited. Do not rely on this, since it * may change. */ Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key); Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key, Local<Value> value); Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key); MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key); /** * Returns an array containing the names of the enumerable properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames()); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context, KeyCollectionMode mode, PropertyFilter property_filter, IndexFilter index_filter); /** * This function has the same functionality as GetPropertyNames but * the returned array doesn't contain the names of properties from * prototype objects. */ V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames()); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context); /** * Returns an array containing the names of the filtered properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context, PropertyFilter filter); /** * Get the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ Local<Value> GetPrototype(); /** * Set the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype)); V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context, Local<Value> prototype); /** * Finds an instance of the given function template in the prototype * chain. */ Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl); /** * Call builtin Object.prototype.toString on this object. * This is different from Value::ToString() that may call * user-defined toString function. This one does not. */ V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString()); V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString( Local<Context> context); /** * Returns the name of the function invoked as a constructor for this object. */ Local<String> GetConstructorName(); /** * Sets the integrity level of the object. */ Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level); /** Gets the number of internal fields for this Object. */ int InternalFieldCount(); /** Same as above, but works for Persistents */ V8_INLINE static int InternalFieldCount( const PersistentBase<Object>& object) { return object.val_->InternalFieldCount(); } /** Gets the value from an internal field. */ V8_INLINE Local<Value> GetInternalField(int index); /** Sets the value in an internal field. */ void SetInternalField(int index, Local<Value> value); /** * Gets a 2-byte-aligned native pointer from an internal field. This field * must have been set by SetAlignedPointerInInternalField, everything else * leads to undefined behavior. */ V8_INLINE void* GetAlignedPointerFromInternalField(int index); /** Same as above, but works for Persistents */ V8_INLINE static void* GetAlignedPointerFromInternalField( const PersistentBase<Object>& object, int index) { return object.val_->GetAlignedPointerFromInternalField(index); } /** * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such * a field, GetAlignedPointerFromInternalField must be used, everything else * leads to undefined behavior. */ void SetAlignedPointerInInternalField(int index, void* value); // Testers for local properties. V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, Local<Name> key); V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, uint32_t index); V8_DEPRECATE_SOON("Use maybe version", bool HasRealNamedProperty(Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context, Local<Name> key); V8_DEPRECATE_SOON("Use maybe version", bool HasRealIndexedProperty(uint32_t index)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty( Local<Context> context, uint32_t index); V8_DEPRECATE_SOON("Use maybe version", bool HasRealNamedCallbackProperty(Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty( Local<Context> context, Local<Name> key); /** * If result.IsEmpty() no real property was located in the prototype chain. * This means interceptors in the prototype chain are not called. */ V8_DEPRECATED( "Use maybe version", Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain( Local<Context> context, Local<Name> key); /** * Gets the property attributes of a real property in the prototype chain, * which can be None or any combination of ReadOnly, DontEnum and DontDelete. * Interceptors in the prototype chain are not called. */ V8_DEPRECATED( "Use maybe version", Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain( Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context, Local<Name> key); /** * If result.IsEmpty() no real property was located on the object or * in the prototype chain. * This means interceptors in the prototype chain are not called. */ V8_DEPRECATED("Use maybe version", Local<Value> GetRealNamedProperty(Local<String> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty( Local<Context> context, Local<Name> key); /** * Gets the property attributes of a real property which can be * None or any combination of ReadOnly, DontEnum and DontDelete. * Interceptors in the prototype chain are not called. */ V8_DEPRECATED("Use maybe version", Maybe<PropertyAttribute> GetRealNamedPropertyAttributes( Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes( Local<Context> context, Local<Name> key); /** Tests for a named lookup interceptor.*/ bool HasNamedLookupInterceptor(); /** Tests for an index lookup interceptor.*/ bool HasIndexedLookupInterceptor(); /** * Returns the identity hash for this object. The current implementation * uses a hidden property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash(); /** * Clone this object with a fast but shallow copy. Values will point * to the same values as the original object. */ // TODO(dcarney): take an isolate and optionally bail out? Local<Object> Clone(); /** * Returns the context in which the object was created. */ Local<Context> CreationContext(); /** * Checks whether a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * When an Object is callable this method returns true. */ bool IsCallable(); /** * True if this object is a constructor. */ bool IsConstructor(); /** * Call an Object as a function if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. */ V8_DEPRECATED("Use maybe version", Local<Value> CallAsFunction(Local<Value> recv, int argc, Local<Value> argv[])); V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]); /** * Call an Object as a constructor if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * Note: This method behaves like the Function::NewInstance method. */ V8_DEPRECATED("Use maybe version", Local<Value> CallAsConstructor(int argc, Local<Value> argv[])); V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor( Local<Context> context, int argc, Local<Value> argv[]); /** * Return the isolate to which the Object belongs to. */ V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate()); static Local<Object> New(Isolate* isolate); V8_INLINE static Object* Cast(Value* obj); private: Object(); static void CheckCast(Value* obj); Local<Value> SlowGetInternalField(int index); void* SlowGetAlignedPointerFromInternalField(int index); }; /** * An instance of the built-in array constructor (ECMA-262, 15.4.2). */ class V8_EXPORT Array : public Object { public: uint32_t Length() const; /** * Clones an element at index |index|. Returns an empty * handle if cloning fails (for any reason). */ V8_DEPRECATED("Cloning is not supported.", Local<Object> CloneElementAt(uint32_t index)); V8_DEPRECATED("Cloning is not supported.", MaybeLocal<Object> CloneElementAt(Local<Context> context, uint32_t index)); /** * Creates a JavaScript array with the given length. If the length * is negative the returned array will have length 0. */ static Local<Array> New(Isolate* isolate, int length = 0); V8_INLINE static Array* Cast(Value* obj); private: Array(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1). */ class V8_EXPORT Map : public Object { public: size_t Size() const; void Clear(); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context, Local<Value> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); /** * Returns an array of length Size() * 2, where index N is the Nth key and * index N + 1 is the Nth value. */ Local<Array> AsArray() const; /** * Creates a new empty Map. */ static Local<Map> New(Isolate* isolate); V8_INLINE static Map* Cast(Value* obj); private: Map(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1). */ class V8_EXPORT Set : public Object { public: size_t Size() const; void Clear(); V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); /** * Returns an array of the keys in this Set. */ Local<Array> AsArray() const; /** * Creates a new empty Set. */ static Local<Set> New(Isolate* isolate); V8_INLINE static Set* Cast(Value* obj); private: Set(); static void CheckCast(Value* obj); }; template<typename T> class ReturnValue { public: template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that) : value_(that.value_) { TYPE_CHECK(T, S); } // Local setters template <typename S> V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead", void Set(const Persistent<S>& handle)); template <typename S> V8_INLINE void Set(const Global<S>& handle); template <typename S> V8_INLINE void Set(const Local<S> handle); // Fast primitive setters V8_INLINE void Set(bool value); V8_INLINE void Set(double i); V8_INLINE void Set(int32_t i); V8_INLINE void Set(uint32_t i); // Fast JS primitive setters V8_INLINE void SetNull(); V8_INLINE void SetUndefined(); V8_INLINE void SetEmptyString(); // Convenience getter for Isolate V8_INLINE Isolate* GetIsolate() const; // Pointer setter: Uncompilable to prevent inadvertent misuse. template <typename S> V8_INLINE void Set(S* whatever); // Getter. Creates a new Local<> so it comes with a certain performance // hit. If the ReturnValue was not yet set, this will return the undefined // value. V8_INLINE Local<Value> Get() const; private: template<class F> friend class ReturnValue; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; template <class F, class G, class H> friend class PersistentValueMapBase; V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; } V8_INLINE internal::Object* GetDefaultValue(); V8_INLINE explicit ReturnValue(internal::Object** slot); internal::Object** value_; }; /** * The argument information given to function call callbacks. This * class provides access to information about the context of the call, * including the receiver, the number and values of arguments, and * the holder of the function. */ template<typename T> class FunctionCallbackInfo { public: V8_INLINE int Length() const; V8_INLINE Local<Value> operator[](int i) const; V8_INLINE V8_DEPRECATED("Use Data() to explicitly pass Callee instead", Local<Function> Callee() const); V8_INLINE Local<Object> This() const; V8_INLINE Local<Object> Holder() const; V8_INLINE Local<Value> NewTarget() const; V8_INLINE bool IsConstructCall() const; V8_INLINE Local<Value> Data() const; V8_INLINE Isolate* GetIsolate() const; V8_INLINE ReturnValue<T> GetReturnValue() const; // This shouldn't be public, but the arm compiler needs it. static const int kArgsLength = 8; protected: friend class internal::FunctionCallbackArguments; friend class internal::CustomArguments<FunctionCallbackInfo>; static const int kHolderIndex = 0; static const int kIsolateIndex = 1; static const int kReturnValueDefaultValueIndex = 2; static const int kReturnValueIndex = 3; static const int kDataIndex = 4; static const int kCalleeIndex = 5; static const int kContextSaveIndex = 6; static const int kNewTargetIndex = 7; V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args, internal::Object** values, int length); internal::Object** implicit_args_; internal::Object** values_; int length_; }; /** * The information passed to a property callback about the context * of the property access. */ template<typename T> class PropertyCallbackInfo { public: V8_INLINE Isolate* GetIsolate() const; V8_INLINE Local<Value> Data() const; V8_INLINE Local<Object> This() const; V8_INLINE Local<Object> Holder() const; V8_INLINE ReturnValue<T> GetReturnValue() const; V8_INLINE bool ShouldThrowOnError() const; // This shouldn't be public, but the arm compiler needs it. static const int kArgsLength = 7; protected: friend class MacroAssembler; friend class internal::PropertyCallbackArguments; friend class internal::CustomArguments<PropertyCallbackInfo>; static const int kShouldThrowOnErrorIndex = 0; static const int kHolderIndex = 1; static const int kIsolateIndex = 2; static const int kReturnValueDefaultValueIndex = 3; static const int kReturnValueIndex = 4; static const int kDataIndex = 5; static const int kThisIndex = 6; V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {} internal::Object** args_; }; typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info); enum class ConstructorBehavior { kThrow, kAllow }; /** * A JavaScript function object (ECMA-262, 15.3). */ class V8_EXPORT Function : public Object { public: /** * Create a function in the current execution context * for a given FunctionCallback. */ static MaybeLocal<Function> New( Local<Context> context, FunctionCallback callback, Local<Value> data = Local<Value>(), int length = 0, ConstructorBehavior behavior = ConstructorBehavior::kAllow); static V8_DEPRECATE_SOON( "Use maybe version", Local<Function> New(Isolate* isolate, FunctionCallback callback, Local<Value> data = Local<Value>(), int length = 0)); V8_DEPRECATED("Use maybe version", Local<Object> NewInstance(int argc, Local<Value> argv[]) const); V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance( Local<Context> context, int argc, Local<Value> argv[]) const; V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const); V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance( Local<Context> context) const { return NewInstance(context, 0, nullptr); } V8_DEPRECATE_SOON("Use maybe version", Local<Value> Call(Local<Value> recv, int argc, Local<Value> argv[])); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]); void SetName(Local<String> name); Local<Value> GetName() const; /** * Name inferred from variable or property assignment of this function. * Used to facilitate debugging and profiling of JavaScript code written * in an OO style, where many functions are anonymous but are assigned * to object properties. */ Local<Value> GetInferredName() const; /** * displayName if it is set, otherwise name if it is configured, otherwise * function name, otherwise inferred name. */ Local<Value> GetDebugName() const; /** * User-defined name assigned to the "displayName" property of this function. * Used to facilitate debugging and profiling of JavaScript code. */ Local<Value> GetDisplayName() const; /** * Returns zero based line number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptLineNumber() const; /** * Returns zero based column number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptColumnNumber() const; /** * Tells whether this function is builtin. */ bool IsBuiltin() const; /** * Returns scriptId. */ int ScriptId() const; /** * Returns the original function if this function is bound, else returns * v8::Undefined. */ Local<Value> GetBoundFunction() const; ScriptOrigin GetScriptOrigin() const; V8_INLINE static Function* Cast(Value* obj); static const int kLineOffsetNotFound; private: Function(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Promise constructor (ES6 draft). * This API is experimental. Only works with --harmony flag. */ class V8_EXPORT Promise : public Object { public: class V8_EXPORT Resolver : public Object { public: /** * Create a new resolver, along with an associated promise in pending state. */ static V8_DEPRECATE_SOON("Use maybe version", Local<Resolver> New(Isolate* isolate)); static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New( Local<Context> context); /** * Extract the associated promise. */ Local<Promise> GetPromise(); /** * Resolve/reject the associated promise with a given value. * Ignored if the promise is no longer pending. */ V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> Resolve(Local<Context> context, Local<Value> value); V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> Reject(Local<Context> context, Local<Value> value); V8_INLINE static Resolver* Cast(Value* obj); private: Resolver(); static void CheckCast(Value* obj); }; /** * Register a resolution/rejection handler with a promise. * The handler is given the respective resolution/rejection value as * an argument. If the promise is already resolved/rejected, the handler is * invoked at the end of turn. */ V8_DEPRECATED("Use maybe version of Then", Local<Promise> Chain(Local<Function> handler)); V8_DEPRECATED("Use Then", V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Chain( Local<Context> context, Local<Function> handler)); V8_DEPRECATED("Use maybe version", Local<Promise> Catch(Local<Function> handler)); V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context, Local<Function> handler); V8_DEPRECATED("Use maybe version", Local<Promise> Then(Local<Function> handler)); V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context, Local<Function> handler); /** * Returns true if the promise has at least one derived promise, and * therefore resolve/reject handlers (including default handler). */ bool HasHandler(); V8_INLINE static Promise* Cast(Value* obj); private: Promise(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition, * 26.2.1). */ class V8_EXPORT Proxy : public Object { public: Local<Object> GetTarget(); Local<Value> GetHandler(); bool IsRevoked(); void Revoke(); /** * Creates a new empty Map. */ static MaybeLocal<Proxy> New(Local<Context> context, Local<Object> local_target, Local<Object> local_handler); V8_INLINE static Proxy* Cast(Value* obj); private: Proxy(); static void CheckCast(Value* obj); }; #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2 #endif enum class ArrayBufferCreationMode { kInternalized, kExternalized }; /** * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5). * This API is experimental and may change significantly. */ class V8_EXPORT ArrayBuffer : public Object { public: /** * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory. * The allocator is a global V8 setting. It has to be set via * Isolate::CreateParams. * * Memory allocated through this allocator by V8 is accounted for as external * memory by V8. Note that V8 keeps track of the memory for all internalized * |ArrayBuffer|s. Responsibility for tracking external memory (using * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the * embedder upon externalization and taken over upon internalization (creating * an internalized buffer from an existing buffer). * * Note that it is unsafe to call back into V8 from any of the allocator * functions. * * This API is experimental and may change significantly. */ class V8_EXPORT Allocator { // NOLINT public: virtual ~Allocator() {} /** * Allocate |length| bytes. Return NULL if allocation is not successful. * Memory should be initialized to zeroes. */ virtual void* Allocate(size_t length) = 0; /** * Allocate |length| bytes. Return NULL if allocation is not successful. * Memory does not have to be initialized. */ virtual void* AllocateUninitialized(size_t length) = 0; /** * Free the memory block of size |length|, pointed to by |data|. * That memory is guaranteed to be previously allocated by |Allocate|. */ virtual void Free(void* data, size_t length) = 0; }; /** * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer| * returns an instance of this class, populated, with a pointer to data * and byte length. * * The Data pointer of ArrayBuffer::Contents is always allocated with * Allocator::Allocate that is set via Isolate::CreateParams. * * This API is experimental and may change significantly. */ class V8_EXPORT Contents { // NOLINT public: Contents() : data_(NULL), byte_length_(0) {} void* Data() const { return data_; } size_t ByteLength() const { return byte_length_; } private: void* data_; size_t byte_length_; friend class ArrayBuffer; }; /** * Data length in bytes. */ size_t ByteLength() const; /** * Create a new ArrayBuffer. Allocate |byte_length| bytes. * Allocated memory will be owned by a created ArrayBuffer and * will be deallocated when it is garbage-collected, * unless the object is externalized. */ static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length); /** * Create a new ArrayBuffer over an existing memory block. * The created array buffer is by default immediately in externalized state. * The memory block will not be reclaimed when a created ArrayBuffer * is garbage-collected. */ static Local<ArrayBuffer> New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized); /** * Returns true if ArrayBuffer is externalized, that is, does not * own its memory block. */ bool IsExternal() const; /** * Returns true if this ArrayBuffer may be neutered. */ bool IsNeuterable() const; /** * Neuters this ArrayBuffer and all its views (typed arrays). * Neutering sets the byte length of the buffer and all typed arrays to zero, * preventing JavaScript from ever accessing underlying backing store. * ArrayBuffer should have been externalized and must be neuterable. */ void Neuter(); /** * Make this ArrayBuffer external. The pointer to underlying memory block * and byte length are returned as |Contents| structure. After ArrayBuffer * had been etxrenalized, it does no longer owns the memory block. The caller * should take steps to free memory when it is no longer needed. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * that has been set via Isolate::CreateParams. */ Contents Externalize(); /** * Get a pointer to the ArrayBuffer's underlying memory block without * externalizing it. If the ArrayBuffer is not externalized, this pointer * will become invalid as soon as the ArrayBuffer became garbage collected. * * The embedder should make sure to hold a strong reference to the * ArrayBuffer while accessing this pointer. * * The memory block is guaranteed to be allocated with |Allocator::Allocate|. */ Contents GetContents(); V8_INLINE static ArrayBuffer* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; private: ArrayBuffer(); static void CheckCast(Value* obj); }; #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2 #endif /** * A base class for an instance of one of "views" over ArrayBuffer, * including TypedArrays and DataView (ES6 draft 15.13). * * This API is experimental and may change significantly. */ class V8_EXPORT ArrayBufferView : public Object { public: /** * Returns underlying ArrayBuffer. */ Local<ArrayBuffer> Buffer(); /** * Byte offset in |Buffer|. */ size_t ByteOffset(); /** * Size of a view in bytes. */ size_t ByteLength(); /** * Copy the contents of the ArrayBufferView's buffer to an embedder defined * memory without additional overhead that calling ArrayBufferView::Buffer * might incur. * * Will write at most min(|byte_length|, ByteLength) bytes starting at * ByteOffset of the underling buffer to the memory starting at |dest|. * Returns the number of bytes actually written. */ size_t CopyContents(void* dest, size_t byte_length); /** * Returns true if ArrayBufferView's backing ArrayBuffer has already been * allocated. */ bool HasBuffer() const; V8_INLINE static ArrayBufferView* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT; private: ArrayBufferView(); static void CheckCast(Value* obj); }; /** * A base class for an instance of TypedArray series of constructors * (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT TypedArray : public ArrayBufferView { public: /** * Number of elements in this typed array * (e.g. for Int16Array, |ByteLength|/2). */ size_t Length(); V8_INLINE static TypedArray* Cast(Value* obj); private: TypedArray(); static void CheckCast(Value* obj); }; /** * An instance of Uint8Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint8Array : public TypedArray { public: static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8Array* Cast(Value* obj); private: Uint8Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint8ClampedArray : public TypedArray { public: static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint8ClampedArray> New( Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8ClampedArray* Cast(Value* obj); private: Uint8ClampedArray(); static void CheckCast(Value* obj); }; /** * An instance of Int8Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Int8Array : public TypedArray { public: static Local<Int8Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int8Array* Cast(Value* obj); private: Int8Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint16Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint16Array : public TypedArray { public: static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint16Array* Cast(Value* obj); private: Uint16Array(); static void CheckCast(Value* obj); }; /** * An instance of Int16Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Int16Array : public TypedArray { public: static Local<Int16Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int16Array* Cast(Value* obj); private: Int16Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint32Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Uint32Array : public TypedArray { public: static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint32Array* Cast(Value* obj); private: Uint32Array(); static void CheckCast(Value* obj); }; /** * An instance of Int32Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Int32Array : public TypedArray { public: static Local<Int32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int32Array* Cast(Value* obj); private: Int32Array(); static void CheckCast(Value* obj); }; /** * An instance of Float32Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Float32Array : public TypedArray { public: static Local<Float32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float32Array* Cast(Value* obj); private: Float32Array(); static void CheckCast(Value* obj); }; /** * An instance of Float64Array constructor (ES6 draft 15.13.6). * This API is experimental and may change significantly. */ class V8_EXPORT Float64Array : public TypedArray { public: static Local<Float64Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float64Array* Cast(Value* obj); private: Float64Array(); static void CheckCast(Value* obj); }; /** * An instance of DataView constructor (ES6 draft 15.13.7). * This API is experimental and may change significantly. */ class V8_EXPORT DataView : public ArrayBufferView { public: static Local<DataView> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static DataView* Cast(Value* obj); private: DataView(); static void CheckCast(Value* obj); }; /** * An instance of the built-in SharedArrayBuffer constructor. * This API is experimental and may change significantly. */ class V8_EXPORT SharedArrayBuffer : public Object { public: /** * The contents of an |SharedArrayBuffer|. Externalization of * |SharedArrayBuffer| returns an instance of this class, populated, with a * pointer to data and byte length. * * The Data pointer of SharedArrayBuffer::Contents is always allocated with * |ArrayBuffer::Allocator::Allocate| by the allocator specified in * v8::Isolate::CreateParams::array_buffer_allocator. * * This API is experimental and may change significantly. */ class V8_EXPORT Contents { // NOLINT public: Contents() : data_(NULL), byte_length_(0) {} void* Data() const { return data_; } size_t ByteLength() const { return byte_length_; } private: void* data_; size_t byte_length_; friend class SharedArrayBuffer; }; /** * Data length in bytes. */ size_t ByteLength() const; /** * Create a new SharedArrayBuffer. Allocate |byte_length| bytes. * Allocated memory will be owned by a created SharedArrayBuffer and * will be deallocated when it is garbage-collected, * unless the object is externalized. */ static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length); /** * Create a new SharedArrayBuffer over an existing memory block. The created * array buffer is immediately in externalized state unless otherwise * specified. The memory block will not be reclaimed when a created * SharedArrayBuffer is garbage-collected. */ static Local<SharedArrayBuffer> New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized); /** * Returns true if SharedArrayBuffer is externalized, that is, does not * own its memory block. */ bool IsExternal() const; /** * Make this SharedArrayBuffer external. The pointer to underlying memory * block and byte length are returned as |Contents| structure. After * SharedArrayBuffer had been etxrenalized, it does no longer owns the memory * block. The caller should take steps to free memory when it is no longer * needed. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * by the allocator specified in * v8::Isolate::CreateParams::array_buffer_allocator. * */ Contents Externalize(); /** * Get a pointer to the ArrayBuffer's underlying memory block without * externalizing it. If the ArrayBuffer is not externalized, this pointer * will become invalid as soon as the ArrayBuffer became garbage collected. * * The embedder should make sure to hold a strong reference to the * ArrayBuffer while accessing this pointer. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * by the allocator specified in * v8::Isolate::CreateParams::array_buffer_allocator. */ Contents GetContents(); V8_INLINE static SharedArrayBuffer* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; private: SharedArrayBuffer(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Date constructor (ECMA-262, 15.9). */ class V8_EXPORT Date : public Object { public: static V8_DEPRECATE_SOON("Use maybe version.", Local<Value> New(Isolate* isolate, double time)); static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context, double time); /** * A specialization of Value::NumberValue that is more efficient * because we know the structure of this object. */ double ValueOf() const; V8_INLINE static Date* Cast(v8::Value* obj); /** * Notification that the embedder has changed the time zone, * daylight savings time, or other date / time configuration * parameters. V8 keeps a cache of various values used for * date / time computation. This notification will reset * those cached values for the current context so that date / * time configuration changes would be reflected in the Date * object. * * This API should not be called more than needed as it will * negatively impact the performance of date operations. */ static void DateTimeConfigurationChangeNotification(Isolate* isolate); private: static void CheckCast(v8::Value* obj); }; /** * A Number object (ECMA-262, 4.3.21). */ class V8_EXPORT NumberObject : public Object { public: static Local<Value> New(Isolate* isolate, double value); double ValueOf() const; V8_INLINE static NumberObject* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); }; /** * A Boolean object (ECMA-262, 4.3.15). */ class V8_EXPORT BooleanObject : public Object { public: static Local<Value> New(Isolate* isolate, bool value); V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value)); bool ValueOf() const; V8_INLINE static BooleanObject* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); }; /** * A String object (ECMA-262, 4.3.18). */ class V8_EXPORT StringObject : public Object { public: static Local<Value> New(Local<String> value); Local<String> ValueOf() const; V8_INLINE static StringObject* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); }; /** * A Symbol object (ECMA-262 edition 6). * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT SymbolObject : public Object { public: static Local<Value> New(Isolate* isolate, Local<Symbol> value); Local<Symbol> ValueOf() const; V8_INLINE static SymbolObject* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); }; /** * An instance of the built-in RegExp constructor (ECMA-262, 15.10). */ class V8_EXPORT RegExp : public Object { public: /** * Regular expression flag bits. They can be or'ed to enable a set * of flags. */ enum Flags { kNone = 0, kGlobal = 1, kIgnoreCase = 2, kMultiline = 4, kSticky = 8, kUnicode = 16 }; /** * Creates a regular expression from the given pattern string and * the flags bit field. May throw a JavaScript exception as * described in ECMA-262, 15.10.4.1. * * For example, * RegExp::New(v8::String::New("foo"), * static_cast<RegExp::Flags>(kGlobal | kMultiline)) * is equivalent to evaluating "/foo/gm". */ static V8_DEPRECATE_SOON("Use maybe version", Local<RegExp> New(Local<String> pattern, Flags flags)); static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context, Local<String> pattern, Flags flags); /** * Returns the value of the source property: a string representing * the regular expression. */ Local<String> GetSource() const; /** * Returns the flags bit field. */ Flags GetFlags() const; V8_INLINE static RegExp* Cast(v8::Value* obj); private: static void CheckCast(v8::Value* obj); }; /** * A JavaScript value that wraps a C++ void*. This type of value is mainly used * to associate C++ data structures with JavaScript objects. */ class V8_EXPORT External : public Value { public: static Local<External> New(Isolate* isolate, void* value); V8_INLINE static External* Cast(Value* obj); void* Value() const; private: static void CheckCast(v8::Value* obj); }; #define V8_INTRINSICS_LIST(F) F(ArrayProto_values, array_values_iterator) enum Intrinsic { #define V8_DECL_INTRINSIC(name, iname) k##name, V8_INTRINSICS_LIST(V8_DECL_INTRINSIC) #undef V8_DECL_INTRINSIC }; // --- Templates --- /** * The superclass of object and function templates. */ class V8_EXPORT Template : public Data { public: /** * Adds a property to each instance created by this template. * * The property must be defined either as a primitive value, or a template. */ void Set(Local<Name> name, Local<Data> value, PropertyAttribute attributes = None); V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value); void SetAccessorProperty( Local<Name> name, Local<FunctionTemplate> getter = Local<FunctionTemplate>(), Local<FunctionTemplate> setter = Local<FunctionTemplate>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT); /** * Whenever the property with the given name is accessed on objects * created from this Template the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetNativeDataProperty( Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, // TODO(dcarney): gcc can't handle Local below Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT); void SetNativeDataProperty( Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, // TODO(dcarney): gcc can't handle Local below Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT); /** * During template instantiation, sets the value with the intrinsic property * from the correct context. */ void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic, PropertyAttribute attribute = None); private: Template(); friend class ObjectTemplate; friend class FunctionTemplate; }; /** * NamedProperty[Getter|Setter] are used as interceptors on object. * See ObjectTemplate::SetNamedPropertyHandler. */ typedef void (*NamedPropertyGetterCallback)( Local<String> property, const PropertyCallbackInfo<Value>& info); /** * Returns the value if the setter intercepts the request. * Otherwise, returns an empty handle. */ typedef void (*NamedPropertySetterCallback)( Local<String> property, Local<Value> value, const PropertyCallbackInfo<Value>& info); /** * Returns a non-empty handle if the interceptor intercepts the request. * The result is an integer encoding property attributes (like v8::None, * v8::DontEnum, etc.) */ typedef void (*NamedPropertyQueryCallback)( Local<String> property, const PropertyCallbackInfo<Integer>& info); /** * Returns a non-empty handle if the deleter intercepts the request. * The return value is true if the property could be deleted and false * otherwise. */ typedef void (*NamedPropertyDeleterCallback)( Local<String> property, const PropertyCallbackInfo<Boolean>& info); /** * Returns an array containing the names of the properties the named * property getter intercepts. */ typedef void (*NamedPropertyEnumeratorCallback)( const PropertyCallbackInfo<Array>& info); // TODO(dcarney): Deprecate and remove previous typedefs, and replace // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback. /** * GenericNamedProperty[Getter|Setter] are used as interceptors on object. * See ObjectTemplate::SetNamedPropertyHandler. */ typedef void (*GenericNamedPropertyGetterCallback)( Local<Name> property, const PropertyCallbackInfo<Value>& info); /** * Returns the value if the setter intercepts the request. * Otherwise, returns an empty handle. */ typedef void (*GenericNamedPropertySetterCallback)( Local<Name> property, Local<Value> value, const PropertyCallbackInfo<Value>& info); /** * Returns a non-empty handle if the interceptor intercepts the request. * The result is an integer encoding property attributes (like v8::None, * v8::DontEnum, etc.) */ typedef void (*GenericNamedPropertyQueryCallback)( Local<Name> property, const PropertyCallbackInfo<Integer>& info); /** * Returns a non-empty handle if the deleter intercepts the request. * The return value is true if the property could be deleted and false * otherwise. */ typedef void (*GenericNamedPropertyDeleterCallback)( Local<Name> property, const PropertyCallbackInfo<Boolean>& info); /** * Returns an array containing the names of the properties the named * property getter intercepts. */ typedef void (*GenericNamedPropertyEnumeratorCallback)( const PropertyCallbackInfo<Array>& info); /** * Returns the value of the property if the getter intercepts the * request. Otherwise, returns an empty handle. */ typedef void (*IndexedPropertyGetterCallback)( uint32_t index, const PropertyCallbackInfo<Value>& info); /** * Returns the value if the setter intercepts the request. * Otherwise, returns an empty handle. */ typedef void (*IndexedPropertySetterCallback)( uint32_t index, Local<Value> value, const PropertyCallbackInfo<Value>& info); /** * Returns a non-empty handle if the interceptor intercepts the request. * The result is an integer encoding property attributes. */ typedef void (*IndexedPropertyQueryCallback)( uint32_t index, const PropertyCallbackInfo<Integer>& info); /** * Returns a non-empty handle if the deleter intercepts the request. * The return value is true if the property could be deleted and false * otherwise. */ typedef void (*IndexedPropertyDeleterCallback)( uint32_t index, const PropertyCallbackInfo<Boolean>& info); /** * Returns an array containing the indices of the properties the * indexed property getter intercepts. */ typedef void (*IndexedPropertyEnumeratorCallback)( const PropertyCallbackInfo<Array>& info); /** * Access type specification. */ enum AccessType { ACCESS_GET, ACCESS_SET, ACCESS_HAS, ACCESS_DELETE, ACCESS_KEYS }; /** * Returns true if the given context should be allowed to access the given * object. */ typedef bool (*AccessCheckCallback)(Local<Context> accessing_context, Local<Object> accessed_object, Local<Value> data); /** * A FunctionTemplate is used to create functions at runtime. There * can only be one function created from a FunctionTemplate in a * context. The lifetime of the created function is equal to the * lifetime of the context. So in case the embedder needs to create * temporary functions that can be collected using Scripts is * preferred. * * Any modification of a FunctionTemplate after first instantiation will trigger *a crash. * * A FunctionTemplate can have properties, these properties are added to the * function object when it is created. * * A FunctionTemplate has a corresponding instance template which is * used to create object instances when the function is used as a * constructor. Properties added to the instance template are added to * each object instance. * * A FunctionTemplate can have a prototype template. The prototype template * is used to create the prototype object of the function. * * The following example shows how to use a FunctionTemplate: * * \code * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(); * t->Set("func_property", v8::Number::New(1)); * * v8::Local<v8::Template> proto_t = t->PrototypeTemplate(); * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback)); * proto_t->Set("proto_const", v8::Number::New(2)); * * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate(); * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback); * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...); * instance_t->Set("instance_property", Number::New(3)); * * v8::Local<v8::Function> function = t->GetFunction(); * v8::Local<v8::Object> instance = function->NewInstance(); * \endcode * * Let's use "function" as the JS variable name of the function object * and "instance" for the instance object created above. The function * and the instance will have the following properties: * * \code * func_property in function == true; * function.func_property == 1; * * function.prototype.proto_method() invokes 'InvokeCallback' * function.prototype.proto_const == 2; * * instance instanceof function == true; * instance.instance_accessor calls 'InstanceAccessorCallback' * instance.instance_property == 3; * \endcode * * A FunctionTemplate can inherit from another one by calling the * FunctionTemplate::Inherit method. The following graph illustrates * the semantics of inheritance: * * \code * FunctionTemplate Parent -> Parent() . prototype -> { } * ^ ^ * | Inherit(Parent) | .__proto__ * | | * FunctionTemplate Child -> Child() . prototype -> { } * \endcode * * A FunctionTemplate 'Child' inherits from 'Parent', the prototype * object of the Child() function has __proto__ pointing to the * Parent() function's prototype object. An instance of the Child * function has all properties on Parent's instance templates. * * Let Parent be the FunctionTemplate initialized in the previous * section and create a Child FunctionTemplate by: * * \code * Local<FunctionTemplate> parent = t; * Local<FunctionTemplate> child = FunctionTemplate::New(); * child->Inherit(parent); * * Local<Function> child_function = child->GetFunction(); * Local<Object> child_instance = child_function->NewInstance(); * \endcode * * The Child function and Child instance will have the following * properties: * * \code * child_func.prototype.__proto__ == function.prototype; * child_instance.instance_accessor calls 'InstanceAccessorCallback' * child_instance.instance_property == 3; * \endcode */ class V8_EXPORT FunctionTemplate : public Template { public: /** Creates a function template.*/ static Local<FunctionTemplate> New( Isolate* isolate, FunctionCallback callback = 0, Local<Value> data = Local<Value>(), Local<Signature> signature = Local<Signature>(), int length = 0, ConstructorBehavior behavior = ConstructorBehavior::kAllow); /** Get a template included in the snapshot by index. */ static Local<FunctionTemplate> FromSnapshot(Isolate* isolate, size_t index); /** * Creates a function template with a fast handler. If a fast handler is set, * the callback cannot be null. */ static Local<FunctionTemplate> NewWithFastHandler( Isolate* isolate, FunctionCallback callback, experimental::FastAccessorBuilder* fast_handler = nullptr, Local<Value> data = Local<Value>(), Local<Signature> signature = Local<Signature>(), int length = 0); /** Returns the unique function instance in the current execution context.*/ V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction()); V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction( Local<Context> context); /** * Set the call-handler callback for a FunctionTemplate. This * callback is called whenever the function created from this * FunctionTemplate is called. */ void SetCallHandler( FunctionCallback callback, Local<Value> data = Local<Value>(), experimental::FastAccessorBuilder* fast_handler = nullptr); /** Set the predefined length property for the FunctionTemplate. */ void SetLength(int length); /** Get the InstanceTemplate. */ Local<ObjectTemplate> InstanceTemplate(); /** Causes the function template to inherit from a parent function template.*/ void Inherit(Local<FunctionTemplate> parent); /** * A PrototypeTemplate is the template used to create the prototype object * of the function created by this template. */ Local<ObjectTemplate> PrototypeTemplate(); /** * Set the class name of the FunctionTemplate. This is used for * printing objects created with the function created from the * FunctionTemplate as its constructor. */ void SetClassName(Local<String> name); /** * When set to true, no access check will be performed on the receiver of a * function call. Currently defaults to true, but this is subject to change. */ void SetAcceptAnyReceiver(bool value); /** * Determines whether the __proto__ accessor ignores instances of * the function template. If instances of the function template are * ignored, __proto__ skips all instances and instead returns the * next object in the prototype chain. * * Call with a value of true to make the __proto__ accessor ignore * instances of the function template. Call with a value of false * to make the __proto__ accessor not ignore instances of the * function template. By default, instances of a function template * are not ignored. */ void SetHiddenPrototype(bool value); /** * Sets the ReadOnly flag in the attributes of the 'prototype' property * of functions created from this FunctionTemplate to true. */ void ReadOnlyPrototype(); /** * Removes the prototype property from functions created from this * FunctionTemplate. */ void RemovePrototype(); /** * Returns true if the given object is an instance of this function * template. */ bool HasInstance(Local<Value> object); private: FunctionTemplate(); friend class Context; friend class ObjectTemplate; }; enum class PropertyHandlerFlags { kNone = 0, // See ALL_CAN_READ above. kAllCanRead = 1, // Will not call into interceptor for properties on the receiver or prototype // chain. Currently only valid for named interceptors. kNonMasking = 1 << 1, // Will not call into interceptor for symbol lookup. Only meaningful for // named interceptors. kOnlyInterceptStrings = 1 << 2, }; struct NamedPropertyHandlerConfiguration { NamedPropertyHandlerConfiguration( /** Note: getter is required **/ GenericNamedPropertyGetterCallback getter = 0, GenericNamedPropertySetterCallback setter = 0, GenericNamedPropertyQueryCallback query = 0, GenericNamedPropertyDeleterCallback deleter = 0, GenericNamedPropertyEnumeratorCallback enumerator = 0, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), data(data), flags(flags) {} GenericNamedPropertyGetterCallback getter; GenericNamedPropertySetterCallback setter; GenericNamedPropertyQueryCallback query; GenericNamedPropertyDeleterCallback deleter; GenericNamedPropertyEnumeratorCallback enumerator; Local<Value> data; PropertyHandlerFlags flags; }; struct IndexedPropertyHandlerConfiguration { IndexedPropertyHandlerConfiguration( /** Note: getter is required **/ IndexedPropertyGetterCallback getter = 0, IndexedPropertySetterCallback setter = 0, IndexedPropertyQueryCallback query = 0, IndexedPropertyDeleterCallback deleter = 0, IndexedPropertyEnumeratorCallback enumerator = 0, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), data(data), flags(flags) {} IndexedPropertyGetterCallback getter; IndexedPropertySetterCallback setter; IndexedPropertyQueryCallback query; IndexedPropertyDeleterCallback deleter; IndexedPropertyEnumeratorCallback enumerator; Local<Value> data; PropertyHandlerFlags flags; }; /** * An ObjectTemplate is used to create objects at runtime. * * Properties added to an ObjectTemplate are added to each object * created from the ObjectTemplate. */ class V8_EXPORT ObjectTemplate : public Template { public: /** Creates an ObjectTemplate. */ static Local<ObjectTemplate> New( Isolate* isolate, Local<FunctionTemplate> constructor = Local<FunctionTemplate>()); static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New()); /** Get a template included in the snapshot by index. */ static Local<ObjectTemplate> FromSnapshot(Isolate* isolate, size_t index); /** Creates a new instance of this template.*/ V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance()); V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context); /** * Sets an accessor on the object template. * * Whenever the property with the given name is accessed on objects * created from this ObjectTemplate the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetAccessor( Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>()); void SetAccessor( Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>()); /** * Sets a named property handler on the object template. * * Whenever a property whose name is a string is accessed on objects created * from this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * Note that new code should use the second version that can intercept * symbol-named properties as well as string-named properties. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check if a property is present, * and if present, get its attributes. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the named * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ // TODO(dcarney): deprecate void SetNamedPropertyHandler(NamedPropertyGetterCallback getter, NamedPropertySetterCallback setter = 0, NamedPropertyQueryCallback query = 0, NamedPropertyDeleterCallback deleter = 0, NamedPropertyEnumeratorCallback enumerator = 0, Local<Value> data = Local<Value>()); void SetHandler(const NamedPropertyHandlerConfiguration& configuration); /** * Sets an indexed property handler on the object template. * * Whenever an indexed property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check if an object has a property. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the indexed * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ void SetHandler(const IndexedPropertyHandlerConfiguration& configuration); // TODO(dcarney): deprecate void SetIndexedPropertyHandler( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter = 0, IndexedPropertyQueryCallback query = 0, IndexedPropertyDeleterCallback deleter = 0, IndexedPropertyEnumeratorCallback enumerator = 0, Local<Value> data = Local<Value>()) { SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query, deleter, enumerator, data)); } /** * Sets the callback to be used when calling instances created from * this template as a function. If no callback is set, instances * behave like normal JavaScript objects that cannot be called as a * function. */ void SetCallAsFunctionHandler(FunctionCallback callback, Local<Value> data = Local<Value>()); /** * Mark object instances of the template as undetectable. * * In many ways, undetectable objects behave as though they are not * there. They behave like 'undefined' in conditionals and when * printed. However, properties can be accessed and called as on * normal objects. */ void MarkAsUndetectable(); /** * Sets access check callback on the object template and enables access * checks. * * When accessing properties on instances of this object template, * the access check callback will be called to determine whether or * not to allow cross-context access to the properties. */ void SetAccessCheckCallback(AccessCheckCallback callback, Local<Value> data = Local<Value>()); /** * Like SetAccessCheckCallback but invokes an interceptor on failed access * checks instead of looking up all-can-read properties. You can only use * either this method or SetAccessCheckCallback, but not both at the same * time. */ void SetAccessCheckCallbackAndHandler( AccessCheckCallback callback, const NamedPropertyHandlerConfiguration& named_handler, const IndexedPropertyHandlerConfiguration& indexed_handler, Local<Value> data = Local<Value>()); /** * Gets the number of internal fields for objects generated from * this template. */ int InternalFieldCount(); /** * Sets the number of internal fields for objects generated from * this template. */ void SetInternalFieldCount(int value); private: ObjectTemplate(); static Local<ObjectTemplate> New(internal::Isolate* isolate, Local<FunctionTemplate> constructor); friend class FunctionTemplate; }; /** * A Signature specifies which receiver is valid for a function. */ class V8_EXPORT Signature : public Data { public: static Local<Signature> New( Isolate* isolate, Local<FunctionTemplate> receiver = Local<FunctionTemplate>()); private: Signature(); }; /** * An AccessorSignature specifies which receivers are valid parameters * to an accessor callback. */ class V8_EXPORT AccessorSignature : public Data { public: static Local<AccessorSignature> New( Isolate* isolate, Local<FunctionTemplate> receiver = Local<FunctionTemplate>()); private: AccessorSignature(); }; // --- Extensions --- class V8_EXPORT ExternalOneByteStringResourceImpl : public String::ExternalOneByteStringResource { public: ExternalOneByteStringResourceImpl() : data_(0), length_(0) {} ExternalOneByteStringResourceImpl(const char* data, size_t length) : data_(data), length_(length) {} const char* data() const { return data_; } size_t length() const { return length_; } private: const char* data_; size_t length_; }; /** * Ignore */ class V8_EXPORT Extension { // NOLINT public: // Note that the strings passed into this constructor must live as long // as the Extension itself. Extension(const char* name, const char* source = 0, int dep_count = 0, const char** deps = 0, int source_length = -1); virtual ~Extension() { } virtual v8::Local<v8::FunctionTemplate> GetNativeFunctionTemplate( v8::Isolate* isolate, v8::Local<v8::String> name) { return v8::Local<v8::FunctionTemplate>(); } const char* name() const { return name_; } size_t source_length() const { return source_length_; } const String::ExternalOneByteStringResource* source() const { return &source_; } int dependency_count() { return dep_count_; } const char** dependencies() { return deps_; } void set_auto_enable(bool value) { auto_enable_ = value; } bool auto_enable() { return auto_enable_; } private: const char* name_; size_t source_length_; // expected to initialize before source_ ExternalOneByteStringResourceImpl source_; int dep_count_; const char** deps_; bool auto_enable_; // Disallow copying and assigning. Extension(const Extension&); void operator=(const Extension&); }; void V8_EXPORT RegisterExtension(Extension* extension); // --- Statics --- V8_INLINE Local<Primitive> Undefined(Isolate* isolate); V8_INLINE Local<Primitive> Null(Isolate* isolate); V8_INLINE Local<Boolean> True(Isolate* isolate); V8_INLINE Local<Boolean> False(Isolate* isolate); /** * A set of constraints that specifies the limits of the runtime's memory use. * You must set the heap size before initializing the VM - the size cannot be * adjusted after the VM is initialized. * * If you are using threads then you should hold the V8::Locker lock while * setting the stack limit and you must set a non-default stack limit separately * for each thread. * * The arguments for set_max_semi_space_size, set_max_old_space_size, * set_max_executable_size, set_code_range_size specify limits in MB. */ class V8_EXPORT ResourceConstraints { public: ResourceConstraints(); /** * Configures the constraints with reasonable default values based on the * capabilities of the current device the VM is running on. * * \param physical_memory The total amount of physical memory on the current * device, in bytes. * \param virtual_memory_limit The amount of virtual memory on the current * device, in bytes, or zero, if there is no limit. */ void ConfigureDefaults(uint64_t physical_memory, uint64_t virtual_memory_limit); int max_semi_space_size() const { return max_semi_space_size_; } void set_max_semi_space_size(int limit_in_mb) { max_semi_space_size_ = limit_in_mb; } int max_old_space_size() const { return max_old_space_size_; } void set_max_old_space_size(int limit_in_mb) { max_old_space_size_ = limit_in_mb; } int max_executable_size() const { return max_executable_size_; } void set_max_executable_size(int limit_in_mb) { max_executable_size_ = limit_in_mb; } uint32_t* stack_limit() const { return stack_limit_; } // Sets an address beyond which the VM's stack may not grow. void set_stack_limit(uint32_t* value) { stack_limit_ = value; } size_t code_range_size() const { return code_range_size_; } void set_code_range_size(size_t limit_in_mb) { code_range_size_ = limit_in_mb; } private: int max_semi_space_size_; int max_old_space_size_; int max_executable_size_; uint32_t* stack_limit_; size_t code_range_size_; }; // --- Exceptions --- typedef void (*FatalErrorCallback)(const char* location, const char* message); typedef void (*MessageCallback)(Local<Message> message, Local<Value> error); // --- Tracing --- typedef void (*LogEventCallback)(const char* name, int event); /** * Create new error objects by calling the corresponding error object * constructor with the message. */ class V8_EXPORT Exception { public: static Local<Value> RangeError(Local<String> message); static Local<Value> ReferenceError(Local<String> message); static Local<Value> SyntaxError(Local<String> message); static Local<Value> TypeError(Local<String> message); static Local<Value> Error(Local<String> message); /** * Creates an error message for the given exception. * Will try to reconstruct the original stack trace from the exception value, * or capture the current stack trace if not available. */ static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception); V8_DEPRECATED("Use version with an Isolate*", static Local<Message> CreateMessage(Local<Value> exception)); /** * Returns the original stack trace that was captured at the creation time * of a given exception, or an empty handle if not available. */ static Local<StackTrace> GetStackTrace(Local<Value> exception); }; // --- Counters Callbacks --- typedef int* (*CounterLookupCallback)(const char* name); typedef void* (*CreateHistogramCallback)(const char* name, int min, int max, size_t buckets); typedef void (*AddHistogramSampleCallback)(void* histogram, int sample); // --- Memory Allocation Callback --- enum ObjectSpace { kObjectSpaceNewSpace = 1 << 0, kObjectSpaceOldSpace = 1 << 1, kObjectSpaceCodeSpace = 1 << 2, kObjectSpaceMapSpace = 1 << 3, kObjectSpaceLoSpace = 1 << 4, kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace | kObjectSpaceLoSpace }; enum AllocationAction { kAllocationActionAllocate = 1 << 0, kAllocationActionFree = 1 << 1, kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree }; // --- Enter/Leave Script Callback --- typedef void (*BeforeCallEnteredCallback)(Isolate*); typedef void (*CallCompletedCallback)(Isolate*); typedef void (*DeprecatedCallCompletedCallback)(); // --- Promise Reject Callback --- enum PromiseRejectEvent { kPromiseRejectWithNoHandler = 0, kPromiseHandlerAddedAfterReject = 1 }; class PromiseRejectMessage { public: PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event, Local<Value> value, Local<StackTrace> stack_trace) : promise_(promise), event_(event), value_(value), stack_trace_(stack_trace) {} V8_INLINE Local<Promise> GetPromise() const { return promise_; } V8_INLINE PromiseRejectEvent GetEvent() const { return event_; } V8_INLINE Local<Value> GetValue() const { return value_; } V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()", V8_INLINE Local<StackTrace> GetStackTrace() const) { return stack_trace_; } private: Local<Promise> promise_; PromiseRejectEvent event_; Local<Value> value_; Local<StackTrace> stack_trace_; }; typedef void (*PromiseRejectCallback)(PromiseRejectMessage message); // --- Microtasks Callbacks --- typedef void (*MicrotasksCompletedCallback)(Isolate*); typedef void (*MicrotaskCallback)(void* data); /** * Policy for running microtasks: * - explicit: microtasks are invoked with Isolate::RunMicrotasks() method; * - scoped: microtasks invocation is controlled by MicrotasksScope objects; * - auto: microtasks are invoked when the script call depth decrements * to zero. */ enum class MicrotasksPolicy { kExplicit, kScoped, kAuto }; /** * This scope is used to control microtasks when kScopeMicrotasksInvocation * is used on Isolate. In this mode every non-primitive call to V8 should be * done inside some MicrotasksScope. * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks * exits. * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger * microtasks. */ class V8_EXPORT MicrotasksScope { public: enum Type { kRunMicrotasks, kDoNotRunMicrotasks }; MicrotasksScope(Isolate* isolate, Type type); ~MicrotasksScope(); /** * Runs microtasks if no kRunMicrotasks scope is currently active. */ static void PerformCheckpoint(Isolate* isolate); /** * Returns current depth of nested kRunMicrotasks scopes. */ static int GetCurrentDepth(Isolate* isolate); /** * Returns true while microtasks are being executed. */ static bool IsRunningMicrotasks(Isolate* isolate); private: internal::Isolate* const isolate_; bool run_; // Prevent copying. MicrotasksScope(const MicrotasksScope&); MicrotasksScope& operator=(const MicrotasksScope&); }; // --- Failed Access Check Callback --- typedef void (*FailedAccessCheckCallback)(Local<Object> target, AccessType type, Local<Value> data); // --- AllowCodeGenerationFromStrings callbacks --- /** * Callback to check if code generation from strings is allowed. See * Context::AllowCodeGenerationFromStrings. */ typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context); // --- Garbage Collection Callbacks --- /** * Applications can register callback functions which will be called before and * after certain garbage collection operations. Allocations are not allowed in * the callback functions, you therefore cannot manipulate objects (set or * delete properties for example) since it is possible such operations will * result in the allocation of objects. */ enum GCType { kGCTypeScavenge = 1 << 0, kGCTypeMarkSweepCompact = 1 << 1, kGCTypeIncrementalMarking = 1 << 2, kGCTypeProcessWeakCallbacks = 1 << 3, kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact | kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks }; /** * GCCallbackFlags is used to notify additional information about the GC * callback. * - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for * constructing retained object infos. * - kGCCallbackFlagForced: The GC callback is for a forced GC for testing. * - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback * is called synchronously without getting posted to an idle task. * - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called * in a phase where V8 is trying to collect all available garbage * (e.g., handling a low memory notification). */ enum GCCallbackFlags { kNoGCCallbackFlags = 0, kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1, kGCCallbackFlagForced = 1 << 2, kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3, kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4, }; typedef void (*GCCallback)(GCType type, GCCallbackFlags flags); typedef void (*InterruptCallback)(Isolate* isolate, void* data); /** * Collection of V8 heap information. * * Instances of this class can be passed to v8::V8::HeapStatistics to * get heap statistics from V8. */ class V8_EXPORT HeapStatistics { public: HeapStatistics(); size_t total_heap_size() { return total_heap_size_; } size_t total_heap_size_executable() { return total_heap_size_executable_; } size_t total_physical_size() { return total_physical_size_; } size_t total_available_size() { return total_available_size_; } size_t used_heap_size() { return used_heap_size_; } size_t heap_size_limit() { return heap_size_limit_; } size_t malloced_memory() { return malloced_memory_; } size_t does_zap_garbage() { return does_zap_garbage_; } private: size_t total_heap_size_; size_t total_heap_size_executable_; size_t total_physical_size_; size_t total_available_size_; size_t used_heap_size_; size_t heap_size_limit_; size_t malloced_memory_; bool does_zap_garbage_; friend class V8; friend class Isolate; }; class V8_EXPORT HeapSpaceStatistics { public: HeapSpaceStatistics(); const char* space_name() { return space_name_; } size_t space_size() { return space_size_; } size_t space_used_size() { return space_used_size_; } size_t space_available_size() { return space_available_size_; } size_t physical_space_size() { return physical_space_size_; } private: const char* space_name_; size_t space_size_; size_t space_used_size_; size_t space_available_size_; size_t physical_space_size_; friend class Isolate; }; class V8_EXPORT HeapObjectStatistics { public: HeapObjectStatistics(); const char* object_type() { return object_type_; } const char* object_sub_type() { return object_sub_type_; } size_t object_count() { return object_count_; } size_t object_size() { return object_size_; } private: const char* object_type_; const char* object_sub_type_; size_t object_count_; size_t object_size_; friend class Isolate; }; class V8_EXPORT HeapCodeStatistics { public: HeapCodeStatistics(); size_t code_and_metadata_size() { return code_and_metadata_size_; } size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; } private: size_t code_and_metadata_size_; size_t bytecode_and_metadata_size_; friend class Isolate; }; class RetainedObjectInfo; /** * FunctionEntryHook is the type of the profile entry hook called at entry to * any generated function when function-level profiling is enabled. * * \param function the address of the function that's being entered. * \param return_addr_location points to a location on stack where the machine * return address resides. This can be used to identify the caller of * \p function, and/or modified to divert execution when \p function exits. * * \note the entry hook must not cause garbage collection. */ typedef void (*FunctionEntryHook)(uintptr_t function, uintptr_t return_addr_location); /** * A JIT code event is issued each time code is added, moved or removed. * * \note removal events are not currently issued. */ struct JitCodeEvent { enum EventType { CODE_ADDED, CODE_MOVED, CODE_REMOVED, CODE_ADD_LINE_POS_INFO, CODE_START_LINE_INFO_RECORDING, CODE_END_LINE_INFO_RECORDING }; // Definition of the code position type. The "POSITION" type means the place // in the source code which are of interest when making stack traces to // pin-point the source location of a stack frame as close as possible. // The "STATEMENT_POSITION" means the place at the beginning of each // statement, and is used to indicate possible break locations. enum PositionType { POSITION, STATEMENT_POSITION }; // Type of event. EventType type; // Start of the instructions. void* code_start; // Size of the instructions. size_t code_len; // Script info for CODE_ADDED event. Local<UnboundScript> script; // User-defined data for *_LINE_INFO_* event. It's used to hold the source // code line information which is returned from the // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events. void* user_data; struct name_t { // Name of the object associated with the code, note that the string is not // zero-terminated. const char* str; // Number of chars in str. size_t len; }; struct line_info_t { // PC offset size_t offset; // Code postion size_t pos; // The position type. PositionType position_type; }; union { // Only valid for CODE_ADDED. struct name_t name; // Only valid for CODE_ADD_LINE_POS_INFO struct line_info_t line_info; // New location of instructions. Only valid for CODE_MOVED. void* new_code_start; }; }; /** * Option flags passed to the SetRAILMode function. * See documentation https://developers.google.com/web/tools/chrome-devtools/ * profile/evaluate-performance/rail */ enum RAILMode { // Default performance mode: V8 will optimize for both latency and // throughput in this mode. PERFORMANCE_DEFAULT, // Response performance mode: In this mode very low virtual machine latency // is provided. V8 will try to avoid JavaScript execution interruptions. // Throughput may be throttled. PERFORMANCE_RESPONSE, // Animation performance mode: In this mode low virtual machine latency is // provided. V8 will try to avoid as many JavaScript execution interruptions // as possible. Throughput may be throttled PERFORMANCE_ANIMATION, // Idle performance mode: The embedder is idle. V8 can complete deferred work // in this mode. PERFORMANCE_IDLE, // Load performance mode: In this mode high throughput is provided. V8 may // turn off latency optimizations. PERFORMANCE_LOAD }; /** * Option flags passed to the SetJitCodeEventHandler function. */ enum JitCodeEventOptions { kJitCodeEventDefault = 0, // Generate callbacks for already existent code. kJitCodeEventEnumExisting = 1 }; /** * Callback function passed to SetJitCodeEventHandler. * * \param event code add, move or removal event. */ typedef void (*JitCodeEventHandler)(const JitCodeEvent* event); /** * Interface for iterating through all external resources in the heap. */ class V8_EXPORT ExternalResourceVisitor { // NOLINT public: virtual ~ExternalResourceVisitor() {} virtual void VisitExternalString(Local<String> string) {} }; /** * Interface for iterating through all the persistent handles in the heap. */ class V8_EXPORT PersistentHandleVisitor { // NOLINT public: virtual ~PersistentHandleVisitor() {} virtual void VisitPersistentHandle(Persistent<Value>* value, uint16_t class_id) {} }; /** * Memory pressure level for the MemoryPressureNotification. * kNone hints V8 that there is no memory pressure. * kModerate hints V8 to speed up incremental garbage collection at the cost of * of higher latency due to garbage collection pauses. * kCritical hints V8 to free memory as soon as possible. Garbage collection * pauses at this level will be large. */ enum class MemoryPressureLevel { kNone, kModerate, kCritical }; /** * Interface for tracing through the embedder heap. During the v8 garbage * collection, v8 collects hidden fields of all potential wrappers, and at the * end of its marking phase iterates the collection and asks the embedder to * trace through its heap and call PersistentBase::RegisterExternalReference on * each js object reachable from any of the given wrappers. * * Before the first call to the TraceWrappersFrom function TracePrologue will be * called. When the garbage collection cycle is finished, TraceEpilogue will be * called. */ class V8_EXPORT EmbedderHeapTracer { public: enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION }; struct AdvanceTracingActions { explicit AdvanceTracingActions(ForceCompletionAction force_completion_) : force_completion(force_completion_) {} ForceCompletionAction force_completion; }; /** * V8 will call this method with internal fields of found wrappers. * Embedder is expected to store them in it's marking deque and trace * reachable wrappers from them when asked by AdvanceTracing method. */ virtual void RegisterV8References( const std::vector<std::pair<void*, void*> >& internal_fields) = 0; /** * V8 will call this method at the beginning of the gc cycle. */ virtual void TracePrologue() = 0; /** * Embedder is expected to trace its heap starting from wrappers reported by * RegisterV8References method, and call * PersistentBase::RegisterExternalReference() on all reachable wrappers. * Embedder is expected to stop tracing by the given deadline. * * Returns true if there is still work to do. */ virtual bool AdvanceTracing(double deadline_in_ms, AdvanceTracingActions actions) = 0; /** * V8 will call this method at the end of the gc cycle. Allocation is *not* * allowed in the TraceEpilogue. */ virtual void TraceEpilogue() = 0; /** * Let embedder know v8 entered final marking pause (no more incremental steps * will follow). */ virtual void EnterFinalPause() {} /** * Throw away all intermediate data and reset to the initial state. */ virtual void AbortTracing() {} protected: virtual ~EmbedderHeapTracer() = default; }; /** * Isolate represents an isolated instance of the V8 engine. V8 isolates have * completely separate states. Objects from one isolate must not be used in * other isolates. The embedder can create multiple isolates and use them in * parallel in multiple threads. An isolate can be entered by at most one * thread at any given time. The Locker/Unlocker API must be used to * synchronize. */ class V8_EXPORT Isolate { public: /** * Initial configuration parameters for a new Isolate. */ struct CreateParams { CreateParams() : entry_hook(nullptr), code_event_handler(nullptr), snapshot_blob(nullptr), counter_lookup_callback(nullptr), create_histogram_callback(nullptr), add_histogram_sample_callback(nullptr), array_buffer_allocator(nullptr), external_references(nullptr) {} /** * The optional entry_hook allows the host application to provide the * address of a function that's invoked on entry to every V8-generated * function. Note that entry_hook is invoked at the very start of each * generated function. Furthermore, if an entry_hook is given, V8 will * not use a snapshot, including custom snapshots. */ FunctionEntryHook entry_hook; /** * Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. */ JitCodeEventHandler code_event_handler; /** * ResourceConstraints to use for the new Isolate. */ ResourceConstraints constraints; /** * Explicitly specify a startup snapshot blob. The embedder owns the blob. */ StartupData* snapshot_blob; /** * Enables the host application to provide a mechanism for recording * statistics counters. */ CounterLookupCallback counter_lookup_callback; /** * Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ CreateHistogramCallback create_histogram_callback; AddHistogramSampleCallback add_histogram_sample_callback; /** * The ArrayBuffer::Allocator to use for allocating and freeing the backing * store of ArrayBuffers. */ ArrayBuffer::Allocator* array_buffer_allocator; /** * Specifies an optional nullptr-terminated array of raw addresses in the * embedder that V8 can match against during serialization and use for * deserialization. This array and its content must stay valid for the * entire lifetime of the isolate. */ intptr_t* external_references; }; /** * Stack-allocated class which sets the isolate for all operations * executed within a local scope. */ class V8_EXPORT Scope { public: explicit Scope(Isolate* isolate) : isolate_(isolate) { isolate->Enter(); } ~Scope() { isolate_->Exit(); } private: Isolate* const isolate_; // Prevent copying of Scope objects. Scope(const Scope&); Scope& operator=(const Scope&); }; /** * Assert that no Javascript code is invoked. */ class V8_EXPORT DisallowJavascriptExecutionScope { public: enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE }; DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure); ~DisallowJavascriptExecutionScope(); private: bool on_failure_; void* internal_; // Prevent copying of Scope objects. DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&); DisallowJavascriptExecutionScope& operator=( const DisallowJavascriptExecutionScope&); }; /** * Introduce exception to DisallowJavascriptExecutionScope. */ class V8_EXPORT AllowJavascriptExecutionScope { public: explicit AllowJavascriptExecutionScope(Isolate* isolate); ~AllowJavascriptExecutionScope(); private: void* internal_throws_; void* internal_assert_; // Prevent copying of Scope objects. AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&); AllowJavascriptExecutionScope& operator=( const AllowJavascriptExecutionScope&); }; /** * Do not run microtasks while this scope is active, even if microtasks are * automatically executed otherwise. */ class V8_EXPORT SuppressMicrotaskExecutionScope { public: explicit SuppressMicrotaskExecutionScope(Isolate* isolate); ~SuppressMicrotaskExecutionScope(); private: internal::Isolate* isolate_; // Prevent copying of Scope objects. SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&); SuppressMicrotaskExecutionScope& operator=( const SuppressMicrotaskExecutionScope&); }; /** * Types of garbage collections that can be requested via * RequestGarbageCollectionForTesting. */ enum GarbageCollectionType { kFullGarbageCollection, kMinorGarbageCollection }; /** * Features reported via the SetUseCounterCallback callback. Do not change * assigned numbers of existing items; add new features to the end of this * list. */ enum UseCounterFeature { kUseAsm = 0, kBreakIterator = 1, kLegacyConst = 2, kMarkDequeOverflow = 3, kStoreBufferOverflow = 4, kSlotsBufferOverflow = 5, kObjectObserve = 6, kForcedGC = 7, kSloppyMode = 8, kStrictMode = 9, kStrongMode = 10, kRegExpPrototypeStickyGetter = 11, kRegExpPrototypeToString = 12, kRegExpPrototypeUnicodeGetter = 13, kIntlV8Parse = 14, kIntlPattern = 15, kIntlResolved = 16, kPromiseChain = 17, kPromiseAccept = 18, kPromiseDefer = 19, kHtmlCommentInExternalScript = 20, kHtmlComment = 21, kSloppyModeBlockScopedFunctionRedefinition = 22, kForInInitializer = 23, kArrayProtectorDirtied = 24, kArraySpeciesModified = 25, kArrayPrototypeConstructorModified = 26, kArrayInstanceProtoModified = 27, kArrayInstanceConstructorModified = 28, kLegacyFunctionDeclaration = 29, kRegExpPrototypeSourceGetter = 30, kRegExpPrototypeOldFlagGetter = 31, kDecimalWithLeadingZeroInStrictMode = 32, kLegacyDateParser = 33, kDefineGetterOrSetterWouldThrow = 34, // If you add new values here, you'll also need to update Chromium's: // UseCounter.h, V8PerIsolateData.cpp, histograms.xml kUseCounterFeatureCount // This enum value must be last. }; typedef void (*UseCounterCallback)(Isolate* isolate, UseCounterFeature feature); /** * Creates a new isolate. Does not change the currently entered * isolate. * * When an isolate is no longer used its resources should be freed * by calling Dispose(). Using the delete operator is not allowed. * * V8::Initialize() must have run prior to this. */ static Isolate* New(const CreateParams& params); /** * Returns the entered isolate for the current thread or NULL in * case there is no current isolate. * * This method must not be invoked before V8::Initialize() was invoked. */ static Isolate* GetCurrent(); /** * Custom callback used by embedders to help V8 determine if it should abort * when it throws and no internal handler is predicted to catch the * exception. If --abort-on-uncaught-exception is used on the command line, * then V8 will abort if either: * - no custom callback is set. * - the custom callback set returns true. * Otherwise, the custom callback will not be called and V8 will not abort. */ typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*); void SetAbortOnUncaughtExceptionCallback( AbortOnUncaughtExceptionCallback callback); /** * Optional notification that the system is running low on memory. * V8 uses these notifications to guide heuristics. * It is allowed to call this function from another thread while * the isolate is executing long running JavaScript code. */ void MemoryPressureNotification(MemoryPressureLevel level); /** * Methods below this point require holding a lock (using Locker) in * a multi-threaded environment. */ /** * Sets this isolate as the entered one for the current thread. * Saves the previously entered one (if any), so that it can be * restored when exiting. Re-entering an isolate is allowed. */ void Enter(); /** * Exits this isolate by restoring the previously entered one in the * current thread. The isolate may still stay the same, if it was * entered more than once. * * Requires: this == Isolate::GetCurrent(). */ void Exit(); /** * Disposes the isolate. The isolate must not be entered by any * thread to be disposable. */ void Dispose(); /** * Discards all V8 thread-specific data for the Isolate. Should be used * if a thread is terminating and it has used an Isolate that will outlive * the thread -- all thread-specific data for an Isolate is discarded when * an Isolate is disposed so this call is pointless if an Isolate is about * to be Disposed. */ void DiscardThreadSpecificMetadata(); /** * Associate embedder-specific data with the isolate. |slot| has to be * between 0 and GetNumberOfDataSlots() - 1. */ V8_INLINE void SetData(uint32_t slot, void* data); /** * Retrieve embedder-specific data from the isolate. * Returns NULL if SetData has never been called for the given |slot|. */ V8_INLINE void* GetData(uint32_t slot); /** * Returns the maximum number of available embedder data slots. Valid slots * are in the range of 0 - GetNumberOfDataSlots() - 1. */ V8_INLINE static uint32_t GetNumberOfDataSlots(); /** * Get statistics about the heap memory usage. */ void GetHeapStatistics(HeapStatistics* heap_statistics); /** * Returns the number of spaces in the heap. */ size_t NumberOfHeapSpaces(); /** * Get the memory usage of a space in the heap. * * \param space_statistics The HeapSpaceStatistics object to fill in * statistics. * \param index The index of the space to get statistics from, which ranges * from 0 to NumberOfHeapSpaces() - 1. * \returns true on success. */ bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics, size_t index); /** * Returns the number of types of objects tracked in the heap at GC. */ size_t NumberOfTrackedHeapObjectTypes(); /** * Get statistics about objects in the heap. * * \param object_statistics The HeapObjectStatistics object to fill in * statistics of objects of given type, which were live in the previous GC. * \param type_index The index of the type of object to fill details about, * which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1. * \returns true on success. */ bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics, size_t type_index); /** * Get statistics about code and its metadata in the heap. * * \param object_statistics The HeapCodeStatistics object to fill in * statistics of code, bytecode and their metadata. * \returns true on success. */ bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics); /** * Get a call stack sample from the isolate. * \param state Execution state. * \param frames Caller allocated buffer to store stack frames. * \param frames_limit Maximum number of frames to capture. The buffer must * be large enough to hold the number of frames. * \param sample_info The sample info is filled up by the function * provides number of actual captured stack frames and * the current VM state. * \note GetStackSample should only be called when the JS thread is paused or * interrupted. Otherwise the behavior is undefined. */ void GetStackSample(const RegisterState& state, void** frames, size_t frames_limit, SampleInfo* sample_info); /** * Adjusts the amount of registered external memory. Used to give V8 an * indication of the amount of externally allocated memory that is kept alive * by JavaScript objects. V8 uses this to decide when to perform global * garbage collections. Registering externally allocated memory will trigger * global garbage collections more often than it would otherwise in an attempt * to garbage collect the JavaScript objects that keep the externally * allocated memory alive. * * \param change_in_bytes the change in externally allocated memory that is * kept alive by JavaScript objects. * \returns the adjusted value. */ V8_INLINE int64_t AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes); /** * Returns the number of phantom handles without callbacks that were reset * by the garbage collector since the last call to this function. */ size_t NumberOfPhantomHandleResetsSinceLastCall(); /** * Returns heap profiler for this isolate. Will return NULL until the isolate * is initialized. */ HeapProfiler* GetHeapProfiler(); /** * Returns CPU profiler for this isolate. Will return NULL unless the isolate * is initialized. It is the embedder's responsibility to stop all CPU * profiling activities if it has started any. */ CpuProfiler* GetCpuProfiler(); /** Returns true if this isolate has a current context. */ bool InContext(); /** * Returns the context of the currently running JavaScript, or the context * on the top of the stack if no JavaScript is running. */ Local<Context> GetCurrentContext(); /** * Returns the context of the calling JavaScript code. That is the * context of the top-most JavaScript frame. If there are no * JavaScript frames an empty handle is returned. */ V8_DEPRECATE_SOON( "Calling context concept is not compatible with tail calls, and will be " "removed.", Local<Context> GetCallingContext()); /** Returns the last context entered through V8's C++ API. */ Local<Context> GetEnteredContext(); /** * Schedules an exception to be thrown when returning to JavaScript. When an * exception has been scheduled it is illegal to invoke any JavaScript * operation; the caller must return immediately and only after the exception * has been handled does it become legal to invoke JavaScript operations. */ Local<Value> ThrowException(Local<Value> exception); /** * Allows the host application to group objects together. If one * object in the group is alive, all objects in the group are alive. * After each garbage collection, object groups are removed. It is * intended to be used in the before-garbage-collection callback * function, for instance to simulate DOM tree connections among JS * wrapper objects. Object groups for all dependent handles need to * be provided for kGCTypeMarkSweepCompact collections, for all other * garbage collection types it is sufficient to provide object groups * for partially dependent handles only. */ template<typename T> void SetObjectGroupId(const Persistent<T>& object, UniqueId id); /** * Allows the host application to declare implicit references from an object * group to an object. If the objects of the object group are alive, the child * object is alive too. After each garbage collection, all implicit references * are removed. It is intended to be used in the before-garbage-collection * callback function. */ template<typename T> void SetReferenceFromGroup(UniqueId id, const Persistent<T>& child); /** * Allows the host application to declare implicit references from an object * to another object. If the parent object is alive, the child object is alive * too. After each garbage collection, all implicit references are removed. It * is intended to be used in the before-garbage-collection callback function. */ template<typename T, typename S> void SetReference(const Persistent<T>& parent, const Persistent<S>& child); typedef void (*GCCallback)(Isolate* isolate, GCType type, GCCallbackFlags flags); /** * Enables the host application to receive a notification before a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCPrologueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll); /** * This function removes callback which was installed by * AddGCPrologueCallback function. */ void RemoveGCPrologueCallback(GCCallback callback); /** * Sets the embedder heap tracer for the isolate. */ void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer); /** * Enables the host application to receive a notification after a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCEpilogueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll); /** * This function removes callback which was installed by * AddGCEpilogueCallback function. */ void RemoveGCEpilogueCallback(GCCallback callback); /** * Forcefully terminate the current thread of JavaScript execution * in the given isolate. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. */ void TerminateExecution(); /** * Is V8 terminating JavaScript execution. * * Returns true if JavaScript execution is currently terminating * because of a call to TerminateExecution. In that case there are * still JavaScript frames on the stack and the termination * exception is still active. */ bool IsExecutionTerminating(); /** * Resume execution capability in the given isolate, whose execution * was previously forcefully terminated using TerminateExecution(). * * When execution is forcefully terminated using TerminateExecution(), * the isolate can not resume execution until all JavaScript frames * have propagated the uncatchable exception which is generated. This * method allows the program embedding the engine to handle the * termination event and resume execution capability, even if * JavaScript frames remain on the stack. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. */ void CancelTerminateExecution(); /** * Request V8 to interrupt long running JavaScript code and invoke * the given |callback| passing the given |data| to it. After |callback| * returns control will be returned to the JavaScript code. * There may be a number of interrupt requests in flight. * Can be called from another thread without acquiring a |Locker|. * Registered |callback| must not reenter interrupted Isolate. */ void RequestInterrupt(InterruptCallback callback, void* data); /** * Request garbage collection in this Isolate. It is only valid to call this * function if --expose_gc was specified. * * This should only be used for testing purposes and not to enforce a garbage * collection schedule. It has strong negative impact on the garbage * collection performance. Use IdleNotificationDeadline() or * LowMemoryNotification() instead to influence the garbage collection * schedule. */ void RequestGarbageCollectionForTesting(GarbageCollectionType type); /** * Set the callback to invoke for logging event. */ void SetEventLogger(LogEventCallback that); /** * Adds a callback to notify the host application right before a script * is about to run. If a script re-enters the runtime during executing, the * BeforeCallEnteredCallback is invoked for each re-entrance. * Executing scripts inside the callback will re-trigger the callback. */ void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); /** * Removes callback that was installed by AddBeforeCallEnteredCallback. */ void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); /** * Adds a callback to notify the host application when a script finished * running. If a script re-enters the runtime during executing, the * CallCompletedCallback is only invoked when the outer-most script * execution ends. Executing scripts inside the callback do not trigger * further callbacks. */ void AddCallCompletedCallback(CallCompletedCallback callback); V8_DEPRECATE_SOON( "Use callback with parameter", void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback)); /** * Removes callback that was installed by AddCallCompletedCallback. */ void RemoveCallCompletedCallback(CallCompletedCallback callback); V8_DEPRECATE_SOON( "Use callback with parameter", void RemoveCallCompletedCallback( DeprecatedCallCompletedCallback callback)); /** * Set callback to notify about promise reject with no handler, or * revocation of such a previous notification once the handler is added. */ void SetPromiseRejectCallback(PromiseRejectCallback callback); /** * Experimental: Runs the Microtask Work Queue until empty * Any exceptions thrown by microtask callbacks are swallowed. */ void RunMicrotasks(); /** * Experimental: Enqueues the callback to the Microtask Work Queue */ void EnqueueMicrotask(Local<Function> microtask); /** * Experimental: Enqueues the callback to the Microtask Work Queue */ void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL); /** * Experimental: Controls how Microtasks are invoked. See MicrotasksPolicy * for details. */ void SetMicrotasksPolicy(MicrotasksPolicy policy); V8_DEPRECATE_SOON("Use SetMicrotasksPolicy", void SetAutorunMicrotasks(bool autorun)); /** * Experimental: Returns the policy controlling how Microtasks are invoked. */ MicrotasksPolicy GetMicrotasksPolicy() const; V8_DEPRECATE_SOON("Use GetMicrotasksPolicy", bool WillAutorunMicrotasks() const); /** * Experimental: adds a callback to notify the host application after * microtasks were run. The callback is triggered by explicit RunMicrotasks * call or automatic microtasks execution (see SetAutorunMicrotasks). * * Callback will trigger even if microtasks were attempted to run, * but the microtasks queue was empty and no single microtask was actually * executed. * * Executing scriptsinside the callback will not re-trigger microtasks and * the callback. */ void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback); /** * Removes callback that was installed by AddMicrotasksCompletedCallback. */ void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback); /** * Sets a callback for counting the number of times a feature of V8 is used. */ void SetUseCounterCallback(UseCounterCallback callback); /** * Enables the host application to provide a mechanism for recording * statistics counters. */ void SetCounterFunction(CounterLookupCallback); /** * Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ void SetCreateHistogramFunction(CreateHistogramCallback); void SetAddHistogramSampleFunction(AddHistogramSampleCallback); /** * Optional notification that the embedder is idle. * V8 uses the notification to perform garbage collection. * This call can be used repeatedly if the embedder remains idle. * Returns true if the embedder should stop calling IdleNotificationDeadline * until real work has been done. This indicates that V8 has done * as much cleanup as it will be able to do. * * The deadline_in_seconds argument specifies the deadline V8 has to finish * garbage collection work. deadline_in_seconds is compared with * MonotonicallyIncreasingTime() and should be based on the same timebase as * that function. There is no guarantee that the actual work will be done * within the time limit. */ bool IdleNotificationDeadline(double deadline_in_seconds); V8_DEPRECATED("use IdleNotificationDeadline()", bool IdleNotification(int idle_time_in_ms)); /** * Optional notification that the system is running low on memory. * V8 uses these notifications to attempt to free memory. */ void LowMemoryNotification(); /** * Optional notification that a context has been disposed. V8 uses * these notifications to guide the GC heuristic. Returns the number * of context disposals - including this one - since the last time * V8 had a chance to clean up. * * The optional parameter |dependant_context| specifies whether the disposed * context was depending on state from other contexts or not. */ int ContextDisposedNotification(bool dependant_context = true); /** * Optional notification that the isolate switched to the foreground. * V8 uses these notifications to guide heuristics. */ void IsolateInForegroundNotification(); /** * Optional notification that the isolate switched to the background. * V8 uses these notifications to guide heuristics. */ void IsolateInBackgroundNotification(); /** * Optional notification to tell V8 the current performance requirements * of the embedder based on RAIL. * V8 uses these notifications to guide heuristics. * This is an unfinished experimental feature. Semantics and implementation * may change frequently. */ void SetRAILMode(RAILMode rail_mode); /** * Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. * * \param options options for the JIT code event handler. * \param event_handler the JIT code event handler, which will be invoked * each time code is added, moved or removed. * \note \p event_handler won't get notified of existent code. * \note since code removal notifications are not currently issued, the * \p event_handler may get notifications of code that overlaps earlier * code notifications. This happens when code areas are reused, and the * earlier overlapping code areas should therefore be discarded. * \note the events passed to \p event_handler and the strings they point to * are not guaranteed to live past each call. The \p event_handler must * copy strings and other parameters it needs to keep around. * \note the set of events declared in JitCodeEvent::EventType is expected to * grow over time, and the JitCodeEvent structure is expected to accrue * new members. The \p event_handler function must ignore event codes * it does not recognize to maintain future compatibility. * \note Use Isolate::CreateParams to get events for code executed during * Isolate setup. */ void SetJitCodeEventHandler(JitCodeEventOptions options, JitCodeEventHandler event_handler); /** * Modifies the stack limit for this Isolate. * * \param stack_limit An address beyond which the Vm's stack may not grow. * * \note If you are using threads then you should hold the V8::Locker lock * while setting the stack limit and you must set a non-default stack * limit separately for each thread. */ void SetStackLimit(uintptr_t stack_limit); /** * Returns a memory range that can potentially contain jitted code. * * On Win64, embedders are advised to install function table callbacks for * these ranges, as default SEH won't be able to unwind through jitted code. * * The first page of the code range is reserved for the embedder and is * committed, writable, and executable. * * Might be empty on other platforms. * * https://code.google.com/p/v8/issues/detail?id=3598 */ void GetCodeRange(void** start, size_t* length_in_bytes); /** Set the callback to invoke in case of fatal errors. */ void SetFatalErrorHandler(FatalErrorCallback that); /** * Set the callback to invoke to check if code generation from * strings should be allowed. */ void SetAllowCodeGenerationFromStringsCallback( AllowCodeGenerationFromStringsCallback callback); /** * Check if V8 is dead and therefore unusable. This is the case after * fatal errors such as out-of-memory situations. */ bool IsDead(); /** * Adds a message listener. * * The same message listener can be added more than once and in that * case it will be called more than once for each message. * * If data is specified, it will be passed to the callback when it is called. * Otherwise, the exception object will be passed to the callback instead. */ bool AddMessageListener(MessageCallback that, Local<Value> data = Local<Value>()); /** * Remove all message listeners from the specified callback function. */ void RemoveMessageListeners(MessageCallback that); /** Callback function for reporting failed access checks.*/ void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback); /** * Tells V8 to capture current stack trace when uncaught exception occurs * and report it to the message listeners. The option is off by default. */ void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit = 10, StackTrace::StackTraceOptions options = StackTrace::kOverview); /** * Iterates through all external resources referenced from current isolate * heap. GC is not invoked prior to iterating, therefore there is no * guarantee that visited objects are still alive. */ void VisitExternalResources(ExternalResourceVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids. */ void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids and are candidates to be marked as partially dependent * handles. This will visit handles to young objects created since the last * garbage collection but is free to visit an arbitrary superset of these * objects. */ void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids and are weak to be marked as inactive if there is no * pending activity for the handle. */ void VisitWeakHandles(PersistentHandleVisitor* visitor); /** * Check if this isolate is in use. * True if at least one thread Enter'ed this isolate. */ bool IsInUse(); private: template <class K, class V, class Traits> friend class PersistentValueMapBase; Isolate(); Isolate(const Isolate&); ~Isolate(); Isolate& operator=(const Isolate&); void* operator new(size_t size); void operator delete(void*, size_t); void SetObjectGroupId(internal::Object** object, UniqueId id); void SetReferenceFromGroup(UniqueId id, internal::Object** object); void SetReference(internal::Object** parent, internal::Object** child); void ReportExternalAllocationLimitReached(); }; class V8_EXPORT StartupData { public: const char* data; int raw_size; }; /** * EntropySource is used as a callback function when v8 needs a source * of entropy. */ typedef bool (*EntropySource)(unsigned char* buffer, size_t length); /** * ReturnAddressLocationResolver is used as a callback function when v8 is * resolving the location of a return address on the stack. Profilers that * change the return address on the stack can use this to resolve the stack * location to whereever the profiler stashed the original return address. * * \param return_addr_location points to a location on stack where a machine * return address resides. * \returns either return_addr_location, or else a pointer to the profiler's * copy of the original return address. * * \note the resolver function must not cause garbage collection. */ typedef uintptr_t (*ReturnAddressLocationResolver)( uintptr_t return_addr_location); /** * Container class for static utility functions. */ class V8_EXPORT V8 { public: /** Set the callback to invoke in case of fatal errors. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void SetFatalErrorHandler(FatalErrorCallback that)); /** * Set the callback to invoke to check if code generation from * strings should be allowed. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void SetAllowCodeGenerationFromStringsCallback( AllowCodeGenerationFromStringsCallback that)); /** * Check if V8 is dead and therefore unusable. This is the case after * fatal errors such as out-of-memory situations. */ V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead()); /** * Hand startup data to V8, in case the embedder has chosen to build * V8 with external startup data. * * Note: * - By default the startup data is linked into the V8 library, in which * case this function is not meaningful. * - If this needs to be called, it needs to be called before V8 * tries to make use of its built-ins. * - To avoid unnecessary copies of data, V8 will point directly into the * given data blob, so pretty please keep it around until V8 exit. * - Compression of the startup blob might be useful, but needs to * handled entirely on the embedders' side. * - The call will abort if the data is invalid. */ static void SetNativesDataBlob(StartupData* startup_blob); static void SetSnapshotDataBlob(StartupData* startup_blob); /** * Bootstrap an isolate and a context from scratch to create a startup * snapshot. Include the side-effects of running the optional script. * Returns { NULL, 0 } on failure. * The caller acquires ownership of the data array in the return value. */ static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL); /** * Bootstrap an isolate and a context from the cold startup blob, run the * warm-up script to trigger code compilation. The side effects are then * discarded. The resulting startup snapshot will include compiled code. * Returns { NULL, 0 } on failure. * The caller acquires ownership of the data array in the return value. * The argument startup blob is untouched. */ static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob, const char* warmup_source); /** * Adds a message listener. * * The same message listener can be added more than once and in that * case it will be called more than once for each message. * * If data is specified, it will be passed to the callback when it is called. * Otherwise, the exception object will be passed to the callback instead. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", bool AddMessageListener(MessageCallback that, Local<Value> data = Local<Value>())); /** * Remove all message listeners from the specified callback function. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void RemoveMessageListeners(MessageCallback that)); /** * Tells V8 to capture current stack trace when uncaught exception occurs * and report it to the message listeners. The option is off by default. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit = 10, StackTrace::StackTraceOptions options = StackTrace::kOverview)); /** * Sets V8 flags from a string. */ static void SetFlagsFromString(const char* str, int length); /** * Sets V8 flags from the command line. */ static void SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags); /** Get the version string. */ static const char* GetVersion(); /** Callback function for reporting failed access checks.*/ V8_INLINE static V8_DEPRECATED( "Use isolate version", void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback)); /** * Enables the host application to receive a notification before a * garbage collection. Allocations are not allowed in the * callback function, you therefore cannot manipulate objects (set * or delete properties for example) since it is possible such * operations will result in the allocation of objects. It is possible * to specify the GCType filter for your callback. But it is not possible to * register the same callback function two times with different * GCType filters. */ static V8_DEPRECATED( "Use isolate version", void AddGCPrologueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll)); /** * This function removes callback which was installed by * AddGCPrologueCallback function. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void RemoveGCPrologueCallback(GCCallback callback)); /** * Enables the host application to receive a notification after a * garbage collection. Allocations are not allowed in the * callback function, you therefore cannot manipulate objects (set * or delete properties for example) since it is possible such * operations will result in the allocation of objects. It is possible * to specify the GCType filter for your callback. But it is not possible to * register the same callback function two times with different * GCType filters. */ static V8_DEPRECATED( "Use isolate version", void AddGCEpilogueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll)); /** * This function removes callback which was installed by * AddGCEpilogueCallback function. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void RemoveGCEpilogueCallback(GCCallback callback)); /** * Initializes V8. This function needs to be called before the first Isolate * is created. It always returns true. */ static bool Initialize(); /** * Allows the host application to provide a callback which can be used * as a source of entropy for random number generators. */ static void SetEntropySource(EntropySource source); /** * Allows the host application to provide a callback that allows v8 to * cooperate with a profiler that rewrites return addresses on stack. */ static void SetReturnAddressLocationResolver( ReturnAddressLocationResolver return_address_resolver); /** * Forcefully terminate the current thread of JavaScript execution * in the given isolate. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. * * \param isolate The isolate in which to terminate the current JS execution. */ V8_INLINE static V8_DEPRECATED("Use isolate version", void TerminateExecution(Isolate* isolate)); /** * Is V8 terminating JavaScript execution. * * Returns true if JavaScript execution is currently terminating * because of a call to TerminateExecution. In that case there are * still JavaScript frames on the stack and the termination * exception is still active. * * \param isolate The isolate in which to check. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", bool IsExecutionTerminating(Isolate* isolate = NULL)); /** * Resume execution capability in the given isolate, whose execution * was previously forcefully terminated using TerminateExecution(). * * When execution is forcefully terminated using TerminateExecution(), * the isolate can not resume execution until all JavaScript frames * have propagated the uncatchable exception which is generated. This * method allows the program embedding the engine to handle the * termination event and resume execution capability, even if * JavaScript frames remain on the stack. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. * * \param isolate The isolate in which to resume execution capability. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void CancelTerminateExecution(Isolate* isolate)); /** * Releases any resources used by v8 and stops any utility threads * that may be running. Note that disposing v8 is permanent, it * cannot be reinitialized. * * It should generally not be necessary to dispose v8 before exiting * a process, this should happen automatically. It is only necessary * to use if the process needs the resources taken up by v8. */ static bool Dispose(); /** * Iterates through all external resources referenced from current isolate * heap. GC is not invoked prior to iterating, therefore there is no * guarantee that visited objects are still alive. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void VisitExternalResources(ExternalResourceVisitor* visitor)); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor)); /** * Iterates through all the persistent handles in isolate's heap that have * class_ids. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void VisitHandlesWithClassIds(Isolate* isolate, PersistentHandleVisitor* visitor)); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids and are candidates to be marked as partially dependent * handles. This will visit handles to young objects created since the last * garbage collection but is free to visit an arbitrary superset of these * objects. */ V8_INLINE static V8_DEPRECATED( "Use isolate version", void VisitHandlesForPartialDependence(Isolate* isolate, PersistentHandleVisitor* visitor)); /** * Initialize the ICU library bundled with V8. The embedder should only * invoke this method when using the bundled ICU. Returns true on success. * * If V8 was compiled with the ICU data in an external file, the location * of the data file has to be provided. */ V8_DEPRECATE_SOON( "Use version with default location.", static bool InitializeICU(const char* icu_data_file = nullptr)); /** * Initialize the ICU library bundled with V8. The embedder should only * invoke this method when using the bundled ICU. If V8 was compiled with * the ICU data in an external file and when the default location of that * file should be used, a path to the executable must be provided. * Returns true on success. * * The default is a file called icudtl.dat side-by-side with the executable. * * Optionally, the location of the data file can be provided to override the * default. */ static bool InitializeICUDefaultLocation(const char* exec_path, const char* icu_data_file = nullptr); /** * Initialize the external startup data. The embedder only needs to * invoke this method when external startup data was enabled in a build. * * If V8 was compiled with the startup data in an external file, then * V8 needs to be given those external files during startup. There are * three ways to do this: * - InitializeExternalStartupData(const char*) * This will look in the given directory for files "natives_blob.bin" * and "snapshot_blob.bin" - which is what the default build calls them. * - InitializeExternalStartupData(const char*, const char*) * As above, but will directly use the two given file names. * - Call SetNativesDataBlob, SetNativesDataBlob. * This will read the blobs from the given data structures and will * not perform any file IO. */ static void InitializeExternalStartupData(const char* directory_path); static void InitializeExternalStartupData(const char* natives_blob, const char* snapshot_blob); /** * Sets the v8::Platform to use. This should be invoked before V8 is * initialized. */ static void InitializePlatform(Platform* platform); /** * Clears all references to the v8::Platform. This should be invoked after * V8 was disposed. */ static void ShutdownPlatform(); private: V8(); static internal::Object** GlobalizeReference(internal::Isolate* isolate, internal::Object** handle); static internal::Object** CopyPersistent(internal::Object** handle); static void DisposeGlobal(internal::Object** global_handle); static void MakeWeak(internal::Object** location, void* data, WeakCallbackInfo<void>::Callback weak_callback, WeakCallbackType type); static void MakeWeak(internal::Object** location, void* data, // Must be 0 or -1. int internal_field_index1, // Must be 1 or -1. int internal_field_index2, WeakCallbackInfo<void>::Callback weak_callback); static void MakeWeak(internal::Object*** location_addr); static void* ClearWeak(internal::Object** location); static void Eternalize(Isolate* isolate, Value* handle, int* index); static Local<Value> GetEternal(Isolate* isolate, int index); static void RegisterExternallyReferencedObject(internal::Object** object, internal::Isolate* isolate); template <class K, class V, class T> friend class PersistentValueMapBase; static void FromJustIsNothing(); static void ToLocalEmpty(); static void InternalFieldOutOfBounds(int index); template <class T> friend class Local; template <class T> friend class MaybeLocal; template <class T> friend class Maybe; template <class T> friend class WeakCallbackInfo; template <class T> friend class Eternal; template <class T> friend class PersistentBase; template <class T, class M> friend class Persistent; friend class Context; }; /** * Helper class to create a snapshot data blob. */ class SnapshotCreator { public: enum class FunctionCodeHandling { kClear, kKeep }; /** * Create and enter an isolate, and set it up for serialization. * The isolate is either created from scratch or from an existing snapshot. * The caller keeps ownership of the argument snapshot. * \param existing_blob existing snapshot from which to create this one. * \param external_references a null-terminated array of external references * that must be equivalent to CreateParams::external_references. */ SnapshotCreator(intptr_t* external_references = nullptr, StartupData* existing_blob = nullptr); ~SnapshotCreator(); /** * \returns the isolate prepared by the snapshot creator. */ Isolate* GetIsolate(); /** * Add a context to be included in the snapshot blob. * \returns the index of the context in the snapshot blob. */ size_t AddContext(Local<Context> context); /** * Add a template to be included in the snapshot blob. * \returns the index of the template in the snapshot blob. */ size_t AddTemplate(Local<Template> template_obj); /** * Created a snapshot data blob. * This must not be called from within a handle scope. * \param function_code_handling whether to include compiled function code * in the snapshot. * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The * caller acquires ownership of the data array in the return value. */ StartupData CreateBlob(FunctionCodeHandling function_code_handling); private: void* data_; // Disallow copying and assigning. SnapshotCreator(const SnapshotCreator&); void operator=(const SnapshotCreator&); }; /** * A simple Maybe type, representing an object which may or may not have a * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html. * * If an API method returns a Maybe<>, the API method can potentially fail * either because an exception is thrown, or because an exception is pending, * e.g. because a previous API call threw an exception that hasn't been caught * yet, or because a TerminateExecution exception was thrown. In that case, a * "Nothing" value is returned. */ template <class T> class Maybe { public: V8_INLINE bool IsNothing() const { return !has_value; } V8_INLINE bool IsJust() const { return has_value; } // Will crash if the Maybe<> is nothing. V8_INLINE T FromJust() const { if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing(); return value; } V8_INLINE T FromMaybe(const T& default_value) const { return has_value ? value : default_value; } V8_INLINE bool operator==(const Maybe& other) const { return (IsJust() == other.IsJust()) && (!IsJust() || FromJust() == other.FromJust()); } V8_INLINE bool operator!=(const Maybe& other) const { return !operator==(other); } private: Maybe() : has_value(false) {} explicit Maybe(const T& t) : has_value(true), value(t) {} bool has_value; T value; template <class U> friend Maybe<U> Nothing(); template <class U> friend Maybe<U> Just(const U& u); }; template <class T> inline Maybe<T> Nothing() { return Maybe<T>(); } template <class T> inline Maybe<T> Just(const T& t) { return Maybe<T>(t); } /** * An external exception handler. */ class V8_EXPORT TryCatch { public: /** * Creates a new try/catch block and registers it with v8. Note that * all TryCatch blocks should be stack allocated because the memory * location itself is compared against JavaScript try/catch blocks. */ V8_DEPRECATED("Use isolate version", TryCatch()); /** * Creates a new try/catch block and registers it with v8. Note that * all TryCatch blocks should be stack allocated because the memory * location itself is compared against JavaScript try/catch blocks. */ TryCatch(Isolate* isolate); /** * Unregisters and deletes this try/catch block. */ ~TryCatch(); /** * Returns true if an exception has been caught by this try/catch block. */ bool HasCaught() const; /** * For certain types of exceptions, it makes no sense to continue execution. * * If CanContinue returns false, the correct action is to perform any C++ * cleanup needed and then return. If CanContinue returns false and * HasTerminated returns true, it is possible to call * CancelTerminateExecution in order to continue calling into the engine. */ bool CanContinue() const; /** * Returns true if an exception has been caught due to script execution * being terminated. * * There is no JavaScript representation of an execution termination * exception. Such exceptions are thrown when the TerminateExecution * methods are called to terminate a long-running script. * * If such an exception has been thrown, HasTerminated will return true, * indicating that it is possible to call CancelTerminateExecution in order * to continue calling into the engine. */ bool HasTerminated() const; /** * Throws the exception caught by this TryCatch in a way that avoids * it being caught again by this same TryCatch. As with ThrowException * it is illegal to execute any JavaScript operations after calling * ReThrow; the caller must return immediately to where the exception * is caught. */ Local<Value> ReThrow(); /** * Returns the exception caught by this try/catch block. If no exception has * been caught an empty handle is returned. * * The returned handle is valid until this TryCatch block has been destroyed. */ Local<Value> Exception() const; /** * Returns the .stack property of the thrown object. If no .stack * property is present an empty handle is returned. */ V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const); V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace( Local<Context> context) const; /** * Returns the message associated with this exception. If there is * no message associated an empty handle is returned. * * The returned handle is valid until this TryCatch block has been * destroyed. */ Local<v8::Message> Message() const; /** * Clears any exceptions that may have been caught by this try/catch block. * After this method has been called, HasCaught() will return false. Cancels * the scheduled exception if it is caught and ReThrow() is not called before. * * It is not necessary to clear a try/catch block before using it again; if * another exception is thrown the previously caught exception will just be * overwritten. However, it is often a good idea since it makes it easier * to determine which operation threw a given exception. */ void Reset(); /** * Set verbosity of the external exception handler. * * By default, exceptions that are caught by an external exception * handler are not reported. Call SetVerbose with true on an * external exception handler to have exceptions caught by the * handler reported as if they were not caught. */ void SetVerbose(bool value); /** * Set whether or not this TryCatch should capture a Message object * which holds source information about where the exception * occurred. True by default. */ void SetCaptureMessage(bool value); /** * There are cases when the raw address of C++ TryCatch object cannot be * used for comparisons with addresses into the JS stack. The cases are: * 1) ARM, ARM64 and MIPS simulators which have separate JS stack. * 2) Address sanitizer allocates local C++ object in the heap when * UseAfterReturn mode is enabled. * This method returns address that can be used for comparisons with * addresses into the JS stack. When neither simulator nor ASAN's * UseAfterReturn is enabled, then the address returned will be the address * of the C++ try catch handler itself. */ static void* JSStackComparableAddress(v8::TryCatch* handler) { if (handler == NULL) return NULL; return handler->js_stack_comparable_address_; } private: void ResetInternal(); // Make it hard to create heap-allocated TryCatch blocks. TryCatch(const TryCatch&); void operator=(const TryCatch&); void* operator new(size_t size); void operator delete(void*, size_t); v8::internal::Isolate* isolate_; v8::TryCatch* next_; void* exception_; void* message_obj_; void* js_stack_comparable_address_; bool is_verbose_ : 1; bool can_continue_ : 1; bool capture_message_ : 1; bool rethrow_ : 1; bool has_terminated_ : 1; friend class v8::internal::Isolate; }; // --- Context --- /** * A container for extension names. */ class V8_EXPORT ExtensionConfiguration { public: ExtensionConfiguration() : name_count_(0), names_(NULL) { } ExtensionConfiguration(int name_count, const char* names[]) : name_count_(name_count), names_(names) { } const char** begin() const { return &names_[0]; } const char** end() const { return &names_[name_count_]; } private: const int name_count_; const char** names_; }; /** * A sandboxed execution context with its own set of built-in objects * and functions. */ class V8_EXPORT Context { public: /** * Returns the global proxy object. * * Global proxy object is a thin wrapper whose prototype points to actual * context's global object with the properties like Object, etc. This is done * that way for security reasons (for more details see * https://wiki.mozilla.org/Gecko:SplitWindow). * * Please note that changes to global proxy object prototype most probably * would break VM---v8 expects only global object as a prototype of global * proxy object. */ Local<Object> Global(); /** * Detaches the global object from its context before * the global object can be reused to create a new context. */ void DetachGlobal(); /** * Creates a new context and returns a handle to the newly allocated * context. * * \param isolate The isolate in which to create the context. * * \param extensions An optional extension configuration containing * the extensions to be installed in the newly created context. * * \param global_template An optional object template from which the * global object for the newly created context will be created. * * \param global_object An optional global object to be reused for * the newly created context. This global object must have been * created by a previous call to Context::New with the same global * template. The state of the global object will be completely reset * and only object identify will remain. */ static Local<Context> New( Isolate* isolate, ExtensionConfiguration* extensions = NULL, Local<ObjectTemplate> global_template = Local<ObjectTemplate>(), Local<Value> global_object = Local<Value>(), size_t context_snapshot_index = 0); /** * Sets the security token for the context. To access an object in * another context, the security tokens must match. */ void SetSecurityToken(Local<Value> token); /** Restores the security token to the default value. */ void UseDefaultSecurityToken(); /** Returns the security token of this context.*/ Local<Value> GetSecurityToken(); /** * Enter this context. After entering a context, all code compiled * and run is compiled and run in this context. If another context * is already entered, this old context is saved so it can be * restored when the new context is exited. */ void Enter(); /** * Exit this context. Exiting the current context restores the * context that was in place when entering the current context. */ void Exit(); /** Returns an isolate associated with a current context. */ v8::Isolate* GetIsolate(); /** * The field at kDebugIdIndex is reserved for V8 debugger implementation. * The value is propagated to the scripts compiled in given Context and * can be used for filtering scripts. */ enum EmbedderDataFields { kDebugIdIndex = 0 }; /** * Gets the embedder data with the given index, which must have been set by a * previous call to SetEmbedderData with the same index. Note that index 0 * currently has a special meaning for Chrome's debugger. */ V8_INLINE Local<Value> GetEmbedderData(int index); /** * Gets the binding object used by V8 extras. Extra natives get a reference * to this object and can use it to "export" functionality by adding * properties. Extra natives can also "import" functionality by accessing * properties added by the embedder using the V8 API. */ Local<Object> GetExtrasBindingObject(); /** * Sets the embedder data with the given index, growing the data as * needed. Note that index 0 currently has a special meaning for Chrome's * debugger. */ void SetEmbedderData(int index, Local<Value> value); /** * Gets a 2-byte-aligned native pointer from the embedder data with the given * index, which must have bees set by a previous call to * SetAlignedPointerInEmbedderData with the same index. Note that index 0 * currently has a special meaning for Chrome's debugger. */ V8_INLINE void* GetAlignedPointerFromEmbedderData(int index); /** * Sets a 2-byte-aligned native pointer in the embedder data with the given * index, growing the data as needed. Note that index 0 currently has a * special meaning for Chrome's debugger. */ void SetAlignedPointerInEmbedderData(int index, void* value); /** * Control whether code generation from strings is allowed. Calling * this method with false will disable 'eval' and the 'Function' * constructor for code running in this context. If 'eval' or the * 'Function' constructor are used an exception will be thrown. * * If code generation from strings is not allowed the * V8::AllowCodeGenerationFromStrings callback will be invoked if * set before blocking the call to 'eval' or the 'Function' * constructor. If that callback returns true, the call will be * allowed, otherwise an exception will be thrown. If no callback is * set an exception will be thrown. */ void AllowCodeGenerationFromStrings(bool allow); /** * Returns true if code generation from strings is allowed for the context. * For more details see AllowCodeGenerationFromStrings(bool) documentation. */ bool IsCodeGenerationFromStringsAllowed(); /** * Sets the error description for the exception that is thrown when * code generation from strings is not allowed and 'eval' or the 'Function' * constructor are called. */ void SetErrorMessageForCodeGenerationFromStrings(Local<String> message); /** * Estimate the memory in bytes retained by this context. */ size_t EstimatedSize(); /** * Stack-allocated class which sets the execution context for all * operations executed within a local scope. */ class Scope { public: explicit V8_INLINE Scope(Local<Context> context) : context_(context) { context_->Enter(); } V8_INLINE ~Scope() { context_->Exit(); } private: Local<Context> context_; }; private: friend class Value; friend class Script; friend class Object; friend class Function; Local<Value> SlowGetEmbedderData(int index); void* SlowGetAlignedPointerFromEmbedderData(int index); }; /** * Multiple threads in V8 are allowed, but only one thread at a time is allowed * to use any given V8 isolate, see the comments in the Isolate class. The * definition of 'using a V8 isolate' includes accessing handles or holding onto * object pointers obtained from V8 handles while in the particular V8 isolate. * It is up to the user of V8 to ensure, perhaps with locking, that this * constraint is not violated. In addition to any other synchronization * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be * used to signal thead switches to V8. * * v8::Locker is a scoped lock object. While it's active, i.e. between its * construction and destruction, the current thread is allowed to use the locked * isolate. V8 guarantees that an isolate can be locked by at most one thread at * any time. In other words, the scope of a v8::Locker is a critical section. * * Sample usage: * \code * ... * { * v8::Locker locker(isolate); * v8::Isolate::Scope isolate_scope(isolate); * ... * // Code using V8 and isolate goes here. * ... * } // Destructor called here * \endcode * * If you wish to stop using V8 in a thread A you can do this either by * destroying the v8::Locker object as above or by constructing a v8::Unlocker * object: * * \code * { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * ... * // Code not using V8 goes here while V8 can run in another thread. * ... * } // Destructor called here. * isolate->Enter(); * \endcode * * The Unlocker object is intended for use in a long-running callback from V8, * where you want to release the V8 lock for other threads to use. * * The v8::Locker is a recursive lock, i.e. you can lock more than once in a * given thread. This can be useful if you have code that can be called either * from code that holds the lock or from code that does not. The Unlocker is * not recursive so you can not have several Unlockers on the stack at once, and * you can not use an Unlocker in a thread that is not inside a Locker's scope. * * An unlocker will unlock several lockers if it has to and reinstate the * correct depth of locking on its destruction, e.g.: * * \code * // V8 not locked. * { * v8::Locker locker(isolate); * Isolate::Scope isolate_scope(isolate); * // V8 locked. * { * v8::Locker another_locker(isolate); * // V8 still locked (2 levels). * { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * // V8 not locked. * } * isolate->Enter(); * // V8 locked again (2 levels). * } * // V8 still locked (1 level). * } * // V8 Now no longer locked. * \endcode */ class V8_EXPORT Unlocker { public: /** * Initialize Unlocker for a given Isolate. */ V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); } ~Unlocker(); private: void Initialize(Isolate* isolate); internal::Isolate* isolate_; }; class V8_EXPORT Locker { public: /** * Initialize Locker for a given Isolate. */ V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); } ~Locker(); /** * Returns whether or not the locker for a given isolate, is locked by the * current thread. */ static bool IsLocked(Isolate* isolate); /** * Returns whether v8::Locker is being used by this V8 instance. */ static bool IsActive(); private: void Initialize(Isolate* isolate); bool has_lock_; bool top_level_; internal::Isolate* isolate_; // Disallow copying and assigning. Locker(const Locker&); void operator=(const Locker&); }; // --- Implementation --- namespace internal { const int kApiPointerSize = sizeof(void*); // NOLINT const int kApiIntSize = sizeof(int); // NOLINT const int kApiInt64Size = sizeof(int64_t); // NOLINT // Tag information for HeapObject. const int kHeapObjectTag = 1; const int kHeapObjectTagSize = 2; const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; // Tag information for Smi. const int kSmiTag = 0; const int kSmiTagSize = 1; const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; template <size_t ptr_size> struct SmiTagging; template<int kSmiShiftSize> V8_INLINE internal::Object* IntToSmi(int value) { int smi_shift_bits = kSmiTagSize + kSmiShiftSize; uintptr_t tagged_value = (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag; return reinterpret_cast<internal::Object*>(tagged_value); } // Smi constants for 32-bit systems. template <> struct SmiTagging<4> { enum { kSmiShiftSize = 0, kSmiValueSize = 31 }; static int SmiShiftSize() { return kSmiShiftSize; } static int SmiValueSize() { return kSmiValueSize; } V8_INLINE static int SmiToInt(const internal::Object* value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Throw away top 32 bits and shift down (requires >> to be sign extending). return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits; } V8_INLINE static internal::Object* IntToSmi(int value) { return internal::IntToSmi<kSmiShiftSize>(value); } V8_INLINE static bool IsValidSmi(intptr_t value) { // To be representable as an tagged small integer, the two // most-significant bits of 'value' must be either 00 or 11 due to // sign-extension. To check this we add 01 to the two // most-significant bits, and check if the most-significant bit is 0 // // CAUTION: The original code below: // bool result = ((value + 0x40000000) & 0x80000000) == 0; // may lead to incorrect results according to the C language spec, and // in fact doesn't work correctly with gcc4.1.1 in some cases: The // compiler may produce undefined results in case of signed integer // overflow. The computation must be done w/ unsigned ints. return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U; } }; // Smi constants for 64-bit systems. template <> struct SmiTagging<8> { enum { kSmiShiftSize = 31, kSmiValueSize = 32 }; static int SmiShiftSize() { return kSmiShiftSize; } static int SmiValueSize() { return kSmiValueSize; } V8_INLINE static int SmiToInt(const internal::Object* value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Shift down and throw away top 32 bits. return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits); } V8_INLINE static internal::Object* IntToSmi(int value) { return internal::IntToSmi<kSmiShiftSize>(value); } V8_INLINE static bool IsValidSmi(intptr_t value) { // To be representable as a long smi, the value must be a 32-bit integer. return (value == static_cast<int32_t>(value)); } }; typedef SmiTagging<kApiPointerSize> PlatformSmiTagging; const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize; const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize; V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; } V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; } /** * This class exports constants and functionality from within v8 that * is necessary to implement inline functions in the v8 api. Don't * depend on functions and constants defined here. */ class Internals { public: // These values match non-compiler-dependent values defined within // the implementation of v8. static const int kHeapObjectMapOffset = 0; static const int kMapInstanceTypeAndBitFieldOffset = 1 * kApiPointerSize + kApiIntSize; static const int kStringResourceOffset = 3 * kApiPointerSize; static const int kOddballKindOffset = 5 * kApiPointerSize + sizeof(double); static const int kForeignAddressOffset = kApiPointerSize; static const int kJSObjectHeaderSize = 3 * kApiPointerSize; static const int kFixedArrayHeaderSize = 2 * kApiPointerSize; static const int kContextHeaderSize = 2 * kApiPointerSize; static const int kContextEmbedderDataIndex = 5; static const int kFullStringRepresentationMask = 0x07; static const int kStringEncodingMask = 0x4; static const int kExternalTwoByteRepresentationTag = 0x02; static const int kExternalOneByteRepresentationTag = 0x06; static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize; static const int kExternalMemoryOffset = 4 * kApiPointerSize; static const int kExternalMemoryLimitOffset = kExternalMemoryOffset + kApiInt64Size; static const int kIsolateRootsOffset = kExternalMemoryLimitOffset + kApiInt64Size + kApiInt64Size + kApiPointerSize + kApiPointerSize; static const int kUndefinedValueRootIndex = 4; static const int kTheHoleValueRootIndex = 5; static const int kNullValueRootIndex = 6; static const int kTrueValueRootIndex = 7; static const int kFalseValueRootIndex = 8; static const int kEmptyStringRootIndex = 9; static const int kNodeClassIdOffset = 1 * kApiPointerSize; static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3; static const int kNodeStateMask = 0x7; static const int kNodeStateIsWeakValue = 2; static const int kNodeStateIsPendingValue = 3; static const int kNodeStateIsNearDeathValue = 4; static const int kNodeIsIndependentShift = 3; static const int kNodeIsPartiallyDependentShift = 4; static const int kNodeIsActiveShift = 4; static const int kJSObjectType = 0xb7; static const int kJSApiObjectType = 0xb6; static const int kFirstNonstringType = 0x80; static const int kOddballType = 0x83; static const int kForeignType = 0x87; static const int kUndefinedOddballKind = 5; static const int kNullOddballKind = 3; static const uint32_t kNumIsolateDataSlots = 4; V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate); V8_INLINE static void CheckInitialized(v8::Isolate* isolate) { #ifdef V8_ENABLE_CHECKS CheckInitializedImpl(isolate); #endif } V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) { return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) == kHeapObjectTag); } V8_INLINE static int SmiValue(const internal::Object* value) { return PlatformSmiTagging::SmiToInt(value); } V8_INLINE static internal::Object* IntToSmi(int value) { return PlatformSmiTagging::IntToSmi(value); } V8_INLINE static bool IsValidSmi(intptr_t value) { return PlatformSmiTagging::IsValidSmi(value); } V8_INLINE static int GetInstanceType(const internal::Object* obj) { typedef internal::Object O; O* map = ReadField<O*>(obj, kHeapObjectMapOffset); // Map::InstanceType is defined so that it will always be loaded into // the LS 8 bits of one 16-bit word, regardless of endianess. return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff; } V8_INLINE static int GetOddballKind(const internal::Object* obj) { typedef internal::Object O; return SmiValue(ReadField<O*>(obj, kOddballKindOffset)); } V8_INLINE static bool IsExternalTwoByteString(int instance_type) { int representation = (instance_type & kFullStringRepresentationMask); return representation == kExternalTwoByteRepresentationTag; } V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & static_cast<uint8_t>(1U << shift); } V8_INLINE static void UpdateNodeFlag(internal::Object** obj, bool value, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; uint8_t mask = static_cast<uint8_t>(1U << shift); *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift)); } V8_INLINE static uint8_t GetNodeState(internal::Object** obj) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & kNodeStateMask; } V8_INLINE static void UpdateNodeState(internal::Object** obj, uint8_t value) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value); } V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot, void* data) { uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateEmbedderDataOffset + slot * kApiPointerSize; *reinterpret_cast<void**>(addr) = data; } V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate, uint32_t slot) { const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) + kIsolateEmbedderDataOffset + slot * kApiPointerSize; return *reinterpret_cast<void* const*>(addr); } V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate, int index) { uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset; return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize); } template <typename T> V8_INLINE static T ReadField(const internal::Object* ptr, int offset) { const uint8_t* addr = reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag; return *reinterpret_cast<const T*>(addr); } template <typename T> V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) { typedef internal::Object O; typedef internal::Internals I; O* ctx = *reinterpret_cast<O* const*>(context); int embedder_data_offset = I::kContextHeaderSize + (internal::kApiPointerSize * I::kContextEmbedderDataIndex); O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset); int value_offset = I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index); return I::ReadField<T>(embedder_data, value_offset); } }; } // namespace internal template <class T> Local<T> Local<T>::New(Isolate* isolate, Local<T> that) { return New(isolate, that.val_); } template <class T> Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) { return New(isolate, that.val_); } template <class T> Local<T> Local<T>::New(Isolate* isolate, T* that) { if (that == NULL) return Local<T>(); T* that_ptr = that; internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr); return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle( reinterpret_cast<internal::Isolate*>(isolate), *p))); } template<class T> template<class S> void Eternal<T>::Set(Isolate* isolate, Local<S> handle) { TYPE_CHECK(T, S); V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_); } template<class T> Local<T> Eternal<T>::Get(Isolate* isolate) { return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_))); } template <class T> Local<T> MaybeLocal<T>::ToLocalChecked() { if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty(); return Local<T>(val_); } template <class T> void* WeakCallbackInfo<T>::GetInternalField(int index) const { #ifdef V8_ENABLE_CHECKS if (index < 0 || index >= kInternalFieldsInWeakCallback) { V8::InternalFieldOutOfBounds(index); } #endif return internal_fields_[index]; } template <class T> T* PersistentBase<T>::New(Isolate* isolate, T* that) { if (that == NULL) return NULL; internal::Object** p = reinterpret_cast<internal::Object**>(that); return reinterpret_cast<T*>( V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate), p)); } template <class T, class M> template <class S, class M2> void Persistent<T, M>::Copy(const Persistent<S, M2>& that) { TYPE_CHECK(T, S); this->Reset(); if (that.IsEmpty()) return; internal::Object** p = reinterpret_cast<internal::Object**>(that.val_); this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p)); M::Copy(that, this); } template <class T> bool PersistentBase<T>::IsIndependent() const { typedef internal::Internals I; if (this->IsEmpty()) return false; return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_), I::kNodeIsIndependentShift); } template <class T> bool PersistentBase<T>::IsNearDeath() const { typedef internal::Internals I; if (this->IsEmpty()) return false; uint8_t node_state = I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)); return node_state == I::kNodeStateIsNearDeathValue || node_state == I::kNodeStateIsPendingValue; } template <class T> bool PersistentBase<T>::IsWeak() const { typedef internal::Internals I; if (this->IsEmpty()) return false; return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) == I::kNodeStateIsWeakValue; } template <class T> void PersistentBase<T>::Reset() { if (this->IsEmpty()) return; V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_)); val_ = 0; } template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) { TYPE_CHECK(T, S); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); } template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const PersistentBase<S>& other) { TYPE_CHECK(T, S); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); } template <class T> template <typename P> V8_INLINE void PersistentBase<T>::SetWeak( P* parameter, typename WeakCallbackInfo<P>::Callback callback, WeakCallbackType type) { typedef typename WeakCallbackInfo<void>::Callback Callback; V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter, reinterpret_cast<Callback>(callback), type); } template <class T> void PersistentBase<T>::SetWeak() { V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_)); } template <class T> template <typename P> P* PersistentBase<T>::ClearWeak() { return reinterpret_cast<P*>( V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_))); } template <class T> void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const { if (IsEmpty()) return; V8::RegisterExternallyReferencedObject( reinterpret_cast<internal::Object**>(this->val_), reinterpret_cast<internal::Isolate*>(isolate)); } template <class T> void PersistentBase<T>::MarkIndependent() { typedef internal::Internals I; if (this->IsEmpty()) return; I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true, I::kNodeIsIndependentShift); } template <class T> void PersistentBase<T>::MarkPartiallyDependent() { typedef internal::Internals I; if (this->IsEmpty()) return; I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true, I::kNodeIsPartiallyDependentShift); } template <class T> void PersistentBase<T>::MarkActive() { typedef internal::Internals I; if (this->IsEmpty()) return; I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true, I::kNodeIsActiveShift); } template <class T> void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) { typedef internal::Internals I; if (this->IsEmpty()) return; internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; *reinterpret_cast<uint16_t*>(addr) = class_id; } template <class T> uint16_t PersistentBase<T>::WrapperClassId() const { typedef internal::Internals I; if (this->IsEmpty()) return 0; internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; return *reinterpret_cast<uint16_t*>(addr); } template<typename T> ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {} template<typename T> template<typename S> void ReturnValue<T>::Set(const Persistent<S>& handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } } template <typename T> template <typename S> void ReturnValue<T>::Set(const Global<S>& handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } } template <typename T> template <typename S> void ReturnValue<T>::Set(const Local<S> handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } } template<typename T> void ReturnValue<T>::Set(double i) { TYPE_CHECK(T, Number); Set(Number::New(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(int32_t i) { TYPE_CHECK(T, Integer); typedef internal::Internals I; if (V8_LIKELY(I::IsValidSmi(i))) { *value_ = I::IntToSmi(i); return; } Set(Integer::New(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(uint32_t i) { TYPE_CHECK(T, Integer); // Can't simply use INT32_MAX here for whatever reason. bool fits_into_int32_t = (i & (1U << 31)) == 0; if (V8_LIKELY(fits_into_int32_t)) { Set(static_cast<int32_t>(i)); return; } Set(Integer::NewFromUnsigned(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(bool value) { TYPE_CHECK(T, Boolean); typedef internal::Internals I; int root_index; if (value) { root_index = I::kTrueValueRootIndex; } else { root_index = I::kFalseValueRootIndex; } *value_ = *I::GetRoot(GetIsolate(), root_index); } template<typename T> void ReturnValue<T>::SetNull() { TYPE_CHECK(T, Primitive); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex); } template<typename T> void ReturnValue<T>::SetUndefined() { TYPE_CHECK(T, Primitive); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex); } template<typename T> void ReturnValue<T>::SetEmptyString() { TYPE_CHECK(T, String); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex); } template <typename T> Isolate* ReturnValue<T>::GetIsolate() const { // Isolate is always the pointer below the default value on the stack. return *reinterpret_cast<Isolate**>(&value_[-2]); } template <typename T> Local<Value> ReturnValue<T>::Get() const { typedef internal::Internals I; if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex)) return Local<Value>(*Undefined(GetIsolate())); return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_)); } template <typename T> template <typename S> void ReturnValue<T>::Set(S* whatever) { // Uncompilable to prevent inadvertent misuse. TYPE_CHECK(S*, Primitive); } template<typename T> internal::Object* ReturnValue<T>::GetDefaultValue() { // Default value is always the pointer below value_ on the stack. return value_[-1]; } template <typename T> FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args, internal::Object** values, int length) : implicit_args_(implicit_args), values_(values), length_(length) {} template<typename T> Local<Value> FunctionCallbackInfo<T>::operator[](int i) const { if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate())); return Local<Value>(reinterpret_cast<Value*>(values_ - i)); } template<typename T> Local<Function> FunctionCallbackInfo<T>::Callee() const { return Local<Function>(reinterpret_cast<Function*>( &implicit_args_[kCalleeIndex])); } template<typename T> Local<Object> FunctionCallbackInfo<T>::This() const { return Local<Object>(reinterpret_cast<Object*>(values_ + 1)); } template<typename T> Local<Object> FunctionCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>( &implicit_args_[kHolderIndex])); } template <typename T> Local<Value> FunctionCallbackInfo<T>::NewTarget() const { return Local<Value>( reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex])); } template <typename T> Local<Value> FunctionCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex])); } template<typename T> Isolate* FunctionCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]); } template<typename T> ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&implicit_args_[kReturnValueIndex]); } template<typename T> bool FunctionCallbackInfo<T>::IsConstructCall() const { return !NewTarget()->IsUndefined(); } template<typename T> int FunctionCallbackInfo<T>::Length() const { return length_; } ScriptOrigin::ScriptOrigin(Local<Value> resource_name, Local<Integer> resource_line_offset, Local<Integer> resource_column_offset, Local<Boolean> resource_is_shared_cross_origin, Local<Integer> script_id, Local<Boolean> resource_is_embedder_debug_script, Local<Value> source_map_url, Local<Boolean> resource_is_opaque) : resource_name_(resource_name), resource_line_offset_(resource_line_offset), resource_column_offset_(resource_column_offset), options_(!resource_is_embedder_debug_script.IsEmpty() && resource_is_embedder_debug_script->IsTrue(), !resource_is_shared_cross_origin.IsEmpty() && resource_is_shared_cross_origin->IsTrue(), !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue()), script_id_(script_id), source_map_url_(source_map_url) {} Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; } Local<Integer> ScriptOrigin::ResourceLineOffset() const { return resource_line_offset_; } Local<Integer> ScriptOrigin::ResourceColumnOffset() const { return resource_column_offset_; } Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; } Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; } ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin, CachedData* data) : source_string(string), resource_name(origin.ResourceName()), resource_line_offset(origin.ResourceLineOffset()), resource_column_offset(origin.ResourceColumnOffset()), resource_options(origin.Options()), source_map_url(origin.SourceMapUrl()), cached_data(data) {} ScriptCompiler::Source::Source(Local<String> string, CachedData* data) : source_string(string), cached_data(data) {} ScriptCompiler::Source::~Source() { delete cached_data; } const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData() const { return cached_data; } Local<Boolean> Boolean::New(Isolate* isolate, bool value) { return value ? True(isolate) : False(isolate); } void Template::Set(Isolate* isolate, const char* name, v8::Local<Data> value) { Set(v8::String::NewFromUtf8(isolate, name, NewStringType::kNormal) .ToLocalChecked(), value); } Local<Value> Object::GetInternalField(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Object O; typedef internal::HeapObject HO; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(this); // Fast path: If the object is a plain JSObject, which is the common case, we // know where to find the internal fields and can return the value directly. auto instance_type = I::GetInstanceType(obj); if (instance_type == I::kJSObjectType || instance_type == I::kJSApiObjectType) { int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); O* value = I::ReadField<O*>(obj, offset); O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value); return Local<Value>(reinterpret_cast<Value*>(result)); } #endif return SlowGetInternalField(index); } void* Object::GetAlignedPointerFromInternalField(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(this); // Fast path: If the object is a plain JSObject, which is the common case, we // know where to find the internal fields and can return the value directly. auto instance_type = I::GetInstanceType(obj); if (V8_LIKELY(instance_type == I::kJSObjectType || instance_type == I::kJSApiObjectType)) { int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); return I::ReadField<void*>(obj, offset); } #endif return SlowGetAlignedPointerFromInternalField(index); } String* String::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<String*>(value); } Local<String> String::Empty(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex); return Local<String>(reinterpret_cast<String*>(slot)); } String::ExternalStringResource* String::GetExternalStringResource() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); String::ExternalStringResource* result; if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) { void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); result = reinterpret_cast<String::ExternalStringResource*>(value); } else { result = NULL; } #ifdef V8_ENABLE_CHECKS VerifyExternalStringResource(result); #endif return result; } String::ExternalStringResourceBase* String::GetExternalStringResourceBase( String::Encoding* encoding_out) const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask; *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask); ExternalStringResourceBase* resource = NULL; if (type == I::kExternalOneByteRepresentationTag || type == I::kExternalTwoByteRepresentationTag) { void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); resource = static_cast<ExternalStringResourceBase*>(value); } #ifdef V8_ENABLE_CHECKS VerifyExternalStringResourceBase(resource, *encoding_out); #endif return resource; } bool Value::IsUndefined() const { #ifdef V8_ENABLE_CHECKS return FullIsUndefined(); #else return QuickIsUndefined(); #endif } bool Value::QuickIsUndefined() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kUndefinedOddballKind); } bool Value::IsNull() const { #ifdef V8_ENABLE_CHECKS return FullIsNull(); #else return QuickIsNull(); #endif } bool Value::QuickIsNull() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kNullOddballKind); } bool Value::IsString() const { #ifdef V8_ENABLE_CHECKS return FullIsString(); #else return QuickIsString(); #endif } bool Value::QuickIsString() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; return (I::GetInstanceType(obj) < I::kFirstNonstringType); } template <class T> Value* Value::Cast(T* value) { return static_cast<Value*>(value); } Local<Boolean> Value::ToBoolean() const { return ToBoolean(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Boolean>()); } Local<Number> Value::ToNumber() const { return ToNumber(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Number>()); } Local<String> Value::ToString() const { return ToString(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<String>()); } Local<String> Value::ToDetailString() const { return ToDetailString(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<String>()); } Local<Object> Value::ToObject() const { return ToObject(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Object>()); } Local<Integer> Value::ToInteger() const { return ToInteger(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Integer>()); } Local<Uint32> Value::ToUint32() const { return ToUint32(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Uint32>()); } Local<Int32> Value::ToInt32() const { return ToInt32(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Int32>()); } Boolean* Boolean::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Boolean*>(value); } Name* Name::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Name*>(value); } Symbol* Symbol::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Symbol*>(value); } Number* Number::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Number*>(value); } Integer* Integer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Integer*>(value); } Int32* Int32::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int32*>(value); } Uint32* Uint32::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint32*>(value); } Date* Date::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Date*>(value); } StringObject* StringObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<StringObject*>(value); } SymbolObject* SymbolObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<SymbolObject*>(value); } NumberObject* NumberObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<NumberObject*>(value); } BooleanObject* BooleanObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BooleanObject*>(value); } RegExp* RegExp::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<RegExp*>(value); } Object* Object::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Object*>(value); } Array* Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Array*>(value); } Map* Map::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Map*>(value); } Set* Set::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Set*>(value); } Promise* Promise::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Promise*>(value); } Proxy* Proxy::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Proxy*>(value); } Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Promise::Resolver*>(value); } ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<ArrayBuffer*>(value); } ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<ArrayBufferView*>(value); } TypedArray* TypedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<TypedArray*>(value); } Uint8Array* Uint8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint8Array*>(value); } Int8Array* Int8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int8Array*>(value); } Uint16Array* Uint16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint16Array*>(value); } Int16Array* Int16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int16Array*>(value); } Uint32Array* Uint32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint32Array*>(value); } Int32Array* Int32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int32Array*>(value); } Float32Array* Float32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Float32Array*>(value); } Float64Array* Float64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Float64Array*>(value); } Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint8ClampedArray*>(value); } DataView* DataView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<DataView*>(value); } SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<SharedArrayBuffer*>(value); } Function* Function::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Function*>(value); } External* External::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<External*>(value); } template<typename T> Isolate* PropertyCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]); } template<typename T> Local<Value> PropertyCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex])); } template<typename T> Local<Object> PropertyCallbackInfo<T>::This() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex])); } template<typename T> Local<Object> PropertyCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex])); } template<typename T> ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&args_[kReturnValueIndex]); } template <typename T> bool PropertyCallbackInfo<T>::ShouldThrowOnError() const { typedef internal::Internals I; return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0); } Local<Primitive> Undefined(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex); return Local<Primitive>(reinterpret_cast<Primitive*>(slot)); } Local<Primitive> Null(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kNullValueRootIndex); return Local<Primitive>(reinterpret_cast<Primitive*>(slot)); } Local<Boolean> True(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex); return Local<Boolean>(reinterpret_cast<Boolean*>(slot)); } Local<Boolean> False(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex); return Local<Boolean>(reinterpret_cast<Boolean*>(slot)); } void Isolate::SetData(uint32_t slot, void* data) { typedef internal::Internals I; I::SetEmbedderData(this, slot, data); } void* Isolate::GetData(uint32_t slot) { typedef internal::Internals I; return I::GetEmbedderData(this, slot); } uint32_t Isolate::GetNumberOfDataSlots() { typedef internal::Internals I; return I::kNumIsolateDataSlots; } int64_t Isolate::AdjustAmountOfExternalAllocatedMemory( int64_t change_in_bytes) { typedef internal::Internals I; int64_t* external_memory = reinterpret_cast<int64_t*>( reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset); const int64_t external_memory_limit = *reinterpret_cast<int64_t*>( reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset); const int64_t amount = *external_memory + change_in_bytes; *external_memory = amount; if (change_in_bytes > 0 && amount > external_memory_limit) { ReportExternalAllocationLimitReached(); } return *external_memory; } template<typename T> void Isolate::SetObjectGroupId(const Persistent<T>& object, UniqueId id) { TYPE_CHECK(Value, T); SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id); } template<typename T> void Isolate::SetReferenceFromGroup(UniqueId id, const Persistent<T>& object) { TYPE_CHECK(Value, T); SetReferenceFromGroup(id, reinterpret_cast<v8::internal::Object**>(object.val_)); } template<typename T, typename S> void Isolate::SetReference(const Persistent<T>& parent, const Persistent<S>& child) { TYPE_CHECK(Object, T); TYPE_CHECK(Value, S); SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_), reinterpret_cast<v8::internal::Object**>(child.val_)); } Local<Value> Context::GetEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Object O; typedef internal::HeapObject HO; typedef internal::Internals I; HO* context = *reinterpret_cast<HO**>(this); O** result = HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index)); return Local<Value>(reinterpret_cast<Value*>(result)); #else return SlowGetEmbedderData(index); #endif } void* Context::GetAlignedPointerFromEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Internals I; return I::ReadEmbedderData<void*>(this, index); #else return SlowGetAlignedPointerFromEmbedderData(index); #endif } void V8::SetAllowCodeGenerationFromStringsCallback( AllowCodeGenerationFromStringsCallback callback) { Isolate* isolate = Isolate::GetCurrent(); isolate->SetAllowCodeGenerationFromStringsCallback(callback); } bool V8::IsDead() { Isolate* isolate = Isolate::GetCurrent(); return isolate->IsDead(); } bool V8::AddMessageListener(MessageCallback that, Local<Value> data) { Isolate* isolate = Isolate::GetCurrent(); return isolate->AddMessageListener(that, data); } void V8::RemoveMessageListeners(MessageCallback that) { Isolate* isolate = Isolate::GetCurrent(); isolate->RemoveMessageListeners(that); } void V8::SetFailedAccessCheckCallbackFunction( FailedAccessCheckCallback callback) { Isolate* isolate = Isolate::GetCurrent(); isolate->SetFailedAccessCheckCallbackFunction(callback); } void V8::SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options) { Isolate* isolate = Isolate::GetCurrent(); isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit, options); } void V8::SetFatalErrorHandler(FatalErrorCallback callback) { Isolate* isolate = Isolate::GetCurrent(); isolate->SetFatalErrorHandler(callback); } void V8::RemoveGCPrologueCallback(GCCallback callback) { Isolate* isolate = Isolate::GetCurrent(); isolate->RemoveGCPrologueCallback( reinterpret_cast<v8::Isolate::GCCallback>(callback)); } void V8::RemoveGCEpilogueCallback(GCCallback callback) { Isolate* isolate = Isolate::GetCurrent(); isolate->RemoveGCEpilogueCallback( reinterpret_cast<v8::Isolate::GCCallback>(callback)); } void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); } bool V8::IsExecutionTerminating(Isolate* isolate) { if (isolate == NULL) { isolate = Isolate::GetCurrent(); } return isolate->IsExecutionTerminating(); } void V8::CancelTerminateExecution(Isolate* isolate) { isolate->CancelTerminateExecution(); } void V8::VisitExternalResources(ExternalResourceVisitor* visitor) { Isolate* isolate = Isolate::GetCurrent(); isolate->VisitExternalResources(visitor); } void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) { Isolate* isolate = Isolate::GetCurrent(); isolate->VisitHandlesWithClassIds(visitor); } void V8::VisitHandlesWithClassIds(Isolate* isolate, PersistentHandleVisitor* visitor) { isolate->VisitHandlesWithClassIds(visitor); } void V8::VisitHandlesForPartialDependence(Isolate* isolate, PersistentHandleVisitor* visitor) { isolate->VisitHandlesForPartialDependence(visitor); } /** * \example shell.cc * A simple shell that takes a list of expressions on the * command-line and executes them. */ /** * \example process.cc */ } // namespace v8 #undef TYPE_CHECK #endif // INCLUDE_V8_H_