// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // The reason we write our own hash map instead of using unordered_map in STL, // is that STL containers use a mutex pool on debug build, which will lead to // deadlock when we are using async signal handler. #ifndef V8_BASE_HASHMAP_H_ #define V8_BASE_HASHMAP_H_ #include <stdlib.h> #include "src/base/bits.h" #include "src/base/logging.h" namespace v8 { namespace base { class DefaultAllocationPolicy { public: V8_INLINE void* New(size_t size) { return malloc(size); } V8_INLINE static void Delete(void* p) { free(p); } }; template <class AllocationPolicy> class TemplateHashMapImpl { public: typedef bool (*MatchFun)(void* key1, void* key2); // The default capacity. This is used by the call sites which want // to pass in a non-default AllocationPolicy but want to use the // default value of capacity specified by the implementation. static const uint32_t kDefaultHashMapCapacity = 8; // initial_capacity is the size of the initial hash map; // it must be a power of 2 (and thus must not be 0). TemplateHashMapImpl(MatchFun match, uint32_t capacity = kDefaultHashMapCapacity, AllocationPolicy allocator = AllocationPolicy()); ~TemplateHashMapImpl(); // HashMap entries are (key, value, hash) triplets. // Some clients may not need to use the value slot // (e.g. implementers of sets, where the key is the value). struct Entry { void* key; void* value; uint32_t hash; // The full hash value for key int order; // If you never remove entries this is the insertion order. }; // If an entry with matching key is found, returns that entry. // Otherwise, NULL is returned. Entry* Lookup(void* key, uint32_t hash) const; // If an entry with matching key is found, returns that entry. // If no matching entry is found, a new entry is inserted with // corresponding key, key hash, and NULL value. Entry* LookupOrInsert(void* key, uint32_t hash, AllocationPolicy allocator = AllocationPolicy()); // Removes the entry with matching key. // It returns the value of the deleted entry // or null if there is no value for such key. void* Remove(void* key, uint32_t hash); // Empties the hash map (occupancy() == 0). void Clear(); // The number of (non-empty) entries in the table. uint32_t occupancy() const { return occupancy_; } // The capacity of the table. The implementation // makes sure that occupancy is at most 80% of // the table capacity. uint32_t capacity() const { return capacity_; } // Iteration // // for (Entry* p = map.Start(); p != NULL; p = map.Next(p)) { // ... // } // // If entries are inserted during iteration, the effect of // calling Next() is undefined. Entry* Start() const; Entry* Next(Entry* p) const; // Some match functions defined for convenience. static bool PointersMatch(void* key1, void* key2) { return key1 == key2; } private: MatchFun match_; Entry* map_; uint32_t capacity_; uint32_t occupancy_; Entry* map_end() const { return map_ + capacity_; } Entry* Probe(void* key, uint32_t hash) const; void Initialize(uint32_t capacity, AllocationPolicy allocator); void Resize(AllocationPolicy allocator); }; typedef TemplateHashMapImpl<DefaultAllocationPolicy> HashMap; template <class AllocationPolicy> TemplateHashMapImpl<AllocationPolicy>::TemplateHashMapImpl( MatchFun match, uint32_t initial_capacity, AllocationPolicy allocator) { match_ = match; Initialize(initial_capacity, allocator); } template <class AllocationPolicy> TemplateHashMapImpl<AllocationPolicy>::~TemplateHashMapImpl() { AllocationPolicy::Delete(map_); } template <class AllocationPolicy> typename TemplateHashMapImpl<AllocationPolicy>::Entry* TemplateHashMapImpl<AllocationPolicy>::Lookup(void* key, uint32_t hash) const { Entry* p = Probe(key, hash); return p->key != NULL ? p : NULL; } template <class AllocationPolicy> typename TemplateHashMapImpl<AllocationPolicy>::Entry* TemplateHashMapImpl<AllocationPolicy>::LookupOrInsert( void* key, uint32_t hash, AllocationPolicy allocator) { // Find a matching entry. Entry* p = Probe(key, hash); if (p->key != NULL) { return p; } // No entry found; insert one. p->key = key; p->value = NULL; p->hash = hash; p->order = occupancy_; occupancy_++; // Grow the map if we reached >= 80% occupancy. if (occupancy_ + occupancy_ / 4 >= capacity_) { Resize(allocator); p = Probe(key, hash); } return p; } template <class AllocationPolicy> void* TemplateHashMapImpl<AllocationPolicy>::Remove(void* key, uint32_t hash) { // Lookup the entry for the key to remove. Entry* p = Probe(key, hash); if (p->key == NULL) { // Key not found nothing to remove. return NULL; } void* value = p->value; // To remove an entry we need to ensure that it does not create an empty // entry that will cause the search for another entry to stop too soon. If all // the entries between the entry to remove and the next empty slot have their // initial position inside this interval, clearing the entry to remove will // not break the search. If, while searching for the next empty entry, an // entry is encountered which does not have its initial position between the // entry to remove and the position looked at, then this entry can be moved to // the place of the entry to remove without breaking the search for it. The // entry made vacant by this move is now the entry to remove and the process // starts over. // Algorithm from http://en.wikipedia.org/wiki/Open_addressing. // This guarantees loop termination as there is at least one empty entry so // eventually the removed entry will have an empty entry after it. DCHECK(occupancy_ < capacity_); // p is the candidate entry to clear. q is used to scan forwards. Entry* q = p; // Start at the entry to remove. while (true) { // Move q to the next entry. q = q + 1; if (q == map_end()) { q = map_; } // All entries between p and q have their initial position between p and q // and the entry p can be cleared without breaking the search for these // entries. if (q->key == NULL) { break; } // Find the initial position for the entry at position q. Entry* r = map_ + (q->hash & (capacity_ - 1)); // If the entry at position q has its initial position outside the range // between p and q it can be moved forward to position p and will still be // found. There is now a new candidate entry for clearing. if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) { *p = *q; p = q; } } // Clear the entry which is allowed to en emptied. p->key = NULL; occupancy_--; return value; } template <class AllocationPolicy> void TemplateHashMapImpl<AllocationPolicy>::Clear() { // Mark all entries as empty. const Entry* end = map_end(); for (Entry* p = map_; p < end; p++) { p->key = NULL; } occupancy_ = 0; } template <class AllocationPolicy> typename TemplateHashMapImpl<AllocationPolicy>::Entry* TemplateHashMapImpl<AllocationPolicy>::Start() const { return Next(map_ - 1); } template <class AllocationPolicy> typename TemplateHashMapImpl<AllocationPolicy>::Entry* TemplateHashMapImpl<AllocationPolicy>::Next(Entry* p) const { const Entry* end = map_end(); DCHECK(map_ - 1 <= p && p < end); for (p++; p < end; p++) { if (p->key != NULL) { return p; } } return NULL; } template <class AllocationPolicy> typename TemplateHashMapImpl<AllocationPolicy>::Entry* TemplateHashMapImpl<AllocationPolicy>::Probe(void* key, uint32_t hash) const { DCHECK(key != NULL); DCHECK(base::bits::IsPowerOfTwo32(capacity_)); Entry* p = map_ + (hash & (capacity_ - 1)); const Entry* end = map_end(); DCHECK(map_ <= p && p < end); DCHECK(occupancy_ < capacity_); // Guarantees loop termination. while (p->key != NULL && (hash != p->hash || !match_(key, p->key))) { p++; if (p >= end) { p = map_; } } return p; } template <class AllocationPolicy> void TemplateHashMapImpl<AllocationPolicy>::Initialize( uint32_t capacity, AllocationPolicy allocator) { DCHECK(base::bits::IsPowerOfTwo32(capacity)); map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry))); if (map_ == NULL) { FATAL("Out of memory: HashMap::Initialize"); return; } capacity_ = capacity; Clear(); } template <class AllocationPolicy> void TemplateHashMapImpl<AllocationPolicy>::Resize(AllocationPolicy allocator) { Entry* map = map_; uint32_t n = occupancy_; // Allocate larger map. Initialize(capacity_ * 2, allocator); // Rehash all current entries. for (Entry* p = map; n > 0; p++) { if (p->key != NULL) { Entry* entry = LookupOrInsert(p->key, p->hash, allocator); entry->value = p->value; entry->order = p->order; n--; } } // Delete old map. AllocationPolicy::Delete(map); } // A hash map for pointer keys and values with an STL-like interface. template <class Key, class Value, class AllocationPolicy> class TemplateHashMap : private TemplateHashMapImpl<AllocationPolicy> { public: STATIC_ASSERT(sizeof(Key*) == sizeof(void*)); // NOLINT STATIC_ASSERT(sizeof(Value*) == sizeof(void*)); // NOLINT struct value_type { Key* first; Value* second; }; class Iterator { public: Iterator& operator++() { entry_ = map_->Next(entry_); return *this; } value_type* operator->() { return reinterpret_cast<value_type*>(entry_); } bool operator!=(const Iterator& other) { return entry_ != other.entry_; } private: Iterator(const TemplateHashMapImpl<AllocationPolicy>* map, typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry) : map_(map), entry_(entry) {} const TemplateHashMapImpl<AllocationPolicy>* map_; typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry_; friend class TemplateHashMap; }; TemplateHashMap( typename TemplateHashMapImpl<AllocationPolicy>::MatchFun match, AllocationPolicy allocator = AllocationPolicy()) : TemplateHashMapImpl<AllocationPolicy>( match, TemplateHashMapImpl<AllocationPolicy>::kDefaultHashMapCapacity, allocator) {} Iterator begin() const { return Iterator(this, this->Start()); } Iterator end() const { return Iterator(this, NULL); } Iterator find(Key* key, bool insert = false, AllocationPolicy allocator = AllocationPolicy()) { if (insert) { return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator)); } return Iterator(this, this->Lookup(key, key->Hash())); } }; } // namespace base } // namespace v8 #endif // V8_BASE_HASHMAP_H_