// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/full-codegen/full-codegen.h" #include "src/ast/ast-numbering.h" #include "src/ast/ast.h" #include "src/ast/prettyprinter.h" #include "src/ast/scopeinfo.h" #include "src/ast/scopes.h" #include "src/code-factory.h" #include "src/codegen.h" #include "src/compiler.h" #include "src/debug/debug.h" #include "src/debug/liveedit.h" #include "src/frames-inl.h" #include "src/isolate-inl.h" #include "src/macro-assembler.h" #include "src/snapshot/snapshot.h" #include "src/tracing/trace-event.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm()) bool FullCodeGenerator::MakeCode(CompilationInfo* info) { Isolate* isolate = info->isolate(); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::CompileFullCode); TimerEventScope<TimerEventCompileFullCode> timer(info->isolate()); TRACE_EVENT0("v8", "V8.CompileFullCode"); Handle<Script> script = info->script(); if (!script->IsUndefined(isolate) && !script->source()->IsUndefined(isolate)) { int len = String::cast(script->source())->length(); isolate->counters()->total_full_codegen_source_size()->Increment(len); } CodeGenerator::MakeCodePrologue(info, "full"); const int kInitialBufferSize = 4 * KB; MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize, CodeObjectRequired::kYes); if (info->will_serialize()) masm.enable_serializer(); LOG_CODE_EVENT(isolate, CodeStartLinePosInfoRecordEvent(masm.positions_recorder())); FullCodeGenerator cgen(&masm, info); cgen.Generate(); if (cgen.HasStackOverflow()) { DCHECK(!isolate->has_pending_exception()); return false; } unsigned table_offset = cgen.EmitBackEdgeTable(); Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, info); cgen.PopulateDeoptimizationData(code); cgen.PopulateTypeFeedbackInfo(code); cgen.PopulateHandlerTable(code); code->set_has_deoptimization_support(info->HasDeoptimizationSupport()); code->set_has_reloc_info_for_serialization(info->will_serialize()); code->set_allow_osr_at_loop_nesting_level(0); code->set_profiler_ticks(0); code->set_back_edge_table_offset(table_offset); CodeGenerator::PrintCode(code, info); info->SetCode(code); void* line_info = masm.positions_recorder()->DetachJITHandlerData(); LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent( AbstractCode::cast(*code), line_info)); #ifdef DEBUG // Check that no context-specific object has been embedded. code->VerifyEmbeddedObjects(Code::kNoContextSpecificPointers); #endif // DEBUG return true; } unsigned FullCodeGenerator::EmitBackEdgeTable() { // The back edge table consists of a length (in number of entries) // field, and then a sequence of entries. Each entry is a pair of AST id // and code-relative pc offset. masm()->Align(kPointerSize); unsigned offset = masm()->pc_offset(); unsigned length = back_edges_.length(); __ dd(length); for (unsigned i = 0; i < length; ++i) { __ dd(back_edges_[i].id.ToInt()); __ dd(back_edges_[i].pc); __ dd(back_edges_[i].loop_depth); } return offset; } void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) { // Fill in the deoptimization information. DCHECK(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty()); if (!info_->HasDeoptimizationSupport()) return; int length = bailout_entries_.length(); Handle<DeoptimizationOutputData> data = DeoptimizationOutputData::New(isolate(), length, TENURED); for (int i = 0; i < length; i++) { data->SetAstId(i, bailout_entries_[i].id); data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state)); } code->set_deoptimization_data(*data); } void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) { Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo(); info->set_ic_total_count(ic_total_count_); DCHECK(!isolate()->heap()->InNewSpace(*info)); code->set_type_feedback_info(*info); } void FullCodeGenerator::PopulateHandlerTable(Handle<Code> code) { int handler_table_size = static_cast<int>(handler_table_.size()); Handle<HandlerTable> table = Handle<HandlerTable>::cast(isolate()->factory()->NewFixedArray( HandlerTable::LengthForRange(handler_table_size), TENURED)); for (int i = 0; i < handler_table_size; ++i) { HandlerTable::CatchPrediction prediction = handler_table_[i].try_catch_depth > 0 ? HandlerTable::CAUGHT : HandlerTable::UNCAUGHT; table->SetRangeStart(i, handler_table_[i].range_start); table->SetRangeEnd(i, handler_table_[i].range_end); table->SetRangeHandler(i, handler_table_[i].handler_offset, prediction); table->SetRangeData(i, handler_table_[i].stack_depth); } code->set_handler_table(*table); } int FullCodeGenerator::NewHandlerTableEntry() { int index = static_cast<int>(handler_table_.size()); HandlerTableEntry entry = {0, 0, 0, 0, 0}; handler_table_.push_back(entry); return index; } bool FullCodeGenerator::MustCreateObjectLiteralWithRuntime( ObjectLiteral* expr) const { return masm()->serializer_enabled() || !FastCloneShallowObjectStub::IsSupported(expr); } bool FullCodeGenerator::MustCreateArrayLiteralWithRuntime( ArrayLiteral* expr) const { return expr->depth() > 1 || expr->values()->length() > JSArray::kInitialMaxFastElementArray; } void FullCodeGenerator::Initialize() { InitializeAstVisitor(info_->isolate()); masm_->set_emit_debug_code(FLAG_debug_code); masm_->set_predictable_code_size(true); } void FullCodeGenerator::PrepareForBailout(Expression* node, BailoutState state) { PrepareForBailoutForId(node->id(), state); } void FullCodeGenerator::CallLoadIC(TypeFeedbackId id) { Handle<Code> ic = CodeFactory::LoadIC(isolate()).code(); CallIC(ic, id); } void FullCodeGenerator::CallLoadGlobalIC(TypeofMode typeof_mode, TypeFeedbackId id) { Handle<Code> ic = CodeFactory::LoadGlobalIC(isolate(), typeof_mode).code(); CallIC(ic, id); } void FullCodeGenerator::CallStoreIC(TypeFeedbackId id) { Handle<Code> ic = CodeFactory::StoreIC(isolate(), language_mode()).code(); CallIC(ic, id); } void FullCodeGenerator::RecordJSReturnSite(Call* call) { // We record the offset of the function return so we can rebuild the frame // if the function was inlined, i.e., this is the return address in the // inlined function's frame. // // The bailout state is ignored. We defensively set it to TOS_REGISTER, which // is the real state of the unoptimized code at the return site. PrepareForBailoutForId(call->ReturnId(), BailoutState::TOS_REGISTER); #ifdef DEBUG // In debug builds, mark the return so we can verify that this function // was called. DCHECK(!call->return_is_recorded_); call->return_is_recorded_ = true; #endif } void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, BailoutState state) { // There's no need to prepare this code for bailouts from already optimized // code or code that can't be optimized. if (!info_->HasDeoptimizationSupport()) return; unsigned pc_and_state = BailoutStateField::encode(state) | PcField::encode(masm_->pc_offset()); DCHECK(Smi::IsValid(pc_and_state)); #ifdef DEBUG for (int i = 0; i < bailout_entries_.length(); ++i) { DCHECK(bailout_entries_[i].id != id); } #endif BailoutEntry entry = { id, pc_and_state }; bailout_entries_.Add(entry, zone()); } void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) { // The pc offset does not need to be encoded and packed together with a state. DCHECK(masm_->pc_offset() > 0); DCHECK(loop_depth() > 0); uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker); BackEdgeEntry entry = { ast_id, static_cast<unsigned>(masm_->pc_offset()), depth }; back_edges_.Add(entry, zone()); } bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) { // Inline smi case inside loops, but not division and modulo which // are too complicated and take up too much space. if (op == Token::DIV ||op == Token::MOD) return false; if (FLAG_always_inline_smi_code) return true; return loop_depth_ > 0; } void FullCodeGenerator::EffectContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); } void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); } void FullCodeGenerator::TestContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); // For simplicity we always test the accumulator register. codegen()->GetVar(result_register(), var); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Register reg) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const { __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::Plug(Register reg) const { codegen()->PushOperand(reg); } void FullCodeGenerator::TestContext::Plug(Register reg) const { // For simplicity we always test the accumulator register. __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(bool flag) const {} void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); codegen()->DropOperands(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { DCHECK(count > 0); codegen()->DropOperands(count); __ Move(result_register(), reg); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); // For simplicity we always test the accumulator register. codegen()->DropOperands(count); __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::PlugTOS() const { codegen()->DropOperands(1); } void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const { codegen()->PopOperand(result_register()); } void FullCodeGenerator::StackValueContext::PlugTOS() const { } void FullCodeGenerator::TestContext::PlugTOS() const { // For simplicity we always test the accumulator register. codegen()->PopOperand(result_register()); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { // In an effect context, the true and the false case branch to the // same label. *if_true = *if_false = *fall_through = materialize_true; } void FullCodeGenerator::AccumulatorValueContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = *fall_through = materialize_true; *if_false = materialize_false; } void FullCodeGenerator::StackValueContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = *fall_through = materialize_true; *if_false = materialize_false; } void FullCodeGenerator::TestContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = true_label_; *if_false = false_label_; *fall_through = fall_through_; } void FullCodeGenerator::DoTest(const TestContext* context) { DoTest(context->condition(), context->true_label(), context->false_label(), context->fall_through()); } void FullCodeGenerator::VisitDeclarations( ZoneList<Declaration*>* declarations) { ZoneList<Handle<Object> >* saved_globals = globals_; ZoneList<Handle<Object> > inner_globals(10, zone()); globals_ = &inner_globals; AstVisitor::VisitDeclarations(declarations); if (!globals_->is_empty()) { // Invoke the platform-dependent code generator to do the actual // declaration of the global functions and variables. Handle<FixedArray> array = isolate()->factory()->NewFixedArray(globals_->length(), TENURED); for (int i = 0; i < globals_->length(); ++i) array->set(i, *globals_->at(i)); DeclareGlobals(array); } globals_ = saved_globals; } void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: // TODO(rossberg) break; case VariableLocation::CONTEXT: { Comment cmnt(masm_, "[ ImportDeclaration"); EmitDebugCheckDeclarationContext(variable); // TODO(rossberg) break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: case VariableLocation::LOOKUP: UNREACHABLE(); } } void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) { // TODO(rossberg) } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr); } void FullCodeGenerator::VisitSloppyBlockFunctionStatement( SloppyBlockFunctionStatement* declaration) { Visit(declaration->statement()); } int FullCodeGenerator::DeclareGlobalsFlags() { return info_->GetDeclareGlobalsFlags(); } void FullCodeGenerator::PushOperand(Handle<Object> handle) { OperandStackDepthIncrement(1); __ Push(handle); } void FullCodeGenerator::PushOperand(Smi* smi) { OperandStackDepthIncrement(1); __ Push(smi); } void FullCodeGenerator::PushOperand(Register reg) { OperandStackDepthIncrement(1); __ Push(reg); } void FullCodeGenerator::PopOperand(Register reg) { OperandStackDepthDecrement(1); __ Pop(reg); } void FullCodeGenerator::DropOperands(int count) { OperandStackDepthDecrement(count); __ Drop(count); } void FullCodeGenerator::CallRuntimeWithOperands(Runtime::FunctionId id) { OperandStackDepthDecrement(Runtime::FunctionForId(id)->nargs); __ CallRuntime(id); } void FullCodeGenerator::OperandStackDepthIncrement(int count) { DCHECK_IMPLIES(!HasStackOverflow(), operand_stack_depth_ >= 0); DCHECK_GE(count, 0); operand_stack_depth_ += count; } void FullCodeGenerator::OperandStackDepthDecrement(int count) { DCHECK_IMPLIES(!HasStackOverflow(), operand_stack_depth_ >= count); DCHECK_GE(count, 0); operand_stack_depth_ -= count; } void FullCodeGenerator::EmitSubString(CallRuntime* expr) { // Load the arguments on the stack and call the stub. SubStringStub stub(isolate()); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); OperandStackDepthDecrement(3); context()->Plug(result_register()); } void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) { // Load the arguments on the stack and call the stub. RegExpExecStub stub(isolate()); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 4); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); VisitForStackValue(args->at(3)); __ CallStub(&stub); OperandStackDepthDecrement(4); context()->Plug(result_register()); } void FullCodeGenerator::EmitMathPow(CallRuntime* expr) { // Load the arguments on the stack and call the runtime function. MathPowStub stub(isolate(), MathPowStub::ON_STACK); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); __ CallStub(&stub); OperandStackDepthDecrement(2); context()->Plug(result_register()); } void FullCodeGenerator::EmitIntrinsicAsStubCall(CallRuntime* expr, const Callable& callable) { ZoneList<Expression*>* args = expr->arguments(); int param_count = callable.descriptor().GetRegisterParameterCount(); DCHECK_EQ(args->length(), param_count); if (param_count > 0) { int last = param_count - 1; // Put all but last arguments on stack. for (int i = 0; i < last; i++) { VisitForStackValue(args->at(i)); } // The last argument goes to the accumulator. VisitForAccumulatorValue(args->at(last)); // Move the arguments to the registers, as required by the stub. __ Move(callable.descriptor().GetRegisterParameter(last), result_register()); for (int i = last; i-- > 0;) { PopOperand(callable.descriptor().GetRegisterParameter(i)); } } __ Call(callable.code(), RelocInfo::CODE_TARGET); // Reload the context register after the call as i.e. TurboFan code stubs // won't preserve the context register. LoadFromFrameField(StandardFrameConstants::kContextOffset, context_register()); context()->Plug(result_register()); } void FullCodeGenerator::EmitNewObject(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::FastNewObject(isolate())); } void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::NumberToString(isolate())); } void FullCodeGenerator::EmitToString(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::ToString(isolate())); } void FullCodeGenerator::EmitToName(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::ToName(isolate())); } void FullCodeGenerator::EmitToLength(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::ToLength(isolate())); } void FullCodeGenerator::EmitToInteger(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::ToInteger(isolate())); } void FullCodeGenerator::EmitToNumber(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::ToNumber(isolate())); } void FullCodeGenerator::EmitToObject(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::ToObject(isolate())); } void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { EmitIntrinsicAsStubCall(expr, CodeFactory::RegExpConstructResult(isolate())); } void FullCodeGenerator::EmitHasProperty() { Callable callable = CodeFactory::HasProperty(isolate()); PopOperand(callable.descriptor().GetRegisterParameter(1)); PopOperand(callable.descriptor().GetRegisterParameter(0)); __ Call(callable.code(), RelocInfo::CODE_TARGET); RestoreContext(); } void RecordStatementPosition(MacroAssembler* masm, int pos) { if (pos == RelocInfo::kNoPosition) return; masm->positions_recorder()->RecordStatementPosition(pos); } void RecordPosition(MacroAssembler* masm, int pos) { if (pos == RelocInfo::kNoPosition) return; masm->positions_recorder()->RecordPosition(pos); } void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) { RecordPosition(masm_, fun->start_position()); } void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) { // For default constructors, start position equals end position, and there // is no source code besides the class literal. int pos = std::max(fun->start_position(), fun->end_position() - 1); RecordStatementPosition(masm_, pos); if (info_->is_debug()) { // Always emit a debug break slot before a return. DebugCodegen::GenerateSlot(masm_, RelocInfo::DEBUG_BREAK_SLOT_AT_RETURN); } } void FullCodeGenerator::SetStatementPosition( Statement* stmt, FullCodeGenerator::InsertBreak insert_break) { if (stmt->position() == RelocInfo::kNoPosition) return; RecordStatementPosition(masm_, stmt->position()); if (insert_break == INSERT_BREAK && info_->is_debug() && !stmt->IsDebuggerStatement()) { DebugCodegen::GenerateSlot(masm_, RelocInfo::DEBUG_BREAK_SLOT_AT_POSITION); } } void FullCodeGenerator::SetExpressionPosition(Expression* expr) { if (expr->position() == RelocInfo::kNoPosition) return; RecordPosition(masm_, expr->position()); } void FullCodeGenerator::SetExpressionAsStatementPosition(Expression* expr) { if (expr->position() == RelocInfo::kNoPosition) return; RecordStatementPosition(masm_, expr->position()); if (info_->is_debug()) { DebugCodegen::GenerateSlot(masm_, RelocInfo::DEBUG_BREAK_SLOT_AT_POSITION); } } void FullCodeGenerator::SetCallPosition(Expression* expr, TailCallMode tail_call_mode) { if (expr->position() == RelocInfo::kNoPosition) return; RecordPosition(masm_, expr->position()); if (info_->is_debug()) { RelocInfo::Mode mode = (tail_call_mode == TailCallMode::kAllow) ? RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL : RelocInfo::DEBUG_BREAK_SLOT_AT_CALL; // Always emit a debug break slot before a call. DebugCodegen::GenerateSlot(masm_, mode); } } void FullCodeGenerator::VisitSuperPropertyReference( SuperPropertyReference* super) { __ CallRuntime(Runtime::kThrowUnsupportedSuperError); // Even though this expression doesn't produce a value, we need to simulate // plugging of the value context to ensure stack depth tracking is in sync. if (context()->IsStackValue()) OperandStackDepthIncrement(1); } void FullCodeGenerator::VisitSuperCallReference(SuperCallReference* super) { // Handled by VisitCall UNREACHABLE(); } void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) { context()->Plug(handle(Smi::FromInt(0), isolate())); } void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { switch (expr->op()) { case Token::COMMA: return VisitComma(expr); case Token::OR: case Token::AND: return VisitLogicalExpression(expr); default: return VisitArithmeticExpression(expr); } } void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) { if (context()->IsEffect()) { VisitForEffect(expr); } else if (context()->IsAccumulatorValue()) { VisitForAccumulatorValue(expr); } else if (context()->IsStackValue()) { VisitForStackValue(expr); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); VisitForControl(expr, test->true_label(), test->false_label(), test->fall_through()); } } void FullCodeGenerator::VisitComma(BinaryOperation* expr) { Comment cmnt(masm_, "[ Comma"); VisitForEffect(expr->left()); VisitInDuplicateContext(expr->right()); } void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) { bool is_logical_and = expr->op() == Token::AND; Comment cmnt(masm_, is_logical_and ? "[ Logical AND" : "[ Logical OR"); Expression* left = expr->left(); Expression* right = expr->right(); BailoutId right_id = expr->RightId(); Label done; if (context()->IsTest()) { Label eval_right; const TestContext* test = TestContext::cast(context()); if (is_logical_and) { VisitForControl(left, &eval_right, test->false_label(), &eval_right); } else { VisitForControl(left, test->true_label(), &eval_right, &eval_right); } PrepareForBailoutForId(right_id, BailoutState::NO_REGISTERS); __ bind(&eval_right); } else if (context()->IsAccumulatorValue()) { VisitForAccumulatorValue(left); // We want the value in the accumulator for the test, and on the stack in // case we need it. __ Push(result_register()); Label discard, restore; if (is_logical_and) { DoTest(left, &discard, &restore, &restore); } else { DoTest(left, &restore, &discard, &restore); } __ bind(&restore); __ Pop(result_register()); __ jmp(&done); __ bind(&discard); __ Drop(1); PrepareForBailoutForId(right_id, BailoutState::NO_REGISTERS); } else if (context()->IsStackValue()) { VisitForAccumulatorValue(left); // We want the value in the accumulator for the test, and on the stack in // case we need it. __ Push(result_register()); Label discard; if (is_logical_and) { DoTest(left, &discard, &done, &discard); } else { DoTest(left, &done, &discard, &discard); } __ bind(&discard); __ Drop(1); PrepareForBailoutForId(right_id, BailoutState::NO_REGISTERS); } else { DCHECK(context()->IsEffect()); Label eval_right; if (is_logical_and) { VisitForControl(left, &eval_right, &done, &eval_right); } else { VisitForControl(left, &done, &eval_right, &eval_right); } PrepareForBailoutForId(right_id, BailoutState::NO_REGISTERS); __ bind(&eval_right); } VisitInDuplicateContext(right); __ bind(&done); } void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) { Token::Value op = expr->op(); Comment cmnt(masm_, "[ ArithmeticExpression"); Expression* left = expr->left(); Expression* right = expr->right(); VisitForStackValue(left); VisitForAccumulatorValue(right); SetExpressionPosition(expr); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr, op, left, right); } else { EmitBinaryOp(expr, op); } } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); SetExpressionPosition(expr); Expression* key = expr->key(); if (key->IsPropertyName()) { if (!expr->IsSuperAccess()) { VisitForAccumulatorValue(expr->obj()); __ Move(LoadDescriptor::ReceiverRegister(), result_register()); EmitNamedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( expr->obj()->AsSuperPropertyReference()->home_object()); EmitNamedSuperPropertyLoad(expr); } } else { if (!expr->IsSuperAccess()) { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ Move(LoadDescriptor::NameRegister(), result_register()); PopOperand(LoadDescriptor::ReceiverRegister()); EmitKeyedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( expr->obj()->AsSuperPropertyReference()->home_object()); VisitForStackValue(expr->key()); EmitKeyedSuperPropertyLoad(expr); } } PrepareForBailoutForId(expr->LoadId(), BailoutState::TOS_REGISTER); context()->Plug(result_register()); } void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { VariableProxy* proxy = expr->AsVariableProxy(); DCHECK(!context()->IsEffect()); DCHECK(!context()->IsTest()); if (proxy != NULL && (proxy->var()->IsUnallocatedOrGlobalSlot() || proxy->var()->IsLookupSlot())) { EmitVariableLoad(proxy, INSIDE_TYPEOF); PrepareForBailout(proxy, BailoutState::TOS_REGISTER); } else { // This expression cannot throw a reference error at the top level. VisitInDuplicateContext(expr); } } void FullCodeGenerator::VisitBlock(Block* stmt) { Comment cmnt(masm_, "[ Block"); NestedBlock nested_block(this, stmt); { EnterBlockScopeIfNeeded block_scope_state( this, stmt->scope(), stmt->EntryId(), stmt->DeclsId(), stmt->ExitId()); VisitStatements(stmt->statements()); __ bind(nested_block.break_label()); } } void FullCodeGenerator::VisitDoExpression(DoExpression* expr) { Comment cmnt(masm_, "[ Do Expression"); SetExpressionPosition(expr); VisitBlock(expr->block()); EmitVariableLoad(expr->result()); } void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) { Comment cmnt(masm_, "[ ExpressionStatement"); SetStatementPosition(stmt); VisitForEffect(stmt->expression()); } void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) { Comment cmnt(masm_, "[ EmptyStatement"); } void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) { Comment cmnt(masm_, "[ IfStatement"); SetStatementPosition(stmt); Label then_part, else_part, done; if (stmt->HasElseStatement()) { VisitForControl(stmt->condition(), &then_part, &else_part, &then_part); PrepareForBailoutForId(stmt->ThenId(), BailoutState::NO_REGISTERS); __ bind(&then_part); Visit(stmt->then_statement()); __ jmp(&done); PrepareForBailoutForId(stmt->ElseId(), BailoutState::NO_REGISTERS); __ bind(&else_part); Visit(stmt->else_statement()); } else { VisitForControl(stmt->condition(), &then_part, &done, &then_part); PrepareForBailoutForId(stmt->ThenId(), BailoutState::NO_REGISTERS); __ bind(&then_part); Visit(stmt->then_statement()); PrepareForBailoutForId(stmt->ElseId(), BailoutState::NO_REGISTERS); } __ bind(&done); PrepareForBailoutForId(stmt->IfId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::EmitContinue(Statement* target) { NestedStatement* current = nesting_stack_; int context_length = 0; // When continuing, we clobber the unpredictable value in the accumulator // with one that's safe for GC. If we hit an exit from the try block of // try...finally on our way out, we will unconditionally preserve the // accumulator on the stack. ClearAccumulator(); while (!current->IsContinueTarget(target)) { if (current->IsTryFinally()) { Comment cmnt(masm(), "[ Deferred continue through finally"); current->Exit(&context_length); DCHECK_EQ(-1, context_length); current->AsTryFinally()->deferred_commands()->RecordContinue(target); return; } current = current->Exit(&context_length); } int stack_depth = current->GetStackDepthAtTarget(); int stack_drop = operand_stack_depth_ - stack_depth; DCHECK_GE(stack_drop, 0); __ Drop(stack_drop); if (context_length > 0) { while (context_length > 0) { LoadContextField(context_register(), Context::PREVIOUS_INDEX); --context_length; } StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } __ jmp(current->AsIteration()->continue_label()); } void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) { Comment cmnt(masm_, "[ ContinueStatement"); SetStatementPosition(stmt); EmitContinue(stmt->target()); } void FullCodeGenerator::EmitBreak(Statement* target) { NestedStatement* current = nesting_stack_; int context_length = 0; // When breaking, we clobber the unpredictable value in the accumulator // with one that's safe for GC. If we hit an exit from the try block of // try...finally on our way out, we will unconditionally preserve the // accumulator on the stack. ClearAccumulator(); while (!current->IsBreakTarget(target)) { if (current->IsTryFinally()) { Comment cmnt(masm(), "[ Deferred break through finally"); current->Exit(&context_length); DCHECK_EQ(-1, context_length); current->AsTryFinally()->deferred_commands()->RecordBreak(target); return; } current = current->Exit(&context_length); } int stack_depth = current->GetStackDepthAtTarget(); int stack_drop = operand_stack_depth_ - stack_depth; DCHECK_GE(stack_drop, 0); __ Drop(stack_drop); if (context_length > 0) { while (context_length > 0) { LoadContextField(context_register(), Context::PREVIOUS_INDEX); --context_length; } StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } __ jmp(current->AsBreakable()->break_label()); } void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) { Comment cmnt(masm_, "[ BreakStatement"); SetStatementPosition(stmt); EmitBreak(stmt->target()); } void FullCodeGenerator::EmitUnwindAndReturn() { NestedStatement* current = nesting_stack_; int context_length = 0; while (current != NULL) { if (current->IsTryFinally()) { Comment cmnt(masm(), "[ Deferred return through finally"); current->Exit(&context_length); DCHECK_EQ(-1, context_length); current->AsTryFinally()->deferred_commands()->RecordReturn(); return; } current = current->Exit(&context_length); } EmitReturnSequence(); } void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, bool pretenure) { // If we're running with the --always-opt or the --prepare-always-opt // flag, we need to use the runtime function so that the new function // we are creating here gets a chance to have its code optimized and // doesn't just get a copy of the existing unoptimized code. if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure && scope()->is_function_scope()) { FastNewClosureStub stub(isolate(), info->language_mode(), info->kind()); __ Move(stub.GetCallInterfaceDescriptor().GetRegisterParameter(0), info); __ CallStub(&stub); } else { __ Push(info); __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured : Runtime::kNewClosure); } context()->Plug(result_register()); } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); DCHECK(!prop->IsSuperAccess()); __ Move(LoadDescriptor::NameRegister(), key->value()); __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(prop->PropertyFeedbackSlot())); CallLoadIC(); } void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); DCHECK(prop->IsSuperAccess()); PushOperand(key->value()); CallRuntimeWithOperands(Runtime::kLoadFromSuper); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetExpressionPosition(prop); Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code(); __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(prop->PropertyFeedbackSlot())); CallIC(ic); } void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object, key. SetExpressionPosition(prop); CallRuntimeWithOperands(Runtime::kLoadKeyedFromSuper); } void FullCodeGenerator::EmitPropertyKey(ObjectLiteralProperty* property, BailoutId bailout_id) { VisitForStackValue(property->key()); CallRuntimeWithOperands(Runtime::kToName); PrepareForBailoutForId(bailout_id, BailoutState::NO_REGISTERS); PushOperand(result_register()); } void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) { DCHECK(!slot.IsInvalid()); __ Move(VectorStoreICTrampolineDescriptor::SlotRegister(), SmiFromSlot(slot)); } void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) { Comment cmnt(masm_, "[ ReturnStatement"); SetStatementPosition(stmt); Expression* expr = stmt->expression(); VisitForAccumulatorValue(expr); EmitUnwindAndReturn(); } void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) { Comment cmnt(masm_, "[ WithStatement"); SetStatementPosition(stmt); VisitForAccumulatorValue(stmt->expression()); Callable callable = CodeFactory::ToObject(isolate()); __ Move(callable.descriptor().GetRegisterParameter(0), result_register()); __ Call(callable.code(), RelocInfo::CODE_TARGET); PrepareForBailoutForId(stmt->ToObjectId(), BailoutState::NO_REGISTERS); PushOperand(result_register()); PushFunctionArgumentForContextAllocation(); CallRuntimeWithOperands(Runtime::kPushWithContext); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS); Scope* saved_scope = scope(); scope_ = stmt->scope(); { WithOrCatch body(this); Visit(stmt->statement()); } scope_ = saved_scope; // Pop context. LoadContextField(context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) { Comment cmnt(masm_, "[ DoWhileStatement"); // Do not insert break location as we do that below. SetStatementPosition(stmt, SKIP_BREAK); Label body, book_keeping; Iteration loop_statement(this, stmt); increment_loop_depth(); __ bind(&body); Visit(stmt->body()); // Record the position of the do while condition and make sure it is // possible to break on the condition. __ bind(loop_statement.continue_label()); PrepareForBailoutForId(stmt->ContinueId(), BailoutState::NO_REGISTERS); // Here is the actual 'while' keyword. SetExpressionAsStatementPosition(stmt->cond()); VisitForControl(stmt->cond(), &book_keeping, loop_statement.break_label(), &book_keeping); // Check stack before looping. PrepareForBailoutForId(stmt->BackEdgeId(), BailoutState::NO_REGISTERS); __ bind(&book_keeping); EmitBackEdgeBookkeeping(stmt, &body); __ jmp(&body); PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) { Comment cmnt(masm_, "[ WhileStatement"); Label loop, body; Iteration loop_statement(this, stmt); increment_loop_depth(); __ bind(&loop); SetExpressionAsStatementPosition(stmt->cond()); VisitForControl(stmt->cond(), &body, loop_statement.break_label(), &body); PrepareForBailoutForId(stmt->BodyId(), BailoutState::NO_REGISTERS); __ bind(&body); Visit(stmt->body()); __ bind(loop_statement.continue_label()); // Check stack before looping. EmitBackEdgeBookkeeping(stmt, &loop); __ jmp(&loop); PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::VisitForStatement(ForStatement* stmt) { Comment cmnt(masm_, "[ ForStatement"); // Do not insert break location as we do it below. SetStatementPosition(stmt, SKIP_BREAK); Label test, body; Iteration loop_statement(this, stmt); if (stmt->init() != NULL) { Visit(stmt->init()); } increment_loop_depth(); // Emit the test at the bottom of the loop (even if empty). __ jmp(&test); PrepareForBailoutForId(stmt->BodyId(), BailoutState::NO_REGISTERS); __ bind(&body); Visit(stmt->body()); PrepareForBailoutForId(stmt->ContinueId(), BailoutState::NO_REGISTERS); __ bind(loop_statement.continue_label()); if (stmt->next() != NULL) { SetStatementPosition(stmt->next()); Visit(stmt->next()); } // Check stack before looping. EmitBackEdgeBookkeeping(stmt, &body); __ bind(&test); if (stmt->cond() != NULL) { SetExpressionAsStatementPosition(stmt->cond()); VisitForControl(stmt->cond(), &body, loop_statement.break_label(), loop_statement.break_label()); } else { __ jmp(&body); } PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) { Comment cmnt(masm_, "[ ForOfStatement"); Iteration loop_statement(this, stmt); increment_loop_depth(); // var iterator = iterable[Symbol.iterator](); SetExpressionAsStatementPosition(stmt->assign_iterator()); VisitForEffect(stmt->assign_iterator()); // Loop entry. __ bind(loop_statement.continue_label()); // result = iterator.next() SetExpressionAsStatementPosition(stmt->next_result()); VisitForEffect(stmt->next_result()); // if (result.done) break; Label result_not_done; VisitForControl(stmt->result_done(), loop_statement.break_label(), &result_not_done, &result_not_done); __ bind(&result_not_done); // each = result.value VisitForEffect(stmt->assign_each()); // Generate code for the body of the loop. Visit(stmt->body()); // Check stack before looping. PrepareForBailoutForId(stmt->BackEdgeId(), BailoutState::NO_REGISTERS); EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label()); __ jmp(loop_statement.continue_label()); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { LoadFromFrameField(JavaScriptFrameConstants::kFunctionOffset, result_register()); context()->Plug(result_register()); } void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) { Comment cmnt(masm_, "[ TryCatchStatement"); SetStatementPosition(stmt, SKIP_BREAK); // The try block adds a handler to the exception handler chain before // entering, and removes it again when exiting normally. If an exception // is thrown during execution of the try block, the handler is consumed // and control is passed to the catch block with the exception in the // result register. Label try_entry, handler_entry, exit; __ jmp(&try_entry); __ bind(&handler_entry); if (stmt->clear_pending_message()) ClearPendingMessage(); // Exception handler code, the exception is in the result register. // Extend the context before executing the catch block. { Comment cmnt(masm_, "[ Extend catch context"); PushOperand(stmt->variable()->name()); PushOperand(result_register()); PushFunctionArgumentForContextAllocation(); CallRuntimeWithOperands(Runtime::kPushCatchContext); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } Scope* saved_scope = scope(); scope_ = stmt->scope(); DCHECK(scope_->declarations()->is_empty()); { WithOrCatch catch_body(this); Visit(stmt->catch_block()); } // Restore the context. LoadContextField(context_register(), Context::PREVIOUS_INDEX); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); scope_ = saved_scope; __ jmp(&exit); // Try block code. Sets up the exception handler chain. __ bind(&try_entry); try_catch_depth_++; int handler_index = NewHandlerTableEntry(); EnterTryBlock(handler_index, &handler_entry); { Comment cmnt_try(masm(), "[ Try block"); Visit(stmt->try_block()); } ExitTryBlock(handler_index); try_catch_depth_--; __ bind(&exit); } void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) { Comment cmnt(masm_, "[ TryFinallyStatement"); SetStatementPosition(stmt, SKIP_BREAK); // Try finally is compiled by setting up a try-handler on the stack while // executing the try body, and removing it again afterwards. // // The try-finally construct can enter the finally block in three ways: // 1. By exiting the try-block normally. This exits the try block, // pushes the continuation token and falls through to the finally // block. // 2. By exiting the try-block with a function-local control flow transfer // (break/continue/return). The site of the, e.g., break exits the // try block, pushes the continuation token and jumps to the // finally block. After the finally block executes, the execution // continues based on the continuation token to a block that // continues with the control flow transfer. // 3. By exiting the try-block with a thrown exception. In the handler, // we push the exception and continuation token and jump to the // finally block (which will again dispatch based on the token once // it is finished). Label try_entry, handler_entry, finally_entry; DeferredCommands deferred(this, &finally_entry); // Jump to try-handler setup and try-block code. __ jmp(&try_entry); __ bind(&handler_entry); // Exception handler code. This code is only executed when an exception // is thrown. Record the continuation and jump to the finally block. { Comment cmnt_handler(masm(), "[ Finally handler"); deferred.RecordThrow(); } // Set up try handler. __ bind(&try_entry); int handler_index = NewHandlerTableEntry(); EnterTryBlock(handler_index, &handler_entry); { Comment cmnt_try(masm(), "[ Try block"); TryFinally try_body(this, &deferred); Visit(stmt->try_block()); } ExitTryBlock(handler_index); // Execute the finally block on the way out. Clobber the unpredictable // value in the result register with one that's safe for GC because the // finally block will unconditionally preserve the result register on the // stack. ClearAccumulator(); deferred.EmitFallThrough(); // Fall through to the finally block. // Finally block implementation. __ bind(&finally_entry); { Comment cmnt_finally(masm(), "[ Finally block"); OperandStackDepthIncrement(2); // Token and accumulator are on stack. EnterFinallyBlock(); Visit(stmt->finally_block()); ExitFinallyBlock(); OperandStackDepthDecrement(2); // Token and accumulator were on stack. } { Comment cmnt_deferred(masm(), "[ Post-finally dispatch"); deferred.EmitCommands(); // Return to the calling code. } } void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) { Comment cmnt(masm_, "[ DebuggerStatement"); SetStatementPosition(stmt); __ DebugBreak(); // Ignore the return value. PrepareForBailoutForId(stmt->DebugBreakId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); } void FullCodeGenerator::VisitConditional(Conditional* expr) { Comment cmnt(masm_, "[ Conditional"); Label true_case, false_case, done; VisitForControl(expr->condition(), &true_case, &false_case, &true_case); int original_stack_depth = operand_stack_depth_; PrepareForBailoutForId(expr->ThenId(), BailoutState::NO_REGISTERS); __ bind(&true_case); SetExpressionPosition(expr->then_expression()); if (context()->IsTest()) { const TestContext* for_test = TestContext::cast(context()); VisitForControl(expr->then_expression(), for_test->true_label(), for_test->false_label(), NULL); } else { VisitInDuplicateContext(expr->then_expression()); __ jmp(&done); } operand_stack_depth_ = original_stack_depth; PrepareForBailoutForId(expr->ElseId(), BailoutState::NO_REGISTERS); __ bind(&false_case); SetExpressionPosition(expr->else_expression()); VisitInDuplicateContext(expr->else_expression()); // If control flow falls through Visit, merge it with true case here. if (!context()->IsTest()) { __ bind(&done); } } void FullCodeGenerator::VisitLiteral(Literal* expr) { Comment cmnt(masm_, "[ Literal"); context()->Plug(expr->value()); } void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle<SharedFunctionInfo> function_info = Compiler::GetSharedFunctionInfo(expr, script(), info_); if (function_info.is_null()) { SetStackOverflow(); return; } EmitNewClosure(function_info, expr->pretenure()); } void FullCodeGenerator::VisitClassLiteral(ClassLiteral* lit) { Comment cmnt(masm_, "[ ClassLiteral"); { NestedClassLiteral nested_class_literal(this, lit); EnterBlockScopeIfNeeded block_scope_state( this, lit->scope(), lit->EntryId(), lit->DeclsId(), lit->ExitId()); if (lit->extends() != NULL) { VisitForStackValue(lit->extends()); } else { PushOperand(isolate()->factory()->the_hole_value()); } VisitForStackValue(lit->constructor()); PushOperand(Smi::FromInt(lit->start_position())); PushOperand(Smi::FromInt(lit->end_position())); CallRuntimeWithOperands(Runtime::kDefineClass); PrepareForBailoutForId(lit->CreateLiteralId(), BailoutState::TOS_REGISTER); PushOperand(result_register()); // Load the "prototype" from the constructor. __ Move(LoadDescriptor::ReceiverRegister(), result_register()); __ LoadRoot(LoadDescriptor::NameRegister(), Heap::kprototype_stringRootIndex); __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(lit->PrototypeSlot())); CallLoadIC(); PrepareForBailoutForId(lit->PrototypeId(), BailoutState::TOS_REGISTER); PushOperand(result_register()); EmitClassDefineProperties(lit); DropOperands(1); // Set the constructor to have fast properties. CallRuntimeWithOperands(Runtime::kToFastProperties); if (lit->class_variable_proxy() != nullptr) { EmitVariableAssignment(lit->class_variable_proxy()->var(), Token::INIT, lit->ProxySlot()); } } context()->Plug(result_register()); } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Callable callable = CodeFactory::FastCloneRegExp(isolate()); CallInterfaceDescriptor descriptor = callable.descriptor(); LoadFromFrameField(JavaScriptFrameConstants::kFunctionOffset, descriptor.GetRegisterParameter(0)); __ Move(descriptor.GetRegisterParameter(1), Smi::FromInt(expr->literal_index())); __ Move(descriptor.GetRegisterParameter(2), expr->pattern()); __ Move(descriptor.GetRegisterParameter(3), Smi::FromInt(expr->flags())); __ Call(callable.code(), RelocInfo::CODE_TARGET); context()->Plug(result_register()); } void FullCodeGenerator::VisitNativeFunctionLiteral( NativeFunctionLiteral* expr) { Comment cmnt(masm_, "[ NativeFunctionLiteral"); Handle<SharedFunctionInfo> shared = Compiler::GetSharedFunctionInfoForNative(expr->extension(), expr->name()); EmitNewClosure(shared, false); } void FullCodeGenerator::VisitThrow(Throw* expr) { Comment cmnt(masm_, "[ Throw"); VisitForStackValue(expr->exception()); SetExpressionPosition(expr); CallRuntimeWithOperands(Runtime::kThrow); // Never returns here. // Even though this expression doesn't produce a value, we need to simulate // plugging of the value context to ensure stack depth tracking is in sync. if (context()->IsStackValue()) OperandStackDepthIncrement(1); } void FullCodeGenerator::EnterTryBlock(int handler_index, Label* handler) { HandlerTableEntry* entry = &handler_table_[handler_index]; entry->range_start = masm()->pc_offset(); entry->handler_offset = handler->pos(); entry->try_catch_depth = try_catch_depth_; entry->stack_depth = operand_stack_depth_; // We are using the operand stack depth, check for accuracy. EmitOperandStackDepthCheck(); // Push context onto operand stack. STATIC_ASSERT(TryBlockConstant::kElementCount == 1); PushOperand(context_register()); } void FullCodeGenerator::ExitTryBlock(int handler_index) { HandlerTableEntry* entry = &handler_table_[handler_index]; entry->range_end = masm()->pc_offset(); // Drop context from operand stack. DropOperands(TryBlockConstant::kElementCount); } void FullCodeGenerator::VisitCall(Call* expr) { #ifdef DEBUG // We want to verify that RecordJSReturnSite gets called on all paths // through this function. Avoid early returns. expr->return_is_recorded_ = false; #endif Comment cmnt(masm_, (expr->tail_call_mode() == TailCallMode::kAllow) ? "[ TailCall" : "[ Call"); Expression* callee = expr->expression(); Call::CallType call_type = expr->GetCallType(isolate()); switch (call_type) { case Call::POSSIBLY_EVAL_CALL: EmitPossiblyEvalCall(expr); break; case Call::GLOBAL_CALL: EmitCallWithLoadIC(expr); break; case Call::LOOKUP_SLOT_CALL: // Call to a lookup slot (dynamically introduced variable). PushCalleeAndWithBaseObject(expr); EmitCall(expr); break; case Call::NAMED_PROPERTY_CALL: { Property* property = callee->AsProperty(); VisitForStackValue(property->obj()); EmitCallWithLoadIC(expr); break; } case Call::KEYED_PROPERTY_CALL: { Property* property = callee->AsProperty(); VisitForStackValue(property->obj()); EmitKeyedCallWithLoadIC(expr, property->key()); break; } case Call::NAMED_SUPER_PROPERTY_CALL: EmitSuperCallWithLoadIC(expr); break; case Call::KEYED_SUPER_PROPERTY_CALL: EmitKeyedSuperCallWithLoadIC(expr); break; case Call::SUPER_CALL: EmitSuperConstructorCall(expr); break; case Call::OTHER_CALL: // Call to an arbitrary expression not handled specially above. VisitForStackValue(callee); OperandStackDepthIncrement(1); __ PushRoot(Heap::kUndefinedValueRootIndex); // Emit function call. EmitCall(expr); break; } #ifdef DEBUG // RecordJSReturnSite should have been called. DCHECK(expr->return_is_recorded_); #endif } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); if (expr->is_jsruntime()) { Comment cmnt(masm_, "[ CallRuntime"); EmitLoadJSRuntimeFunction(expr); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); EmitCallJSRuntimeFunction(expr); context()->DropAndPlug(1, result_register()); } else { const Runtime::Function* function = expr->function(); switch (function->function_id) { #define CALL_INTRINSIC_GENERATOR(Name) \ case Runtime::kInline##Name: { \ Comment cmnt(masm_, "[ Inline" #Name); \ return Emit##Name(expr); \ } FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR) #undef CALL_INTRINSIC_GENERATOR default: { Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic"); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the C runtime function. PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); __ CallRuntime(expr->function(), arg_count); OperandStackDepthDecrement(arg_count); context()->Plug(result_register()); } } } } void FullCodeGenerator::VisitSpread(Spread* expr) { UNREACHABLE(); } void FullCodeGenerator::VisitEmptyParentheses(EmptyParentheses* expr) { UNREACHABLE(); } void FullCodeGenerator::VisitRewritableExpression(RewritableExpression* expr) { Visit(expr->expression()); } FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( int* context_length) { // The macros used here must preserve the result register. // Calculate how many operands to drop to get down to handler block. int stack_drop = codegen_->operand_stack_depth_ - GetStackDepthAtTarget(); DCHECK_GE(stack_drop, 0); // Because the handler block contains the context of the finally // code, we can restore it directly from there for the finally code // rather than iteratively unwinding contexts via their previous // links. if (*context_length > 0) { __ Drop(stack_drop); // Down to the handler block. // Restore the context to its dedicated register and the stack. STATIC_ASSERT(TryBlockConstant::kElementCount == 1); __ Pop(codegen_->context_register()); codegen_->StoreToFrameField(StandardFrameConstants::kContextOffset, codegen_->context_register()); } else { // Down to the handler block and also drop context. __ Drop(stack_drop + TryBlockConstant::kElementCount); } // The caller will ignore outputs. *context_length = -1; return previous_; } void FullCodeGenerator::DeferredCommands::RecordBreak(Statement* target) { TokenId token = dispenser_.GetBreakContinueToken(); commands_.push_back({kBreak, token, target}); EmitJumpToFinally(token); } void FullCodeGenerator::DeferredCommands::RecordContinue(Statement* target) { TokenId token = dispenser_.GetBreakContinueToken(); commands_.push_back({kContinue, token, target}); EmitJumpToFinally(token); } void FullCodeGenerator::DeferredCommands::RecordReturn() { if (return_token_ == TokenDispenserForFinally::kInvalidToken) { return_token_ = TokenDispenserForFinally::kReturnToken; commands_.push_back({kReturn, return_token_, nullptr}); } EmitJumpToFinally(return_token_); } void FullCodeGenerator::DeferredCommands::RecordThrow() { if (throw_token_ == TokenDispenserForFinally::kInvalidToken) { throw_token_ = TokenDispenserForFinally::kThrowToken; commands_.push_back({kThrow, throw_token_, nullptr}); } EmitJumpToFinally(throw_token_); } void FullCodeGenerator::DeferredCommands::EmitFallThrough() { __ Push(Smi::FromInt(TokenDispenserForFinally::kFallThroughToken)); __ Push(result_register()); } void FullCodeGenerator::DeferredCommands::EmitJumpToFinally(TokenId token) { __ Push(Smi::FromInt(token)); __ Push(result_register()); __ jmp(finally_entry_); } bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) { Expression* sub_expr; Handle<String> check; if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) { SetExpressionPosition(expr); EmitLiteralCompareTypeof(expr, sub_expr, check); return true; } if (expr->IsLiteralCompareUndefined(&sub_expr)) { SetExpressionPosition(expr); EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue); return true; } if (expr->IsLiteralCompareNull(&sub_expr)) { SetExpressionPosition(expr); EmitLiteralCompareNil(expr, sub_expr, kNullValue); return true; } return false; } void BackEdgeTable::Patch(Isolate* isolate, Code* unoptimized) { DisallowHeapAllocation no_gc; Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement); // Increment loop nesting level by one and iterate over the back edge table // to find the matching loops to patch the interrupt // call to an unconditional call to the replacement code. int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level() + 1; if (loop_nesting_level > Code::kMaxLoopNestingMarker) return; BackEdgeTable back_edges(unoptimized, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) { DCHECK_EQ(INTERRUPT, GetBackEdgeState(isolate, unoptimized, back_edges.pc(i))); PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch); } } unoptimized->set_allow_osr_at_loop_nesting_level(loop_nesting_level); DCHECK(Verify(isolate, unoptimized)); } void BackEdgeTable::Revert(Isolate* isolate, Code* unoptimized) { DisallowHeapAllocation no_gc; Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck); // Iterate over the back edge table and revert the patched interrupt calls. int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level(); BackEdgeTable back_edges(unoptimized, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) { DCHECK_NE(INTERRUPT, GetBackEdgeState(isolate, unoptimized, back_edges.pc(i))); PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch); } } unoptimized->set_allow_osr_at_loop_nesting_level(0); // Assert that none of the back edges are patched anymore. DCHECK(Verify(isolate, unoptimized)); } #ifdef DEBUG bool BackEdgeTable::Verify(Isolate* isolate, Code* unoptimized) { DisallowHeapAllocation no_gc; int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level(); BackEdgeTable back_edges(unoptimized, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { uint32_t loop_depth = back_edges.loop_depth(i); CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker); // Assert that all back edges for shallower loops (and only those) // have already been patched. CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level), GetBackEdgeState(isolate, unoptimized, back_edges.pc(i)) != INTERRUPT); } return true; } #endif // DEBUG FullCodeGenerator::EnterBlockScopeIfNeeded::EnterBlockScopeIfNeeded( FullCodeGenerator* codegen, Scope* scope, BailoutId entry_id, BailoutId declarations_id, BailoutId exit_id) : codegen_(codegen), exit_id_(exit_id) { saved_scope_ = codegen_->scope(); if (scope == NULL) { codegen_->PrepareForBailoutForId(entry_id, BailoutState::NO_REGISTERS); needs_block_context_ = false; } else { needs_block_context_ = scope->NeedsContext(); codegen_->scope_ = scope; { if (needs_block_context_) { Comment cmnt(masm(), "[ Extend block context"); codegen_->PushOperand(scope->GetScopeInfo(codegen->isolate())); codegen_->PushFunctionArgumentForContextAllocation(); codegen_->CallRuntimeWithOperands(Runtime::kPushBlockContext); // Replace the context stored in the frame. codegen_->StoreToFrameField(StandardFrameConstants::kContextOffset, codegen_->context_register()); } CHECK_EQ(0, scope->num_stack_slots()); codegen_->PrepareForBailoutForId(entry_id, BailoutState::NO_REGISTERS); } { Comment cmnt(masm(), "[ Declarations"); codegen_->VisitDeclarations(scope->declarations()); codegen_->PrepareForBailoutForId(declarations_id, BailoutState::NO_REGISTERS); } } } FullCodeGenerator::EnterBlockScopeIfNeeded::~EnterBlockScopeIfNeeded() { if (needs_block_context_) { codegen_->LoadContextField(codegen_->context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. codegen_->StoreToFrameField(StandardFrameConstants::kContextOffset, codegen_->context_register()); } codegen_->PrepareForBailoutForId(exit_id_, BailoutState::NO_REGISTERS); codegen_->scope_ = saved_scope_; } bool FullCodeGenerator::NeedsHoleCheckForLoad(VariableProxy* proxy) { Variable* var = proxy->var(); if (!var->binding_needs_init()) { return false; } // var->scope() may be NULL when the proxy is located in eval code and // refers to a potential outside binding. Currently those bindings are // always looked up dynamically, i.e. in that case // var->location() == LOOKUP. // always holds. DCHECK(var->scope() != NULL); DCHECK(var->location() == VariableLocation::PARAMETER || var->location() == VariableLocation::LOCAL || var->location() == VariableLocation::CONTEXT); // Check if the binding really needs an initialization check. The check // can be skipped in the following situation: we have a LET or CONST // binding in harmony mode, both the Variable and the VariableProxy have // the same declaration scope (i.e. they are both in global code, in the // same function or in the same eval code), the VariableProxy is in // the source physically located after the initializer of the variable, // and that the initializer cannot be skipped due to a nonlinear scope. // // We cannot skip any initialization checks for CONST in non-harmony // mode because const variables may be declared but never initialized: // if (false) { const x; }; var y = x; // // The condition on the declaration scopes is a conservative check for // nested functions that access a binding and are called before the // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // // The check cannot be skipped on non-linear scopes, namely switch // scopes, to ensure tests are done in cases like the following: // switch (1) { case 0: let x = 2; case 1: f(x); } // The scope of the variable needs to be checked, in case the use is // in a sub-block which may be linear. if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { return true; } if (var->is_this()) { DCHECK(literal() != nullptr && (literal()->kind() & kSubclassConstructor) != 0); // TODO(littledan): implement 'this' hole check elimination. return true; } // Check that we always have valid source position. DCHECK(var->initializer_position() != RelocInfo::kNoPosition); DCHECK(proxy->position() != RelocInfo::kNoPosition); return var->scope()->is_nonlinear() || var->initializer_position() >= proxy->position(); } #undef __ } // namespace internal } // namespace v8