// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/heap.h" #include "src/accessors.h" #include "src/api.h" #include "src/ast/scopeinfo.h" #include "src/base/bits.h" #include "src/base/once.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/conversions.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/heap/array-buffer-tracker-inl.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/mark-compact.h" #include "src/heap/memory-reducer.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/remembered-set.h" #include "src/heap/scavenge-job.h" #include "src/heap/scavenger-inl.h" #include "src/heap/store-buffer.h" #include "src/interpreter/interpreter.h" #include "src/regexp/jsregexp.h" #include "src/runtime-profiler.h" #include "src/snapshot/natives.h" #include "src/snapshot/serializer-common.h" #include "src/snapshot/snapshot.h" #include "src/tracing/trace-event.h" #include "src/type-feedback-vector.h" #include "src/utils.h" #include "src/v8.h" #include "src/v8threads.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { struct Heap::StrongRootsList { Object** start; Object** end; StrongRootsList* next; }; class IdleScavengeObserver : public AllocationObserver { public: IdleScavengeObserver(Heap& heap, intptr_t step_size) : AllocationObserver(step_size), heap_(heap) {} void Step(int bytes_allocated, Address, size_t) override { heap_.ScheduleIdleScavengeIfNeeded(bytes_allocated); } private: Heap& heap_; }; Heap::Heap() : external_memory_(0), external_memory_limit_(kExternalAllocationLimit), external_memory_at_last_mark_compact_(0), isolate_(nullptr), code_range_size_(0), // semispace_size_ should be a power of 2 and old_generation_size_ should // be a multiple of Page::kPageSize. max_semi_space_size_(8 * (kPointerSize / 4) * MB), initial_semispace_size_(Page::kPageSize), max_old_generation_size_(700ul * (kPointerSize / 4) * MB), initial_old_generation_size_(max_old_generation_size_ / kInitalOldGenerationLimitFactor), old_generation_size_configured_(false), max_executable_size_(256ul * (kPointerSize / 4) * MB), // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap. // Will be 4 * reserved_semispace_size_ to ensure that young // generation can be aligned to its size. maximum_committed_(0), survived_since_last_expansion_(0), survived_last_scavenge_(0), always_allocate_scope_count_(0), memory_pressure_level_(MemoryPressureLevel::kNone), contexts_disposed_(0), number_of_disposed_maps_(0), global_ic_age_(0), new_space_(this), old_space_(NULL), code_space_(NULL), map_space_(NULL), lo_space_(NULL), gc_state_(NOT_IN_GC), gc_post_processing_depth_(0), allocations_count_(0), raw_allocations_hash_(0), ms_count_(0), gc_count_(0), remembered_unmapped_pages_index_(0), #ifdef DEBUG allocation_timeout_(0), #endif // DEBUG old_generation_allocation_limit_(initial_old_generation_size_), old_gen_exhausted_(false), optimize_for_memory_usage_(false), inline_allocation_disabled_(false), total_regexp_code_generated_(0), tracer_(nullptr), high_survival_rate_period_length_(0), promoted_objects_size_(0), promotion_ratio_(0), semi_space_copied_object_size_(0), previous_semi_space_copied_object_size_(0), semi_space_copied_rate_(0), nodes_died_in_new_space_(0), nodes_copied_in_new_space_(0), nodes_promoted_(0), maximum_size_scavenges_(0), max_gc_pause_(0.0), total_gc_time_ms_(0.0), max_alive_after_gc_(0), min_in_mutator_(kMaxInt), marking_time_(0.0), sweeping_time_(0.0), last_idle_notification_time_(0.0), last_gc_time_(0.0), scavenge_collector_(nullptr), mark_compact_collector_(nullptr), memory_allocator_(nullptr), store_buffer_(this), incremental_marking_(nullptr), gc_idle_time_handler_(nullptr), memory_reducer_(nullptr), object_stats_(nullptr), scavenge_job_(nullptr), idle_scavenge_observer_(nullptr), full_codegen_bytes_generated_(0), crankshaft_codegen_bytes_generated_(0), new_space_allocation_counter_(0), old_generation_allocation_counter_(0), old_generation_size_at_last_gc_(0), gcs_since_last_deopt_(0), global_pretenuring_feedback_(nullptr), ring_buffer_full_(false), ring_buffer_end_(0), promotion_queue_(this), configured_(false), current_gc_flags_(Heap::kNoGCFlags), current_gc_callback_flags_(GCCallbackFlags::kNoGCCallbackFlags), external_string_table_(this), gc_callbacks_depth_(0), deserialization_complete_(false), strong_roots_list_(NULL), heap_iterator_depth_(0), force_oom_(false) { // Allow build-time customization of the max semispace size. Building // V8 with snapshots and a non-default max semispace size is much // easier if you can define it as part of the build environment. #if defined(V8_MAX_SEMISPACE_SIZE) max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; #endif // Ensure old_generation_size_ is a multiple of kPageSize. DCHECK((max_old_generation_size_ & (Page::kPageSize - 1)) == 0); memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); set_native_contexts_list(NULL); set_allocation_sites_list(Smi::FromInt(0)); set_encountered_weak_collections(Smi::FromInt(0)); set_encountered_weak_cells(Smi::FromInt(0)); set_encountered_transition_arrays(Smi::FromInt(0)); // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(NULL, false); } intptr_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; return new_space_.Capacity() + OldGenerationCapacity(); } intptr_t Heap::OldGenerationCapacity() { if (!HasBeenSetUp()) return 0; return old_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity() + lo_space_->SizeOfObjects(); } intptr_t Heap::CommittedOldGenerationMemory() { if (!HasBeenSetUp()) return 0; return old_space_->CommittedMemory() + code_space_->CommittedMemory() + map_space_->CommittedMemory() + lo_space_->Size(); } intptr_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedMemory() + CommittedOldGenerationMemory(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedPhysicalMemory() + old_space_->CommittedPhysicalMemory() + code_space_->CommittedPhysicalMemory() + map_space_->CommittedPhysicalMemory() + lo_space_->CommittedPhysicalMemory(); } intptr_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return memory_allocator()->SizeExecutable(); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; intptr_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } intptr_t Heap::Available() { if (!HasBeenSetUp()) return 0; intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->Available(); } return total; } bool Heap::HasBeenSetUp() { return old_space_ != NULL && code_space_ != NULL && map_space_ != NULL && lo_space_ != NULL; } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, const char** reason) { // Is global GC requested? if (space != NEW_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return MARK_COMPACTOR; } if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { *reason = "GC in old space forced by flags"; return MARK_COMPACTOR; } // Is enough data promoted to justify a global GC? if (OldGenerationAllocationLimitReached()) { isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment(); *reason = "promotion limit reached"; return MARK_COMPACTOR; } // Have allocation in OLD and LO failed? if (old_gen_exhausted_) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "old generations exhausted"; return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (memory_allocator()->MaxAvailable() <= new_space_.Size()) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "scavenge might not succeed"; return MARK_COMPACTOR; } // Default *reason = NULL; return SCAVENGER; } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled --log-gc is set. The following logic is used to avoid // double logging. #ifdef DEBUG if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms(); #else if (FLAG_log_gc) { new_space_.CollectStatistics(); new_space_.ReportStatistics(); new_space_.ClearHistograms(); } #endif // DEBUG } void Heap::PrintShortHeapStatistics() { if (!FLAG_trace_gc_verbose) return; PrintIsolate(isolate_, "Memory allocator, used: %6" V8PRIdPTR " KB, available: %6" V8PRIdPTR " KB\n", memory_allocator()->Size() / KB, memory_allocator()->Available() / KB); PrintIsolate(isolate_, "New space, used: %6" V8PRIdPTR " KB" ", available: %6" V8PRIdPTR " KB" ", committed: %6" V8PRIdPTR " KB\n", new_space_.Size() / KB, new_space_.Available() / KB, new_space_.CommittedMemory() / KB); PrintIsolate(isolate_, "Old space, used: %6" V8PRIdPTR " KB" ", available: %6" V8PRIdPTR " KB" ", committed: %6" V8PRIdPTR " KB\n", old_space_->SizeOfObjects() / KB, old_space_->Available() / KB, old_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Code space, used: %6" V8PRIdPTR " KB" ", available: %6" V8PRIdPTR " KB" ", committed: %6" V8PRIdPTR " KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, code_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Map space, used: %6" V8PRIdPTR " KB" ", available: %6" V8PRIdPTR " KB" ", committed: %6" V8PRIdPTR " KB\n", map_space_->SizeOfObjects() / KB, map_space_->Available() / KB, map_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Large object space, used: %6" V8PRIdPTR " KB" ", available: %6" V8PRIdPTR " KB" ", committed: %6" V8PRIdPTR " KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "All spaces, used: %6" V8PRIdPTR " KB" ", available: %6" V8PRIdPTR " KB" ", committed: %6" V8PRIdPTR " KB\n", this->SizeOfObjects() / KB, this->Available() / KB, this->CommittedMemory() / KB); PrintIsolate(isolate_, "External memory reported: %6" V8PRIdPTR " KB\n", static_cast<intptr_t>(external_memory_ / KB)); PrintIsolate(isolate_, "Total time spent in GC : %.1f ms\n", total_gc_time_ms_); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) if (FLAG_heap_stats) { new_space_.CollectStatistics(); ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } #else if (FLAG_log_gc) new_space_.ReportStatistics(); #endif // DEBUG for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); ++i) { int count = deferred_counters_[i]; deferred_counters_[i] = 0; while (count > 0) { count--; isolate()->CountUsage(static_cast<v8::Isolate::UseCounterFeature>(i)); } } } void Heap::IncrementDeferredCount(v8::Isolate::UseCounterFeature feature) { deferred_counters_[feature]++; } void Heap::GarbageCollectionPrologue() { { AllowHeapAllocation for_the_first_part_of_prologue; gc_count_++; #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } // Reset GC statistics. promoted_objects_size_ = 0; previous_semi_space_copied_object_size_ = semi_space_copied_object_size_; semi_space_copied_object_size_ = 0; nodes_died_in_new_space_ = 0; nodes_copied_in_new_space_ = 0; nodes_promoted_ = 0; UpdateMaximumCommitted(); #ifdef DEBUG DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); if (FLAG_gc_verbose) Print(); ReportStatisticsBeforeGC(); #endif // DEBUG if (new_space_.IsAtMaximumCapacity()) { maximum_size_scavenges_++; } else { maximum_size_scavenges_ = 0; } CheckNewSpaceExpansionCriteria(); UpdateNewSpaceAllocationCounter(); store_buffer()->MoveEntriesToRememberedSet(); } intptr_t Heap::SizeOfObjects() { intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->SizeOfObjects(); } return total; } const char* Heap::GetSpaceName(int idx) { switch (idx) { case NEW_SPACE: return "new_space"; case OLD_SPACE: return "old_space"; case MAP_SPACE: return "map_space"; case CODE_SPACE: return "code_space"; case LO_SPACE: return "large_object_space"; default: UNREACHABLE(); } return nullptr; } void Heap::RepairFreeListsAfterDeserialization() { PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->RepairFreeListsAfterDeserialization(); } } void Heap::MergeAllocationSitePretenuringFeedback( const base::HashMap& local_pretenuring_feedback) { AllocationSite* site = nullptr; for (base::HashMap::Entry* local_entry = local_pretenuring_feedback.Start(); local_entry != nullptr; local_entry = local_pretenuring_feedback.Next(local_entry)) { site = reinterpret_cast<AllocationSite*>(local_entry->key); MapWord map_word = site->map_word(); if (map_word.IsForwardingAddress()) { site = AllocationSite::cast(map_word.ToForwardingAddress()); } // We have not validated the allocation site yet, since we have not // dereferenced the site during collecting information. // This is an inlined check of AllocationMemento::IsValid. if (!site->IsAllocationSite() || site->IsZombie()) continue; int value = static_cast<int>(reinterpret_cast<intptr_t>(local_entry->value)); DCHECK_GT(value, 0); if (site->IncrementMementoFoundCount(value)) { global_pretenuring_feedback_->LookupOrInsert(site, ObjectHash(site->address())); } } } class Heap::PretenuringScope { public: explicit PretenuringScope(Heap* heap) : heap_(heap) { heap_->global_pretenuring_feedback_ = new base::HashMap( base::HashMap::PointersMatch, kInitialFeedbackCapacity); } ~PretenuringScope() { delete heap_->global_pretenuring_feedback_; heap_->global_pretenuring_feedback_ = nullptr; } private: Heap* heap_; }; void Heap::ProcessPretenuringFeedback() { bool trigger_deoptimization = false; if (FLAG_allocation_site_pretenuring) { int tenure_decisions = 0; int dont_tenure_decisions = 0; int allocation_mementos_found = 0; int allocation_sites = 0; int active_allocation_sites = 0; AllocationSite* site = nullptr; // Step 1: Digest feedback for recorded allocation sites. bool maximum_size_scavenge = MaximumSizeScavenge(); for (base::HashMap::Entry* e = global_pretenuring_feedback_->Start(); e != nullptr; e = global_pretenuring_feedback_->Next(e)) { allocation_sites++; site = reinterpret_cast<AllocationSite*>(e->key); int found_count = site->memento_found_count(); // An entry in the storage does not imply that the count is > 0 because // allocation sites might have been reset due to too many objects dying // in old space. if (found_count > 0) { DCHECK(site->IsAllocationSite()); active_allocation_sites++; allocation_mementos_found += found_count; if (site->DigestPretenuringFeedback(maximum_size_scavenge)) { trigger_deoptimization = true; } if (site->GetPretenureMode() == TENURED) { tenure_decisions++; } else { dont_tenure_decisions++; } } } // Step 2: Deopt maybe tenured allocation sites if necessary. bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites(); if (deopt_maybe_tenured) { Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { site = AllocationSite::cast(list_element); DCHECK(site->IsAllocationSite()); allocation_sites++; if (site->IsMaybeTenure()) { site->set_deopt_dependent_code(true); trigger_deoptimization = true; } list_element = site->weak_next(); } } if (trigger_deoptimization) { isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } if (FLAG_trace_pretenuring_statistics && (allocation_mementos_found > 0 || tenure_decisions > 0 || dont_tenure_decisions > 0)) { PrintIsolate(isolate(), "pretenuring: deopt_maybe_tenured=%d visited_sites=%d " "active_sites=%d " "mementos=%d tenured=%d not_tenured=%d\n", deopt_maybe_tenured ? 1 : 0, allocation_sites, active_allocation_sites, allocation_mementos_found, tenure_decisions, dont_tenure_decisions); } } } void Heap::DeoptMarkedAllocationSites() { // TODO(hpayer): If iterating over the allocation sites list becomes a // performance issue, use a cache data structure in heap instead. Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(list_element); if (site->deopt_dependent_code()) { site->dependent_code()->MarkCodeForDeoptimization( isolate_, DependentCode::kAllocationSiteTenuringChangedGroup); site->set_deopt_dependent_code(false); } list_element = site->weak_next(); } Deoptimizer::DeoptimizeMarkedCode(isolate_); } void Heap::GarbageCollectionEpilogue() { // In release mode, we only zap the from space under heap verification. if (Heap::ShouldZapGarbage()) { ZapFromSpace(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif AllowHeapAllocation for_the_rest_of_the_epilogue; #ifdef DEBUG if (FLAG_print_global_handles) isolate_->global_handles()->Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); if (FLAG_check_handle_count) CheckHandleCount(); #endif if (FLAG_deopt_every_n_garbage_collections > 0) { // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that // the topmost optimized frame can be deoptimized safely, because it // might not have a lazy bailout point right after its current PC. if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) { Deoptimizer::DeoptimizeAll(isolate()); gcs_since_last_deopt_ = 0; } } UpdateMaximumCommitted(); isolate_->counters()->alive_after_last_gc()->Set( static_cast<int>(SizeOfObjects())); isolate_->counters()->string_table_capacity()->Set( string_table()->Capacity()); isolate_->counters()->number_of_symbols()->Set( string_table()->NumberOfElements()); if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) { isolate_->counters()->codegen_fraction_crankshaft()->AddSample( static_cast<int>((crankshaft_codegen_bytes_generated_ * 100.0) / (crankshaft_codegen_bytes_generated_ + full_codegen_bytes_generated_))); } if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_new_space()->AddSample(static_cast<int>( (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_space()->AddSample(static_cast<int>( (old_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_code_space()->AddSample( static_cast<int>((code_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_map_space()->AddSample(static_cast<int>( (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_lo_space()->AddSample(static_cast<int>( (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast<int>(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast<int>(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_map_space_committed()->AddSample( static_cast<int>(map_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast<int>(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast<int>(MaximumCommittedMemory() / KB)); } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast<int>(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast<int>(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast<int>(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast<int>(100 - \ (space()->SizeOfObjects() * 100.0) / \ space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) UPDATE_COUNTERS_FOR_SPACE(new_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #ifdef DEBUG ReportStatisticsAfterGC(); #endif // DEBUG // Remember the last top pointer so that we can later find out // whether we allocated in new space since the last GC. new_space_top_after_last_gc_ = new_space()->top(); last_gc_time_ = MonotonicallyIncreasingTimeInMs(); ReduceNewSpaceSize(); } void Heap::PreprocessStackTraces() { WeakFixedArray::Iterator iterator(weak_stack_trace_list()); FixedArray* elements; while ((elements = iterator.Next<FixedArray>())) { for (int j = 1; j < elements->length(); j += 4) { Object* maybe_code = elements->get(j + 2); // If GC happens while adding a stack trace to the weak fixed array, // which has been copied into a larger backing store, we may run into // a stack trace that has already been preprocessed. Guard against this. if (!maybe_code->IsAbstractCode()) break; AbstractCode* abstract_code = AbstractCode::cast(maybe_code); int offset = Smi::cast(elements->get(j + 3))->value(); int pos = abstract_code->SourcePosition(offset); elements->set(j + 2, Smi::FromInt(pos)); } } // We must not compact the weak fixed list here, as we may be in the middle // of writing to it, when the GC triggered. Instead, we reset the root value. set_weak_stack_trace_list(Smi::FromInt(0)); } class GCCallbacksScope { public: explicit GCCallbacksScope(Heap* heap) : heap_(heap) { heap_->gc_callbacks_depth_++; } ~GCCallbacksScope() { heap_->gc_callbacks_depth_--; } bool CheckReenter() { return heap_->gc_callbacks_depth_ == 1; } private: Heap* heap_; }; void Heap::HandleGCRequest() { if (HighMemoryPressure()) { incremental_marking()->reset_request_type(); CheckMemoryPressure(); } else if (incremental_marking()->request_type() == IncrementalMarking::COMPLETE_MARKING) { incremental_marking()->reset_request_type(); CollectAllGarbage(current_gc_flags_, "GC interrupt", current_gc_callback_flags_); } else if (incremental_marking()->request_type() == IncrementalMarking::FINALIZATION && incremental_marking()->IsMarking() && !incremental_marking()->finalize_marking_completed()) { incremental_marking()->reset_request_type(); FinalizeIncrementalMarking("GC interrupt: finalize incremental marking"); } } void Heap::ScheduleIdleScavengeIfNeeded(int bytes_allocated) { scavenge_job_->ScheduleIdleTaskIfNeeded(this, bytes_allocated); } void Heap::FinalizeIncrementalMarking(const char* gc_reason) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] (%s).\n", gc_reason); } HistogramTimerScope incremental_marking_scope( isolate()->counters()->gc_incremental_marking_finalize()); TRACE_EVENT0("v8", "V8.GCIncrementalMarkingFinalize"); TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_PROLOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } incremental_marking()->FinalizeIncrementally(); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_EPILOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } } HistogramTimer* Heap::GCTypeTimer(GarbageCollector collector) { if (collector == SCAVENGER) { return isolate_->counters()->gc_scavenger(); } else { if (!incremental_marking()->IsStopped()) { if (ShouldReduceMemory()) { return isolate_->counters()->gc_finalize_reduce_memory(); } else { return isolate_->counters()->gc_finalize(); } } else { return isolate_->counters()->gc_compactor(); } } } void Heap::CollectAllGarbage(int flags, const char* gc_reason, const v8::GCCallbackFlags gc_callback_flags) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. set_current_gc_flags(flags); CollectGarbage(OLD_SPACE, gc_reason, gc_callback_flags); set_current_gc_flags(kNoGCFlags); } void Heap::CollectAllAvailableGarbage(const char* gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. // Major GC would invoke weak handle callbacks on weakly reachable // handles, but won't collect weakly reachable objects until next // major GC. Therefore if we collect aggressively and weak handle callback // has been invoked, we rerun major GC to release objects which become // garbage. // Note: as weak callbacks can execute arbitrary code, we cannot // hope that eventually there will be no weak callbacks invocations. // Therefore stop recollecting after several attempts. if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compile_dispatcher()->Flush(); } isolate()->ClearSerializerData(); set_current_gc_flags(kMakeHeapIterableMask | kReduceMemoryFootprintMask); isolate_->compilation_cache()->Clear(); const int kMaxNumberOfAttempts = 7; const int kMinNumberOfAttempts = 2; for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL, v8::kGCCallbackFlagCollectAllAvailableGarbage) && attempt + 1 >= kMinNumberOfAttempts) { break; } } set_current_gc_flags(kNoGCFlags); new_space_.Shrink(); UncommitFromSpace(); } void Heap::ReportExternalMemoryPressure(const char* gc_reason) { if (incremental_marking()->IsStopped()) { if (incremental_marking()->CanBeActivated()) { StartIncrementalMarking( i::Heap::kNoGCFlags, kGCCallbackFlagSynchronousPhantomCallbackProcessing, gc_reason); } else { CollectAllGarbage(i::Heap::kNoGCFlags, gc_reason, kGCCallbackFlagSynchronousPhantomCallbackProcessing); } } else { // Incremental marking is turned on an has already been started. // TODO(mlippautz): Compute the time slice for incremental marking based on // memory pressure. double deadline = MonotonicallyIncreasingTimeInMs() + FLAG_external_allocation_limit_incremental_time; incremental_marking()->AdvanceIncrementalMarking( deadline, IncrementalMarking::StepActions(IncrementalMarking::GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::FORCE_COMPLETION)); } } void Heap::EnsureFillerObjectAtTop() { // There may be an allocation memento behind objects in new space. Upon // evacuation of a non-full new space (or if we are on the last page) there // may be uninitialized memory behind top. We fill the remainder of the page // with a filler. Address to_top = new_space_.top(); Page* page = Page::FromAddress(to_top - kPointerSize); if (page->Contains(to_top)) { int remaining_in_page = static_cast<int>(page->area_end() - to_top); CreateFillerObjectAt(to_top, remaining_in_page, ClearRecordedSlots::kNo); } } bool Heap::CollectGarbage(GarbageCollector collector, const char* gc_reason, const char* collector_reason, const v8::GCCallbackFlags gc_callback_flags) { // The VM is in the GC state until exiting this function. VMState<GC> state(isolate_); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif EnsureFillerObjectAtTop(); if (collector == SCAVENGER && !incremental_marking()->IsStopped()) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Scavenge during marking.\n"); } } if (collector == MARK_COMPACTOR && !ShouldFinalizeIncrementalMarking() && !ShouldAbortIncrementalMarking() && !incremental_marking()->IsStopped() && !incremental_marking()->should_hurry() && FLAG_incremental_marking && OldGenerationAllocationLimitReached()) { if (!incremental_marking()->IsComplete() && !mark_compact_collector()->marking_deque_.IsEmpty() && !FLAG_gc_global) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Delaying MarkSweep.\n"); } collector = SCAVENGER; collector_reason = "incremental marking delaying mark-sweep"; } } bool next_gc_likely_to_collect_more = false; intptr_t committed_memory_before = 0; if (collector == MARK_COMPACTOR) { committed_memory_before = CommittedOldGenerationMemory(); } { tracer()->Start(collector, gc_reason, collector_reason); DCHECK(AllowHeapAllocation::IsAllowed()); DisallowHeapAllocation no_allocation_during_gc; GarbageCollectionPrologue(); { HistogramTimer* gc_type_timer = GCTypeTimer(collector); HistogramTimerScope histogram_timer_scope(gc_type_timer); TRACE_EVENT0("v8", gc_type_timer->name()); next_gc_likely_to_collect_more = PerformGarbageCollection(collector, gc_callback_flags); } GarbageCollectionEpilogue(); if (collector == MARK_COMPACTOR && FLAG_track_detached_contexts) { isolate()->CheckDetachedContextsAfterGC(); } if (collector == MARK_COMPACTOR) { intptr_t committed_memory_after = CommittedOldGenerationMemory(); intptr_t used_memory_after = PromotedSpaceSizeOfObjects(); MemoryReducer::Event event; event.type = MemoryReducer::kMarkCompact; event.time_ms = MonotonicallyIncreasingTimeInMs(); // Trigger one more GC if // - this GC decreased committed memory, // - there is high fragmentation, // - there are live detached contexts. event.next_gc_likely_to_collect_more = (committed_memory_before - committed_memory_after) > MB || HasHighFragmentation(used_memory_after, committed_memory_after) || (detached_contexts()->length() > 0); if (deserialization_complete_) { memory_reducer_->NotifyMarkCompact(event); } memory_pressure_level_.SetValue(MemoryPressureLevel::kNone); } tracer()->Stop(collector); } if (collector == MARK_COMPACTOR && (gc_callback_flags & (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage)) != 0) { isolate()->CountUsage(v8::Isolate::kForcedGC); } // Start incremental marking for the next cycle. The heap snapshot // generator needs incremental marking to stay off after it aborted. if (!ShouldAbortIncrementalMarking() && incremental_marking()->IsStopped() && incremental_marking()->ShouldActivateEvenWithoutIdleNotification()) { StartIncrementalMarking(kNoGCFlags, kNoGCCallbackFlags, "GC epilogue"); } return next_gc_likely_to_collect_more; } int Heap::NotifyContextDisposed(bool dependant_context) { if (!dependant_context) { tracer()->ResetSurvivalEvents(); old_generation_size_configured_ = false; MemoryReducer::Event event; event.type = MemoryReducer::kPossibleGarbage; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyPossibleGarbage(event); } if (isolate()->concurrent_recompilation_enabled()) { // Flush the queued recompilation tasks. isolate()->optimizing_compile_dispatcher()->Flush(); } AgeInlineCaches(); number_of_disposed_maps_ = retained_maps()->Length(); tracer()->AddContextDisposalTime(MonotonicallyIncreasingTimeInMs()); return ++contexts_disposed_; } void Heap::StartIncrementalMarking(int gc_flags, const GCCallbackFlags gc_callback_flags, const char* reason) { DCHECK(incremental_marking()->IsStopped()); set_current_gc_flags(gc_flags); current_gc_callback_flags_ = gc_callback_flags; incremental_marking()->Start(reason); } void Heap::StartIdleIncrementalMarking() { gc_idle_time_handler_->ResetNoProgressCounter(); StartIncrementalMarking(kReduceMemoryFootprintMask, kNoGCCallbackFlags, "idle"); } void Heap::MoveElements(FixedArray* array, int dst_index, int src_index, int len) { if (len == 0) return; DCHECK(array->map() != fixed_cow_array_map()); Object** dst_objects = array->data_start() + dst_index; MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize); FIXED_ARRAY_ELEMENTS_WRITE_BARRIER(this, array, dst_index, len); } #ifdef VERIFY_HEAP // Helper class for verifying the string table. class StringTableVerifier : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) override { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*p); Isolate* isolate = object->GetIsolate(); // Check that the string is actually internalized. CHECK(object->IsTheHole(isolate) || object->IsUndefined(isolate) || object->IsInternalizedString()); } } } }; static void VerifyStringTable(Heap* heap) { StringTableVerifier verifier; heap->string_table()->IterateElements(&verifier); } #endif // VERIFY_HEAP bool Heap::ReserveSpace(Reservation* reservations) { bool gc_performed = true; int counter = 0; static const int kThreshold = 20; while (gc_performed && counter++ < kThreshold) { gc_performed = false; for (int space = NEW_SPACE; space < SerializerDeserializer::kNumberOfSpaces; space++) { Reservation* reservation = &reservations[space]; DCHECK_LE(1, reservation->length()); if (reservation->at(0).size == 0) continue; bool perform_gc = false; if (space == LO_SPACE) { DCHECK_EQ(1, reservation->length()); perform_gc = !CanExpandOldGeneration(reservation->at(0).size); } else { for (auto& chunk : *reservation) { AllocationResult allocation; int size = chunk.size; DCHECK_LE(size, MemoryAllocator::PageAreaSize( static_cast<AllocationSpace>(space))); if (space == NEW_SPACE) { allocation = new_space()->AllocateRawUnaligned(size); } else { // The deserializer will update the skip list. allocation = paged_space(space)->AllocateRawUnaligned( size, PagedSpace::IGNORE_SKIP_LIST); } HeapObject* free_space = nullptr; if (allocation.To(&free_space)) { // Mark with a free list node, in case we have a GC before // deserializing. Address free_space_address = free_space->address(); CreateFillerObjectAt(free_space_address, size, ClearRecordedSlots::kNo); DCHECK(space < SerializerDeserializer::kNumberOfPreallocatedSpaces); chunk.start = free_space_address; chunk.end = free_space_address + size; } else { perform_gc = true; break; } } } if (perform_gc) { if (space == NEW_SPACE) { CollectGarbage(NEW_SPACE, "failed to reserve space in the new space"); } else { if (counter > 1) { CollectAllGarbage( kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, "failed to reserve space in paged or large " "object space, trying to reduce memory footprint"); } else { CollectAllGarbage( kAbortIncrementalMarkingMask, "failed to reserve space in paged or large object space"); } } gc_performed = true; break; // Abort for-loop over spaces and retry. } } } return !gc_performed; } void Heap::EnsureFromSpaceIsCommitted() { if (new_space_.CommitFromSpaceIfNeeded()) return; // Committing memory to from space failed. // Memory is exhausted and we will die. V8::FatalProcessOutOfMemory("Committing semi space failed."); } void Heap::ClearNormalizedMapCaches() { if (isolate_->bootstrapper()->IsActive() && !incremental_marking()->IsMarking()) { return; } Object* context = native_contexts_list(); while (!context->IsUndefined(isolate())) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined(isolate())) { NormalizedMapCache::cast(cache)->Clear(); } context = Context::cast(context)->next_context_link(); } } void Heap::UpdateSurvivalStatistics(int start_new_space_size) { if (start_new_space_size == 0) return; promotion_ratio_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(start_new_space_size) * 100); if (previous_semi_space_copied_object_size_ > 0) { promotion_rate_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(previous_semi_space_copied_object_size_) * 100); } else { promotion_rate_ = 0; } semi_space_copied_rate_ = (static_cast<double>(semi_space_copied_object_size_) / static_cast<double>(start_new_space_size) * 100); double survival_rate = promotion_ratio_ + semi_space_copied_rate_; tracer()->AddSurvivalRatio(survival_rate); if (survival_rate > kYoungSurvivalRateHighThreshold) { high_survival_rate_period_length_++; } else { high_survival_rate_period_length_ = 0; } } bool Heap::PerformGarbageCollection( GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) { int freed_global_handles = 0; if (collector != SCAVENGER) { PROFILE(isolate_, CodeMovingGCEvent()); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif GCType gc_type = collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), collector == MARK_COMPACTOR ? GCTracer::Scope::MC_EXTERNAL_PROLOGUE : GCTracer::Scope::SCAVENGER_EXTERNAL_PROLOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); } } EnsureFromSpaceIsCommitted(); int start_new_space_size = Heap::new_space()->SizeAsInt(); if (IsHighSurvivalRate()) { // We speed up the incremental marker if it is running so that it // does not fall behind the rate of promotion, which would cause a // constantly growing old space. incremental_marking()->NotifyOfHighPromotionRate(); } { Heap::PretenuringScope pretenuring_scope(this); if (collector == MARK_COMPACTOR) { UpdateOldGenerationAllocationCounter(); // Perform mark-sweep with optional compaction. MarkCompact(); old_gen_exhausted_ = false; old_generation_size_configured_ = true; // This should be updated before PostGarbageCollectionProcessing, which // can cause another GC. Take into account the objects promoted during GC. old_generation_allocation_counter_ += static_cast<size_t>(promoted_objects_size_); old_generation_size_at_last_gc_ = PromotedSpaceSizeOfObjects(); } else { Scavenge(); } ProcessPretenuringFeedback(); } UpdateSurvivalStatistics(start_new_space_size); ConfigureInitialOldGenerationSize(); isolate_->counters()->objs_since_last_young()->Set(0); gc_post_processing_depth_++; { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::EXTERNAL_WEAK_GLOBAL_HANDLES); freed_global_handles = isolate_->global_handles()->PostGarbageCollectionProcessing( collector, gc_callback_flags); } gc_post_processing_depth_--; isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); double gc_speed = tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond(); double mutator_speed = tracer()->CurrentOldGenerationAllocationThroughputInBytesPerMillisecond(); intptr_t old_gen_size = PromotedSpaceSizeOfObjects(); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. external_memory_at_last_mark_compact_ = external_memory_; external_memory_limit_ = external_memory_ + kExternalAllocationLimit; SetOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } else if (HasLowYoungGenerationAllocationRate() && old_generation_size_configured_) { DampenOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), collector == MARK_COMPACTOR ? GCTracer::Scope::MC_EXTERNAL_EPILOGUE : GCTracer::Scope::SCAVENGER_EXTERNAL_EPILOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(gc_type, gc_callback_flags); } } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif return freed_global_handles > 0; } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_type & gc_prologue_callbacks_[i].gc_type) { if (!gc_prologue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast<v8::GCCallback>( gc_prologue_callbacks_[i].callback); callback(gc_type, flags); } else { v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); } } } if (FLAG_trace_object_groups && (gc_type == kGCTypeIncrementalMarking || gc_type == kGCTypeMarkSweepCompact)) { isolate_->global_handles()->PrintObjectGroups(); } } void Heap::CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags gc_callback_flags) { for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_type & gc_epilogue_callbacks_[i].gc_type) { if (!gc_epilogue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast<v8::GCCallback>( gc_epilogue_callbacks_[i].callback); callback(gc_type, gc_callback_flags); } else { v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); gc_epilogue_callbacks_[i].callback(isolate, gc_type, gc_callback_flags); } } } } void Heap::MarkCompact() { PauseAllocationObserversScope pause_observers(this); gc_state_ = MARK_COMPACT; LOG(isolate_, ResourceEvent("markcompact", "begin")); uint64_t size_of_objects_before_gc = SizeOfObjects(); mark_compact_collector()->Prepare(); ms_count_++; MarkCompactPrologue(); mark_compact_collector()->CollectGarbage(); LOG(isolate_, ResourceEvent("markcompact", "end")); MarkCompactEpilogue(); if (FLAG_allocation_site_pretenuring) { EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); } } void Heap::MarkCompactEpilogue() { gc_state_ = NOT_IN_GC; isolate_->counters()->objs_since_last_full()->Set(0); incremental_marking()->Epilogue(); PreprocessStackTraces(); DCHECK(incremental_marking()->IsStopped()); // We finished a marking cycle. We can uncommit the marking deque until // we start marking again. mark_compact_collector()->marking_deque()->Uninitialize(); mark_compact_collector()->EnsureMarkingDequeIsCommitted( MarkCompactCollector::kMinMarkingDequeSize); } void Heap::MarkCompactPrologue() { // At any old GC clear the keyed lookup cache to enable collection of unused // maps. isolate_->keyed_lookup_cache()->Clear(); isolate_->context_slot_cache()->Clear(); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); isolate_->compilation_cache()->MarkCompactPrologue(); CompletelyClearInstanceofCache(); FlushNumberStringCache(); ClearNormalizedMapCaches(); } #ifdef VERIFY_HEAP // Visitor class to verify pointers in code or data space do not point into // new space. class VerifyNonPointerSpacePointersVisitor : public ObjectVisitor { public: explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {} void VisitPointers(Object** start, Object** end) override { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { CHECK(!heap_->InNewSpace(HeapObject::cast(*current))); } } } private: Heap* heap_; }; static void VerifyNonPointerSpacePointers(Heap* heap) { // Verify that there are no pointers to new space in spaces where we // do not expect them. VerifyNonPointerSpacePointersVisitor v(heap); HeapObjectIterator code_it(heap->code_space()); for (HeapObject* object = code_it.Next(); object != NULL; object = code_it.Next()) object->Iterate(&v); } #endif // VERIFY_HEAP void Heap::CheckNewSpaceExpansionCriteria() { if (FLAG_experimental_new_space_growth_heuristic) { if (new_space_.TotalCapacity() < new_space_.MaximumCapacity() && survived_last_scavenge_ * 100 / new_space_.TotalCapacity() >= 10) { // Grow the size of new space if there is room to grow, and more than 10% // have survived the last scavenge. new_space_.Grow(); survived_since_last_expansion_ = 0; } } else if (new_space_.TotalCapacity() < new_space_.MaximumCapacity() && survived_since_last_expansion_ > new_space_.TotalCapacity()) { // Grow the size of new space if there is room to grow, and enough data // has survived scavenge since the last expansion. new_space_.Grow(); survived_since_last_expansion_ = 0; } } static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { return heap->InNewSpace(*p) && !HeapObject::cast(*p)->map_word().IsForwardingAddress(); } static bool IsUnmodifiedHeapObject(Object** p) { Object* object = *p; if (object->IsSmi()) return false; HeapObject* heap_object = HeapObject::cast(object); if (!object->IsJSObject()) return false; JSObject* js_object = JSObject::cast(object); if (!js_object->WasConstructedFromApiFunction()) return false; JSFunction* constructor = JSFunction::cast(js_object->map()->GetConstructor()); return constructor->initial_map() == heap_object->map(); } void PromotionQueue::Initialize() { // The last to-space page may be used for promotion queue. On promotion // conflict, we use the emergency stack. DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize) == 0); front_ = rear_ = reinterpret_cast<struct Entry*>(heap_->new_space()->ToSpaceEnd()); limit_ = reinterpret_cast<struct Entry*>( Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_)) ->area_start()); emergency_stack_ = NULL; } void PromotionQueue::RelocateQueueHead() { DCHECK(emergency_stack_ == NULL); Page* p = Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_)); struct Entry* head_start = rear_; struct Entry* head_end = Min(front_, reinterpret_cast<struct Entry*>(p->area_end())); int entries_count = static_cast<int>(head_end - head_start) / sizeof(struct Entry); emergency_stack_ = new List<Entry>(2 * entries_count); while (head_start != head_end) { struct Entry* entry = head_start++; // New space allocation in SemiSpaceCopyObject marked the region // overlapping with promotion queue as uninitialized. MSAN_MEMORY_IS_INITIALIZED(entry, sizeof(struct Entry)); emergency_stack_->Add(*entry); } rear_ = head_end; } class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) {} virtual Object* RetainAs(Object* object) { if (!heap_->InFromSpace(object)) { return object; } MapWord map_word = HeapObject::cast(object)->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return NULL; } private: Heap* heap_; }; void Heap::Scavenge() { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE); RelocationLock relocation_lock(this); // There are soft limits in the allocation code, designed to trigger a mark // sweep collection by failing allocations. There is no sense in trying to // trigger one during scavenge: scavenges allocation should always succeed. AlwaysAllocateScope scope(isolate()); // Bump-pointer allocations done during scavenge are not real allocations. // Pause the inline allocation steps. PauseAllocationObserversScope pause_observers(this); mark_compact_collector()->sweeper().EnsureNewSpaceCompleted(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this); #endif gc_state_ = SCAVENGE; // Implements Cheney's copying algorithm LOG(isolate_, ResourceEvent("scavenge", "begin")); // Used for updating survived_since_last_expansion_ at function end. intptr_t survived_watermark = PromotedSpaceSizeOfObjects(); scavenge_collector_->SelectScavengingVisitorsTable(); if (UsingEmbedderHeapTracer()) { // Register found wrappers with embedder so it can add them to its marking // deque and correctly manage the case when v8 scavenger collects the // wrappers by either keeping wrappables alive, or cleaning marking deque. mark_compact_collector()->RegisterWrappersWithEmbedderHeapTracer(); } // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_.Flip(); new_space_.ResetAllocationInfo(); // We need to sweep newly copied objects which can be either in the // to space or promoted to the old generation. For to-space // objects, we treat the bottom of the to space as a queue. Newly // copied and unswept objects lie between a 'front' mark and the // allocation pointer. // // Promoted objects can go into various old-generation spaces, and // can be allocated internally in the spaces (from the free list). // We treat the top of the to space as a queue of addresses of // promoted objects. The addresses of newly promoted and unswept // objects lie between a 'front' mark and a 'rear' mark that is // updated as a side effect of promoting an object. // // There is guaranteed to be enough room at the top of the to space // for the addresses of promoted objects: every object promoted // frees up its size in bytes from the top of the new space, and // objects are at least one pointer in size. Address new_space_front = new_space_.ToSpaceStart(); promotion_queue_.Initialize(); PromotionMode promotion_mode = CurrentPromotionMode(); ScavengeVisitor scavenge_visitor(this); if (FLAG_scavenge_reclaim_unmodified_objects) { isolate()->global_handles()->IdentifyWeakUnmodifiedObjects( &IsUnmodifiedHeapObject); } { // Copy roots. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_ROOTS); IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); } { // Copy objects reachable from the old generation. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_OLD_TO_NEW_POINTERS); RememberedSet<OLD_TO_NEW>::Iterate(this, [this](Address addr) { return Scavenger::CheckAndScavengeObject(this, addr); }); RememberedSet<OLD_TO_NEW>::IterateTyped( this, [this](SlotType type, Address host_addr, Address addr) { return UpdateTypedSlotHelper::UpdateTypedSlot( isolate(), type, addr, [this](Object** addr) { // We expect that objects referenced by code are long living. // If we do not force promotion, then we need to clear // old_to_new slots in dead code objects after mark-compact. return Scavenger::CheckAndScavengeObject( this, reinterpret_cast<Address>(addr)); }); }); } { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_WEAK); // Copy objects reachable from the encountered weak collections list. scavenge_visitor.VisitPointer(&encountered_weak_collections_); // Copy objects reachable from the encountered weak cells. scavenge_visitor.VisitPointer(&encountered_weak_cells_); } { // Copy objects reachable from the code flushing candidates list. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_CODE_FLUSH_CANDIDATES); MarkCompactCollector* collector = mark_compact_collector(); if (collector->is_code_flushing_enabled()) { collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor); } } { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SEMISPACE); new_space_front = DoScavenge(&scavenge_visitor, new_space_front, promotion_mode); } if (FLAG_scavenge_reclaim_unmodified_objects) { isolate()->global_handles()->MarkNewSpaceWeakUnmodifiedObjectsPending( &IsUnscavengedHeapObject); isolate()->global_handles()->IterateNewSpaceWeakUnmodifiedRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front, promotion_mode); } else { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_OBJECT_GROUPS); while (isolate()->global_handles()->IterateObjectGroups( &scavenge_visitor, &IsUnscavengedHeapObject)) { new_space_front = DoScavenge(&scavenge_visitor, new_space_front, promotion_mode); } isolate()->global_handles()->RemoveObjectGroups(); isolate()->global_handles()->RemoveImplicitRefGroups(); isolate()->global_handles()->IdentifyNewSpaceWeakIndependentHandles( &IsUnscavengedHeapObject); isolate()->global_handles()->IterateNewSpaceWeakIndependentRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front, promotion_mode); } UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); promotion_queue_.Destroy(); incremental_marking()->UpdateMarkingDequeAfterScavenge(); ScavengeWeakObjectRetainer weak_object_retainer(this); ProcessYoungWeakReferences(&weak_object_retainer); DCHECK(new_space_front == new_space_.top()); // Set age mark. new_space_.set_age_mark(new_space_.top()); ArrayBufferTracker::FreeDeadInNewSpace(this); // Update how much has survived scavenge. IncrementYoungSurvivorsCounter(static_cast<int>( (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size())); LOG(isolate_, ResourceEvent("scavenge", "end")); gc_state_ = NOT_IN_GC; } String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord first_word = HeapObject::cast(*p)->map_word(); if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. heap->FinalizeExternalString(String::cast(*p)); return NULL; } // String is still reachable. return String::cast(first_word.ToForwardingAddress()); } void Heap::UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { if (external_string_table_.new_space_strings_.is_empty()) return; Object** start = &external_string_table_.new_space_strings_[0]; Object** end = start + external_string_table_.new_space_strings_.length(); Object** last = start; for (Object** p = start; p < end; ++p) { String* target = updater_func(this, p); if (target == NULL) continue; DCHECK(target->IsExternalString()); if (InNewSpace(target)) { // String is still in new space. Update the table entry. *last = target; ++last; } else { // String got promoted. Move it to the old string list. external_string_table_.AddOldString(target); } } DCHECK(last <= end); external_string_table_.ShrinkNewStrings(static_cast<int>(last - start)); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { // Update old space string references. if (external_string_table_.old_space_strings_.length() > 0) { Object** start = &external_string_table_.old_space_strings_[0]; Object** end = start + external_string_table_.old_space_strings_.length(); for (Object** p = start; p < end; ++p) *p = updater_func(this, p); } UpdateNewSpaceReferencesInExternalStringTable(updater_func); } void Heap::ProcessAllWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); ProcessAllocationSites(retainer); } void Heap::ProcessYoungWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { Object* head = VisitWeakList<Context>(this, native_contexts_list(), retainer); // Update the head of the list of contexts. set_native_contexts_list(head); } void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { Object* allocation_site_obj = VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer); set_allocation_sites_list(allocation_site_obj); } void Heap::ProcessWeakListRoots(WeakObjectRetainer* retainer) { set_native_contexts_list(retainer->RetainAs(native_contexts_list())); set_allocation_sites_list(retainer->RetainAs(allocation_sites_list())); } void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) { DisallowHeapAllocation no_allocation_scope; Object* cur = allocation_sites_list(); bool marked = false; while (cur->IsAllocationSite()) { AllocationSite* casted = AllocationSite::cast(cur); if (casted->GetPretenureMode() == flag) { casted->ResetPretenureDecision(); casted->set_deopt_dependent_code(true); marked = true; RemoveAllocationSitePretenuringFeedback(casted); } cur = casted->weak_next(); } if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } void Heap::EvaluateOldSpaceLocalPretenuring( uint64_t size_of_objects_before_gc) { uint64_t size_of_objects_after_gc = SizeOfObjects(); double old_generation_survival_rate = (static_cast<double>(size_of_objects_after_gc) * 100) / static_cast<double>(size_of_objects_before_gc); if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { // Too many objects died in the old generation, pretenuring of wrong // allocation sites may be the cause for that. We have to deopt all // dependent code registered in the allocation sites to re-evaluate // our pretenuring decisions. ResetAllAllocationSitesDependentCode(TENURED); if (FLAG_trace_pretenuring) { PrintF( "Deopt all allocation sites dependent code due to low survival " "rate in the old generation %f\n", old_generation_survival_rate); } } } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowHeapAllocation no_allocation; // All external strings are listed in the external string table. class ExternalStringTableVisitorAdapter : public ObjectVisitor { public: explicit ExternalStringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { DCHECK((*p)->IsExternalString()); visitor_->VisitExternalString( Utils::ToLocal(Handle<String>(String::cast(*p)))); } } private: v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(visitor); external_string_table_.Iterate(&external_string_table_visitor); } Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front, PromotionMode promotion_mode) { do { SemiSpace::AssertValidRange(new_space_front, new_space_.top()); // The addresses new_space_front and new_space_.top() define a // queue of unprocessed copied objects. Process them until the // queue is empty. while (new_space_front != new_space_.top()) { if (!Page::IsAlignedToPageSize(new_space_front)) { HeapObject* object = HeapObject::FromAddress(new_space_front); if (promotion_mode == PROMOTE_MARKED) { new_space_front += StaticScavengeVisitor<PROMOTE_MARKED>::IterateBody( object->map(), object); } else { new_space_front += StaticScavengeVisitor<DEFAULT_PROMOTION>::IterateBody( object->map(), object); } } else { new_space_front = Page::FromAllocationAreaAddress(new_space_front) ->next_page() ->area_start(); } } // Promote and process all the to-be-promoted objects. { while (!promotion_queue()->is_empty()) { HeapObject* target; int32_t size; bool was_marked_black; promotion_queue()->remove(&target, &size, &was_marked_black); // Promoted object might be already partially visited // during old space pointer iteration. Thus we search specifically // for pointers to from semispace instead of looking for pointers // to new space. DCHECK(!target->IsMap()); IteratePromotedObject(target, static_cast<int>(size), was_marked_black, &Scavenger::ScavengeObject); } } // Take another spin if there are now unswept objects in new space // (there are currently no more unswept promoted objects). } while (new_space_front != new_space_.top()); return new_space_front; } STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0); // NOLINT STATIC_ASSERT((FixedTypedArrayBase::kDataOffset & kDoubleAlignmentMask) == 0); // NOLINT #ifdef V8_HOST_ARCH_32_BIT STATIC_ASSERT((HeapNumber::kValueOffset & kDoubleAlignmentMask) != 0); // NOLINT #endif int Heap::GetMaximumFillToAlign(AllocationAlignment alignment) { switch (alignment) { case kWordAligned: return 0; case kDoubleAligned: case kDoubleUnaligned: return kDoubleSize - kPointerSize; case kSimd128Unaligned: return kSimd128Size - kPointerSize; default: UNREACHABLE(); } return 0; } int Heap::GetFillToAlign(Address address, AllocationAlignment alignment) { intptr_t offset = OffsetFrom(address); if (alignment == kDoubleAligned && (offset & kDoubleAlignmentMask) != 0) return kPointerSize; if (alignment == kDoubleUnaligned && (offset & kDoubleAlignmentMask) == 0) return kDoubleSize - kPointerSize; // No fill if double is always aligned. if (alignment == kSimd128Unaligned) { return (kSimd128Size - (static_cast<int>(offset) + kPointerSize)) & kSimd128AlignmentMask; } return 0; } HeapObject* Heap::PrecedeWithFiller(HeapObject* object, int filler_size) { CreateFillerObjectAt(object->address(), filler_size, ClearRecordedSlots::kNo); return HeapObject::FromAddress(object->address() + filler_size); } HeapObject* Heap::AlignWithFiller(HeapObject* object, int object_size, int allocation_size, AllocationAlignment alignment) { int filler_size = allocation_size - object_size; DCHECK(filler_size > 0); int pre_filler = GetFillToAlign(object->address(), alignment); if (pre_filler) { object = PrecedeWithFiller(object, pre_filler); filler_size -= pre_filler; } if (filler_size) CreateFillerObjectAt(object->address() + object_size, filler_size, ClearRecordedSlots::kNo); return object; } HeapObject* Heap::DoubleAlignForDeserialization(HeapObject* object, int size) { return AlignWithFiller(object, size - kPointerSize, size, kDoubleAligned); } void Heap::RegisterNewArrayBuffer(JSArrayBuffer* buffer) { ArrayBufferTracker::RegisterNew(this, buffer); } void Heap::UnregisterArrayBuffer(JSArrayBuffer* buffer) { ArrayBufferTracker::Unregister(this, buffer); } void Heap::ConfigureInitialOldGenerationSize() { if (!old_generation_size_configured_ && tracer()->SurvivalEventsRecorded()) { old_generation_allocation_limit_ = Max(kMinimumOldGenerationAllocationLimit, static_cast<intptr_t>( static_cast<double>(old_generation_allocation_limit_) * (tracer()->AverageSurvivalRatio() / 100))); } } AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; // Map::cast cannot be used due to uninitialized map field. reinterpret_cast<Map*>(result)->set_map( reinterpret_cast<Map*>(root(kMetaMapRootIndex))); reinterpret_cast<Map*>(result)->set_instance_type(instance_type); reinterpret_cast<Map*>(result)->set_instance_size(instance_size); // Initialize to only containing tagged fields. reinterpret_cast<Map*>(result)->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size, false)); if (FLAG_unbox_double_fields) { reinterpret_cast<Map*>(result) ->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } reinterpret_cast<Map*>(result)->clear_unused(); reinterpret_cast<Map*>(result) ->set_inobject_properties_or_constructor_function_index(0); reinterpret_cast<Map*>(result)->set_unused_property_fields(0); reinterpret_cast<Map*>(result)->set_bit_field(0); reinterpret_cast<Map*>(result)->set_bit_field2(0); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3); reinterpret_cast<Map*>(result)->set_weak_cell_cache(Smi::FromInt(0)); return result; } AllocationResult Heap::AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind) { HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; isolate()->counters()->maps_created()->Increment(); result->set_map_no_write_barrier(meta_map()); Map* map = Map::cast(result); map->set_instance_type(instance_type); map->set_prototype(null_value(), SKIP_WRITE_BARRIER); map->set_constructor_or_backpointer(null_value(), SKIP_WRITE_BARRIER); map->set_instance_size(instance_size); map->clear_unused(); map->set_inobject_properties_or_constructor_function_index(0); map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); map->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); map->set_weak_cell_cache(Smi::FromInt(0)); map->set_raw_transitions(Smi::FromInt(0)); map->set_unused_property_fields(0); map->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // Must be called only after |instance_type|, |instance_size| and // |layout_descriptor| are set. map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map)); map->set_bit_field(0); map->set_bit_field2(1 << Map::kIsExtensible); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); map->set_bit_field3(bit_field3); map->set_elements_kind(elements_kind); map->set_new_target_is_base(true); return map; } AllocationResult Heap::AllocateFillerObject(int size, bool double_align, AllocationSpace space) { HeapObject* obj = nullptr; { AllocationAlignment align = double_align ? kDoubleAligned : kWordAligned; AllocationResult allocation = AllocateRaw(size, space, align); if (!allocation.To(&obj)) return allocation; } #ifdef DEBUG MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(chunk->owner()->identity() == space); #endif CreateFillerObjectAt(obj->address(), size, ClearRecordedSlots::kNo); return obj; } const Heap::StringTypeTable Heap::string_type_table[] = { #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ { type, size, k##camel_name##MapRootIndex } \ , STRING_TYPE_LIST(STRING_TYPE_ELEMENT) #undef STRING_TYPE_ELEMENT }; const Heap::ConstantStringTable Heap::constant_string_table[] = { {"", kempty_stringRootIndex}, #define CONSTANT_STRING_ELEMENT(name, contents) \ { contents, k##name##RootIndex } \ , INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) #undef CONSTANT_STRING_ELEMENT }; const Heap::StructTable Heap::struct_table[] = { #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex } \ , STRUCT_LIST(STRUCT_TABLE_ELEMENT) #undef STRUCT_TABLE_ELEMENT }; namespace { void FinalizePartialMap(Heap* heap, Map* map) { map->set_code_cache(heap->empty_fixed_array()); map->set_dependent_code(DependentCode::cast(heap->empty_fixed_array())); map->set_raw_transitions(Smi::FromInt(0)); map->set_instance_descriptors(heap->empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } map->set_prototype(heap->null_value()); map->set_constructor_or_backpointer(heap->null_value()); } } // namespace bool Heap::CreateInitialMaps() { HeapObject* obj = nullptr; { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize); if (!allocation.To(&obj)) return false; } // Map::cast cannot be used due to uninitialized map field. Map* new_meta_map = reinterpret_cast<Map*>(obj); set_meta_map(new_meta_map); new_meta_map->set_map(new_meta_map); { // Partial map allocation #define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \ set_##field_name##_map(map); \ } ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array); fixed_array_map()->set_elements_kind(FAST_HOLEY_ELEMENTS); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole); #undef ALLOCATE_PARTIAL_MAP } // Allocate the empty array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_fixed_array(FixedArray::cast(obj)); { AllocationResult allocation = Allocate(null_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_null_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kNull); { AllocationResult allocation = Allocate(undefined_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_undefined_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kUndefined); DCHECK(!InNewSpace(undefined_value())); { AllocationResult allocation = Allocate(the_hole_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_the_hole_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kTheHole); // Set preliminary exception sentinel value before actually initializing it. set_exception(null_value()); // Allocate the empty descriptor array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_descriptor_array(DescriptorArray::cast(obj)); // Fix the instance_descriptors for the existing maps. FinalizePartialMap(this, meta_map()); FinalizePartialMap(this, fixed_array_map()); FinalizePartialMap(this, undefined_map()); undefined_map()->set_is_undetectable(); FinalizePartialMap(this, null_map()); null_map()->set_is_undetectable(); FinalizePartialMap(this, the_hole_map()); { // Map allocation #define ALLOCATE_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocateMap((instance_type), size).To(&map)) return false; \ set_##field_name##_map(map); \ } #define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \ ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name) #define ALLOCATE_PRIMITIVE_MAP(instance_type, size, field_name, \ constructor_function_index) \ { \ ALLOCATE_MAP((instance_type), (size), field_name); \ field_name##_map()->SetConstructorFunctionIndex( \ (constructor_function_index)); \ } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array) fixed_cow_array_map()->set_elements_kind(FAST_HOLEY_ELEMENTS); DCHECK_NE(fixed_array_map(), fixed_cow_array_map()); ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info) ALLOCATE_PRIMITIVE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number, Context::NUMBER_FUNCTION_INDEX) ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number) ALLOCATE_PRIMITIVE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol, Context::SYMBOL_FUNCTION_INDEX) #define ALLOCATE_SIMD128_MAP(TYPE, Type, type, lane_count, lane_type) \ ALLOCATE_PRIMITIVE_MAP(SIMD128_VALUE_TYPE, Type::kSize, type, \ Context::TYPE##_FUNCTION_INDEX) SIMD128_TYPES(ALLOCATE_SIMD128_MAP) #undef ALLOCATE_SIMD128_MAP ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign) ALLOCATE_PRIMITIVE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean, Context::BOOLEAN_FUNCTION_INDEX); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, optimized_out); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, stale_register); for (unsigned i = 0; i < arraysize(string_type_table); i++) { const StringTypeTable& entry = string_type_table[i]; { AllocationResult allocation = AllocateMap(entry.type, entry.size); if (!allocation.To(&obj)) return false; } Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); // Mark cons string maps as unstable, because their objects can change // maps during GC. if (StringShape(entry.type).IsCons()) map->mark_unstable(); roots_[entry.index] = map; } { // Create a separate external one byte string map for native sources. AllocationResult allocation = AllocateMap(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize); if (!allocation.To(&obj)) return false; Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); set_native_source_string_map(map); } ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array) fixed_double_array_map()->set_elements_kind(FAST_HOLEY_DOUBLE_ELEMENTS); ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array) ALLOCATE_VARSIZE_MAP(BYTECODE_ARRAY_TYPE, bytecode_array) ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space) #define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \ ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array) TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP) #undef ALLOCATE_FIXED_TYPED_ARRAY_MAP ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements) ALLOCATE_VARSIZE_MAP(CODE_TYPE, code) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell) ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell) ALLOCATE_MAP(WEAK_CELL_TYPE, WeakCell::kSize, weak_cell) ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler) ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler) ALLOCATE_VARSIZE_MAP(TRANSITION_ARRAY_TYPE, transition_array) for (unsigned i = 0; i < arraysize(struct_table); i++) { const StructTable& entry = struct_table[i]; Map* map; if (!AllocateMap(entry.type, entry.size).To(&map)) return false; roots_[entry.index] = map; } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, debug_evaluate_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context) native_context_map()->set_dictionary_map(true); native_context_map()->set_visitor_id( StaticVisitorBase::kVisitNativeContext); ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize, shared_function_info) ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object) ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external) external_map()->set_is_extensible(false); #undef ALLOCATE_PRIMITIVE_MAP #undef ALLOCATE_VARSIZE_MAP #undef ALLOCATE_MAP } { AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_true_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kTrue); { AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_false_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kFalse); { // Empty arrays { ByteArray* byte_array; if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false; set_empty_byte_array(byte_array); } #define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ { \ FixedTypedArrayBase* obj; \ if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \ return false; \ set_empty_fixed_##type##_array(obj); \ } TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY) #undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY } DCHECK(!InNewSpace(empty_fixed_array())); return true; } AllocationResult Heap::AllocateHeapNumber(double value, MutableMode mode, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. int size = HeapNumber::kSize; STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space, kDoubleUnaligned); if (!allocation.To(&result)) return allocation; } Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); HeapObject::cast(result)->set_map_no_write_barrier(map); HeapNumber::cast(result)->set_value(value); return result; } #define SIMD_ALLOCATE_DEFINITION(TYPE, Type, type, lane_count, lane_type) \ AllocationResult Heap::Allocate##Type(lane_type lanes[lane_count], \ PretenureFlag pretenure) { \ int size = Type::kSize; \ STATIC_ASSERT(Type::kSize <= Page::kMaxRegularHeapObjectSize); \ \ AllocationSpace space = SelectSpace(pretenure); \ \ HeapObject* result = nullptr; \ { \ AllocationResult allocation = \ AllocateRaw(size, space, kSimd128Unaligned); \ if (!allocation.To(&result)) return allocation; \ } \ \ result->set_map_no_write_barrier(type##_map()); \ Type* instance = Type::cast(result); \ for (int i = 0; i < lane_count; i++) { \ instance->set_lane(i, lanes[i]); \ } \ return result; \ } SIMD128_TYPES(SIMD_ALLOCATE_DEFINITION) #undef SIMD_ALLOCATE_DEFINITION AllocationResult Heap::AllocateCell(Object* value) { int size = Cell::kSize; STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(cell_map()); Cell::cast(result)->set_value(value); return result; } AllocationResult Heap::AllocatePropertyCell() { int size = PropertyCell::kSize; STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(global_property_cell_map()); PropertyCell* cell = PropertyCell::cast(result); cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); cell->set_property_details(PropertyDetails(Smi::FromInt(0))); cell->set_value(the_hole_value()); return result; } AllocationResult Heap::AllocateWeakCell(HeapObject* value) { int size = WeakCell::kSize; STATIC_ASSERT(WeakCell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(weak_cell_map()); WeakCell::cast(result)->initialize(value); WeakCell::cast(result)->clear_next(the_hole_value()); return result; } AllocationResult Heap::AllocateTransitionArray(int capacity) { DCHECK(capacity > 0); HeapObject* raw_array = nullptr; { AllocationResult allocation = AllocateRawFixedArray(capacity, TENURED); if (!allocation.To(&raw_array)) return allocation; } raw_array->set_map_no_write_barrier(transition_array_map()); TransitionArray* array = TransitionArray::cast(raw_array); array->set_length(capacity); MemsetPointer(array->data_start(), undefined_value(), capacity); // Transition arrays are tenured. When black allocation is on we have to // add the transition array to the list of encountered_transition_arrays. if (incremental_marking()->black_allocation()) { array->set_next_link(encountered_transition_arrays(), UPDATE_WEAK_WRITE_BARRIER); set_encountered_transition_arrays(array); } else { array->set_next_link(undefined_value(), SKIP_WRITE_BARRIER); } return array; } void Heap::CreateApiObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); Handle<Map> new_neander_map = factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); // Don't use Smi-only elements optimizations for objects with the neander // map. There are too many cases where element values are set directly with a // bottleneck to trap the Smi-only -> fast elements transition, and there // appears to be no benefit for optimize this case. new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND); set_neander_map(*new_neander_map); Handle<JSObject> listeners = factory->NewNeanderObject(); Handle<FixedArray> elements = factory->NewFixedArray(2); elements->set(0, Smi::FromInt(0)); listeners->set_elements(*elements); set_message_listeners(*listeners); } void Heap::CreateJSEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY); set_js_entry_code(*stub.GetCode()); } void Heap::CreateJSConstructEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY_CONSTRUCT); set_js_construct_entry_code(*stub.GetCode()); } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope(isolate()); // Create stubs that should be there, so we don't unexpectedly have to // create them if we need them during the creation of another stub. // Stub creation mixes raw pointers and handles in an unsafe manner so // we cannot create stubs while we are creating stubs. CodeStub::GenerateStubsAheadOfTime(isolate()); // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub // is created. // gcc-4.4 has problem generating correct code of following snippet: // { JSEntryStub stub; // js_entry_code_ = *stub.GetCode(); // } // { JSConstructEntryStub stub; // js_construct_entry_code_ = *stub.GetCode(); // } // To workaround the problem, make separate functions without inlining. Heap::CreateJSEntryStub(); Heap::CreateJSConstructEntryStub(); } void Heap::CreateInitialObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); // The -0 value must be set before NewNumber works. set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED)); DCHECK(std::signbit(minus_zero_value()->Number()) != 0); set_nan_value(*factory->NewHeapNumber( std::numeric_limits<double>::quiet_NaN(), IMMUTABLE, TENURED)); set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED)); set_minus_infinity_value( *factory->NewHeapNumber(-V8_INFINITY, IMMUTABLE, TENURED)); // Allocate initial string table. set_string_table(*StringTable::New(isolate(), kInitialStringTableSize)); // Allocate // Finish initializing oddballs after creating the string table. Oddball::Initialize(isolate(), factory->undefined_value(), "undefined", factory->nan_value(), false, "undefined", Oddball::kUndefined); // Initialize the null_value. Oddball::Initialize(isolate(), factory->null_value(), "null", handle(Smi::FromInt(0), isolate()), false, "object", Oddball::kNull); // Initialize the_hole_value. Oddball::Initialize(isolate(), factory->the_hole_value(), "hole", handle(Smi::FromInt(-1), isolate()), false, "undefined", Oddball::kTheHole); // Initialize the true_value. Oddball::Initialize(isolate(), factory->true_value(), "true", handle(Smi::FromInt(1), isolate()), true, "boolean", Oddball::kTrue); // Initialize the false_value. Oddball::Initialize(isolate(), factory->false_value(), "false", handle(Smi::FromInt(0), isolate()), false, "boolean", Oddball::kFalse); set_uninitialized_value( *factory->NewOddball(factory->uninitialized_map(), "uninitialized", handle(Smi::FromInt(-1), isolate()), false, "undefined", Oddball::kUninitialized)); set_arguments_marker( *factory->NewOddball(factory->arguments_marker_map(), "arguments_marker", handle(Smi::FromInt(-4), isolate()), false, "undefined", Oddball::kArgumentsMarker)); set_no_interceptor_result_sentinel(*factory->NewOddball( factory->no_interceptor_result_sentinel_map(), "no_interceptor_result_sentinel", handle(Smi::FromInt(-2), isolate()), false, "undefined", Oddball::kOther)); set_termination_exception(*factory->NewOddball( factory->termination_exception_map(), "termination_exception", handle(Smi::FromInt(-3), isolate()), false, "undefined", Oddball::kOther)); set_exception(*factory->NewOddball(factory->exception_map(), "exception", handle(Smi::FromInt(-5), isolate()), false, "undefined", Oddball::kException)); set_optimized_out( *factory->NewOddball(factory->optimized_out_map(), "optimized_out", handle(Smi::FromInt(-6), isolate()), false, "undefined", Oddball::kOptimizedOut)); set_stale_register( *factory->NewOddball(factory->stale_register_map(), "stale_register", handle(Smi::FromInt(-7), isolate()), false, "undefined", Oddball::kStaleRegister)); for (unsigned i = 0; i < arraysize(constant_string_table); i++) { Handle<String> str = factory->InternalizeUtf8String(constant_string_table[i].contents); roots_[constant_string_table[i].index] = *str; } // Create the code_stubs dictionary. The initial size is set to avoid // expanding the dictionary during bootstrapping. set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128)); set_instanceof_cache_function(Smi::FromInt(0)); set_instanceof_cache_map(Smi::FromInt(0)); set_instanceof_cache_answer(Smi::FromInt(0)); { HandleScope scope(isolate()); #define SYMBOL_INIT(name) \ { \ Handle<String> name##d = factory->NewStringFromStaticChars(#name); \ Handle<Symbol> symbol(isolate()->factory()->NewPrivateSymbol()); \ symbol->set_name(*name##d); \ roots_[k##name##RootIndex] = *symbol; \ } PRIVATE_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } { HandleScope scope(isolate()); #define SYMBOL_INIT(name, description) \ Handle<Symbol> name = factory->NewSymbol(); \ Handle<String> name##d = factory->NewStringFromStaticChars(#description); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; PUBLIC_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT #define SYMBOL_INIT(name, description) \ Handle<Symbol> name = factory->NewSymbol(); \ Handle<String> name##d = factory->NewStringFromStaticChars(#description); \ name->set_is_well_known_symbol(true); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; WELL_KNOWN_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } // Allocate the dictionary of intrinsic function names. Handle<NameDictionary> intrinsic_names = NameDictionary::New(isolate(), Runtime::kNumFunctions, TENURED); Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names); set_intrinsic_function_names(*intrinsic_names); Handle<NameDictionary> empty_properties_dictionary = NameDictionary::New(isolate(), 0, TENURED); empty_properties_dictionary->SetRequiresCopyOnCapacityChange(); set_empty_properties_dictionary(*empty_properties_dictionary); set_number_string_cache( *factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED)); // Allocate cache for single character one byte strings. set_single_character_string_cache( *factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED)); // Allocate cache for string split and regexp-multiple. set_string_split_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); set_regexp_multiple_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); // Allocate cache for external strings pointing to native source code. set_natives_source_cache( *factory->NewFixedArray(Natives::GetBuiltinsCount())); set_experimental_natives_source_cache( *factory->NewFixedArray(ExperimentalNatives::GetBuiltinsCount())); set_extra_natives_source_cache( *factory->NewFixedArray(ExtraNatives::GetBuiltinsCount())); set_experimental_extra_natives_source_cache( *factory->NewFixedArray(ExperimentalExtraNatives::GetBuiltinsCount())); set_undefined_cell(*factory->NewCell(factory->undefined_value())); // The symbol registry is initialized lazily. set_symbol_registry(Smi::FromInt(0)); // Microtask queue uses the empty fixed array as a sentinel for "empty". // Number of queued microtasks stored in Isolate::pending_microtask_count(). set_microtask_queue(empty_fixed_array()); { StaticFeedbackVectorSpec spec; FeedbackVectorSlot load_ic_slot = spec.AddLoadICSlot(); FeedbackVectorSlot keyed_load_ic_slot = spec.AddKeyedLoadICSlot(); FeedbackVectorSlot store_ic_slot = spec.AddStoreICSlot(); FeedbackVectorSlot keyed_store_ic_slot = spec.AddKeyedStoreICSlot(); DCHECK_EQ(load_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyLoadICSlot)); DCHECK_EQ(keyed_load_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot)); DCHECK_EQ(store_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyStoreICSlot)); DCHECK_EQ(keyed_store_ic_slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot)); Handle<TypeFeedbackMetadata> dummy_metadata = TypeFeedbackMetadata::New(isolate(), &spec); Handle<TypeFeedbackVector> dummy_vector = TypeFeedbackVector::New(isolate(), dummy_metadata); Object* megamorphic = *TypeFeedbackVector::MegamorphicSentinel(isolate()); dummy_vector->Set(load_ic_slot, megamorphic, SKIP_WRITE_BARRIER); dummy_vector->Set(keyed_load_ic_slot, megamorphic, SKIP_WRITE_BARRIER); dummy_vector->Set(store_ic_slot, megamorphic, SKIP_WRITE_BARRIER); dummy_vector->Set(keyed_store_ic_slot, megamorphic, SKIP_WRITE_BARRIER); set_dummy_vector(*dummy_vector); } { Handle<FixedArray> empty_literals_array = factory->NewFixedArray(1, TENURED); empty_literals_array->set(0, *factory->empty_fixed_array()); set_empty_literals_array(*empty_literals_array); } { Handle<FixedArray> empty_sloppy_arguments_elements = factory->NewFixedArray(2, TENURED); empty_sloppy_arguments_elements->set_map(sloppy_arguments_elements_map()); set_empty_sloppy_arguments_elements(*empty_sloppy_arguments_elements); } { Handle<WeakCell> cell = factory->NewWeakCell(factory->undefined_value()); set_empty_weak_cell(*cell); cell->clear(); Handle<FixedArray> cleared_optimized_code_map = factory->NewFixedArray(SharedFunctionInfo::kEntriesStart, TENURED); cleared_optimized_code_map->set(SharedFunctionInfo::kSharedCodeIndex, *cell); STATIC_ASSERT(SharedFunctionInfo::kEntriesStart == 1 && SharedFunctionInfo::kSharedCodeIndex == 0); set_cleared_optimized_code_map(*cleared_optimized_code_map); } set_detached_contexts(empty_fixed_array()); set_retained_maps(ArrayList::cast(empty_fixed_array())); set_weak_object_to_code_table( *WeakHashTable::New(isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED)); set_script_list(Smi::FromInt(0)); Handle<SeededNumberDictionary> slow_element_dictionary = SeededNumberDictionary::New(isolate(), 0, TENURED); slow_element_dictionary->set_requires_slow_elements(); set_empty_slow_element_dictionary(*slow_element_dictionary); set_materialized_objects(*factory->NewFixedArray(0, TENURED)); // Handling of script id generation is in Heap::NextScriptId(). set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId)); set_next_template_serial_number(Smi::FromInt(0)); // Allocate the empty script. Handle<Script> script = factory->NewScript(factory->empty_string()); script->set_type(Script::TYPE_NATIVE); set_empty_script(*script); Handle<PropertyCell> cell = factory->NewPropertyCell(); cell->set_value(Smi::FromInt(Isolate::kArrayProtectorValid)); set_array_protector(*cell); cell = factory->NewPropertyCell(); cell->set_value(the_hole_value()); set_empty_property_cell(*cell); cell = factory->NewPropertyCell(); cell->set_value(Smi::FromInt(Isolate::kArrayProtectorValid)); set_has_instance_protector(*cell); Handle<Cell> is_concat_spreadable_cell = factory->NewCell( handle(Smi::FromInt(Isolate::kArrayProtectorValid), isolate())); set_is_concat_spreadable_protector(*is_concat_spreadable_cell); Handle<Cell> species_cell = factory->NewCell( handle(Smi::FromInt(Isolate::kArrayProtectorValid), isolate())); set_species_protector(*species_cell); set_serialized_templates(empty_fixed_array()); set_weak_stack_trace_list(Smi::FromInt(0)); set_noscript_shared_function_infos(Smi::FromInt(0)); // Initialize keyed lookup cache. isolate_->keyed_lookup_cache()->Clear(); // Initialize context slot cache. isolate_->context_slot_cache()->Clear(); // Initialize descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Initialize compilation cache. isolate_->compilation_cache()->Clear(); CreateFixedStubs(); } bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) { switch (root_index) { case kNumberStringCacheRootIndex: case kInstanceofCacheFunctionRootIndex: case kInstanceofCacheMapRootIndex: case kInstanceofCacheAnswerRootIndex: case kCodeStubsRootIndex: case kEmptyScriptRootIndex: case kSymbolRegistryRootIndex: case kScriptListRootIndex: case kMaterializedObjectsRootIndex: case kMicrotaskQueueRootIndex: case kDetachedContextsRootIndex: case kWeakObjectToCodeTableRootIndex: case kRetainedMapsRootIndex: case kNoScriptSharedFunctionInfosRootIndex: case kWeakStackTraceListRootIndex: case kSerializedTemplatesRootIndex: // Smi values #define SMI_ENTRY(type, name, Name) case k##Name##RootIndex: SMI_ROOT_LIST(SMI_ENTRY) #undef SMI_ENTRY // String table case kStringTableRootIndex: return true; default: return false; } } bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) { return !RootCanBeWrittenAfterInitialization(root_index) && !InNewSpace(root(root_index)); } int Heap::FullSizeNumberStringCacheLength() { // Compute the size of the number string cache based on the max newspace size. // The number string cache has a minimum size based on twice the initial cache // size to ensure that it is bigger after being made 'full size'. int number_string_cache_size = max_semi_space_size_ / 512; number_string_cache_size = Max(kInitialNumberStringCacheSize * 2, Min(0x4000, number_string_cache_size)); // There is a string and a number per entry so the length is twice the number // of entries. return number_string_cache_size * 2; } void Heap::FlushNumberStringCache() { // Flush the number to string cache. int len = number_string_cache()->length(); for (int i = 0; i < len; i++) { number_string_cache()->set_undefined(i); } } Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) { return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]); } Heap::RootListIndex Heap::RootIndexForFixedTypedArray( ExternalArrayType array_type) { switch (array_type) { #define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return kFixed##Type##ArrayMapRootIndex; TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX) #undef ARRAY_TYPE_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray( ElementsKind elementsKind) { switch (elementsKind) { #define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ return kEmptyFixed##Type##ArrayRootIndex; TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX) #undef ELEMENT_KIND_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(Map* map) { return FixedTypedArrayBase::cast( roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]); } AllocationResult Heap::AllocateForeign(Address address, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate foreigns in paged spaces. STATIC_ASSERT(Foreign::kSize <= Page::kMaxRegularHeapObjectSize); AllocationSpace space = (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE; Foreign* result = nullptr; AllocationResult allocation = Allocate(foreign_map(), space); if (!allocation.To(&result)) return allocation; result->set_foreign_address(address); return result; } AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) { if (length < 0 || length > ByteArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = ByteArray::SizeFor(length); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(byte_array_map()); ByteArray::cast(result)->set_length(length); return result; } AllocationResult Heap::AllocateBytecodeArray(int length, const byte* const raw_bytecodes, int frame_size, int parameter_count, FixedArray* constant_pool) { if (length < 0 || length > BytecodeArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } // Bytecode array is pretenured, so constant pool array should be to. DCHECK(!InNewSpace(constant_pool)); int size = BytecodeArray::SizeFor(length); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(bytecode_array_map()); BytecodeArray* instance = BytecodeArray::cast(result); instance->set_length(length); instance->set_frame_size(frame_size); instance->set_parameter_count(parameter_count); instance->set_interrupt_budget(interpreter::Interpreter::InterruptBudget()); instance->set_constant_pool(constant_pool); instance->set_handler_table(empty_fixed_array()); instance->set_source_position_table(empty_byte_array()); CopyBytes(instance->GetFirstBytecodeAddress(), raw_bytecodes, length); return result; } void Heap::CreateFillerObjectAt(Address addr, int size, ClearRecordedSlots mode) { if (size == 0) return; HeapObject* filler = HeapObject::FromAddress(addr); if (size == kPointerSize) { filler->set_map_no_write_barrier( reinterpret_cast<Map*>(root(kOnePointerFillerMapRootIndex))); } else if (size == 2 * kPointerSize) { filler->set_map_no_write_barrier( reinterpret_cast<Map*>(root(kTwoPointerFillerMapRootIndex))); } else { DCHECK_GT(size, 2 * kPointerSize); filler->set_map_no_write_barrier( reinterpret_cast<Map*>(root(kFreeSpaceMapRootIndex))); FreeSpace::cast(filler)->nobarrier_set_size(size); } if (mode == ClearRecordedSlots::kYes) { ClearRecordedSlotRange(addr, addr + size); } // At this point, we may be deserializing the heap from a snapshot, and // none of the maps have been created yet and are NULL. DCHECK((filler->map() == NULL && !deserialization_complete_) || filler->map()->IsMap()); } bool Heap::CanMoveObjectStart(HeapObject* object) { if (!FLAG_move_object_start) return false; // Sampling heap profiler may have a reference to the object. if (isolate()->heap_profiler()->is_sampling_allocations()) return false; Address address = object->address(); if (lo_space()->Contains(object)) return false; // We can move the object start if the page was already swept. return Page::FromAddress(address)->SweepingDone(); } void Heap::AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode) { // As long as the inspected object is black and we are currently not iterating // the heap using HeapIterator, we can update the live byte count. We cannot // update while using HeapIterator because the iterator is temporarily // marking the whole object graph, without updating live bytes. if (lo_space()->Contains(object)) { lo_space()->AdjustLiveBytes(by); } else if (!in_heap_iterator() && !mark_compact_collector()->sweeping_in_progress() && Marking::IsBlack(Marking::MarkBitFrom(object->address()))) { if (mode == SEQUENTIAL_TO_SWEEPER) { MemoryChunk::IncrementLiveBytesFromGC(object, by); } else { MemoryChunk::IncrementLiveBytesFromMutator(object, by); } } } FixedArrayBase* Heap::LeftTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { CHECK_NOT_NULL(object); DCHECK(!object->IsFixedTypedArrayBase()); DCHECK(!object->IsByteArray()); const int element_size = object->IsFixedArray() ? kPointerSize : kDoubleSize; const int bytes_to_trim = elements_to_trim * element_size; Map* map = object->map(); // For now this trick is only applied to objects in new and paged space. // In large object space the object's start must coincide with chunk // and thus the trick is just not applicable. DCHECK(!lo_space()->Contains(object)); DCHECK(object->map() != fixed_cow_array_map()); STATIC_ASSERT(FixedArrayBase::kMapOffset == 0); STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize); STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize); const int len = object->length(); DCHECK(elements_to_trim <= len); // Calculate location of new array start. Address new_start = object->address() + bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. CreateFillerObjectAt(object->address(), bytes_to_trim, ClearRecordedSlots::kYes); // Initialize header of the trimmed array. Since left trimming is only // performed on pages which are not concurrently swept creating a filler // object does not require synchronization. DCHECK(CanMoveObjectStart(object)); Object** former_start = HeapObject::RawField(object, 0); int new_start_index = elements_to_trim * (element_size / kPointerSize); former_start[new_start_index] = map; former_start[new_start_index + 1] = Smi::FromInt(len - elements_to_trim); FixedArrayBase* new_object = FixedArrayBase::cast(HeapObject::FromAddress(new_start)); // Remove recorded slots for the new map and length offset. ClearRecordedSlot(new_object, HeapObject::RawField(new_object, 0)); ClearRecordedSlot(new_object, HeapObject::RawField( new_object, FixedArrayBase::kLengthOffset)); // Maintain consistency of live bytes during incremental marking Marking::TransferMark(this, object->address(), new_start); AdjustLiveBytes(new_object, -bytes_to_trim, Heap::CONCURRENT_TO_SWEEPER); // Notify the heap profiler of change in object layout. OnMoveEvent(new_object, object, new_object->Size()); return new_object; } // Force instantiation of templatized method. template void Heap::RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>( FixedArrayBase*, int); template void Heap::RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>( FixedArrayBase*, int); template<Heap::InvocationMode mode> void Heap::RightTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { const int len = object->length(); DCHECK_LE(elements_to_trim, len); DCHECK_GE(elements_to_trim, 0); int bytes_to_trim; if (object->IsFixedTypedArrayBase()) { InstanceType type = object->map()->instance_type(); bytes_to_trim = FixedTypedArrayBase::TypedArraySize(type, len) - FixedTypedArrayBase::TypedArraySize(type, len - elements_to_trim); } else if (object->IsByteArray()) { int new_size = ByteArray::SizeFor(len - elements_to_trim); bytes_to_trim = ByteArray::SizeFor(len) - new_size; DCHECK_GE(bytes_to_trim, 0); } else { const int element_size = object->IsFixedArray() ? kPointerSize : kDoubleSize; bytes_to_trim = elements_to_trim * element_size; } // For now this trick is only applied to objects in new and paged space. DCHECK(object->map() != fixed_cow_array_map()); if (bytes_to_trim == 0) { // No need to create filler and update live bytes counters, just initialize // header of the trimmed array. object->synchronized_set_length(len - elements_to_trim); return; } // Calculate location of new array end. Address old_end = object->address() + object->Size(); Address new_end = old_end - bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. // We do not create a filler for objects in large object space. // TODO(hpayer): We should shrink the large object page if the size // of the object changed significantly. if (!lo_space()->Contains(object)) { CreateFillerObjectAt(new_end, bytes_to_trim, ClearRecordedSlots::kYes); } // Initialize header of the trimmed array. We are storing the new length // using release store after creating a filler for the left-over space to // avoid races with the sweeper thread. object->synchronized_set_length(len - elements_to_trim); // Maintain consistency of live bytes during incremental marking AdjustLiveBytes(object, -bytes_to_trim, mode); // Notify the heap profiler of change in object layout. The array may not be // moved during GC, and size has to be adjusted nevertheless. HeapProfiler* profiler = isolate()->heap_profiler(); if (profiler->is_tracking_allocations()) { profiler->UpdateObjectSizeEvent(object->address(), object->Size()); } } AllocationResult Heap::AllocateFixedTypedArrayWithExternalPointer( int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure) { int size = FixedTypedArrayBase::kHeaderSize; AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(MapForFixedTypedArray(array_type)); FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(result); elements->set_base_pointer(Smi::FromInt(0), SKIP_WRITE_BARRIER); elements->set_external_pointer(external_pointer, SKIP_WRITE_BARRIER); elements->set_length(length); return elements; } static void ForFixedTypedArray(ExternalArrayType array_type, int* element_size, ElementsKind* element_kind) { switch (array_type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ *element_size = size; \ *element_kind = TYPE##_ELEMENTS; \ return; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: *element_size = 0; // Bogus *element_kind = UINT8_ELEMENTS; // Bogus UNREACHABLE(); } } AllocationResult Heap::AllocateFixedTypedArray(int length, ExternalArrayType array_type, bool initialize, PretenureFlag pretenure) { int element_size; ElementsKind elements_kind; ForFixedTypedArray(array_type, &element_size, &elements_kind); int size = OBJECT_POINTER_ALIGN(length * element_size + FixedTypedArrayBase::kDataOffset); AllocationSpace space = SelectSpace(pretenure); HeapObject* object = nullptr; AllocationResult allocation = AllocateRaw( size, space, array_type == kExternalFloat64Array ? kDoubleAligned : kWordAligned); if (!allocation.To(&object)) return allocation; object->set_map_no_write_barrier(MapForFixedTypedArray(array_type)); FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object); elements->set_base_pointer(elements, SKIP_WRITE_BARRIER); elements->set_external_pointer( ExternalReference::fixed_typed_array_base_data_offset().address(), SKIP_WRITE_BARRIER); elements->set_length(length); if (initialize) memset(elements->DataPtr(), 0, elements->DataSize()); return elements; } AllocationResult Heap::AllocateCode(int object_size, bool immovable) { DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment)); AllocationResult allocation = AllocateRaw(object_size, CODE_SPACE); HeapObject* result = nullptr; if (!allocation.To(&result)) return allocation; if (immovable) { Address address = result->address(); // Code objects which should stay at a fixed address are allocated either // in the first page of code space (objects on the first page of each space // are never moved) or in large object space. if (!code_space_->FirstPage()->Contains(address) && MemoryChunk::FromAddress(address)->owner()->identity() != LO_SPACE) { // Discard the first code allocation, which was on a page where it could // be moved. CreateFillerObjectAt(result->address(), object_size, ClearRecordedSlots::kNo); allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE); if (!allocation.To(&result)) return allocation; OnAllocationEvent(result, object_size); } } result->set_map_no_write_barrier(code_map()); Code* code = Code::cast(result); DCHECK(IsAligned(bit_cast<intptr_t>(code->address()), kCodeAlignment)); DCHECK(!memory_allocator()->code_range()->valid() || memory_allocator()->code_range()->contains(code->address()) || object_size <= code_space()->AreaSize()); code->set_gc_metadata(Smi::FromInt(0)); code->set_ic_age(global_ic_age_); return code; } AllocationResult Heap::CopyCode(Code* code) { AllocationResult allocation; HeapObject* result = nullptr; // Allocate an object the same size as the code object. int obj_size = code->Size(); allocation = AllocateRaw(obj_size, CODE_SPACE); if (!allocation.To(&result)) return allocation; // Copy code object. Address old_addr = code->address(); Address new_addr = result->address(); CopyBlock(new_addr, old_addr, obj_size); Code* new_code = Code::cast(result); // Relocate the copy. DCHECK(IsAligned(bit_cast<intptr_t>(new_code->address()), kCodeAlignment)); DCHECK(!memory_allocator()->code_range()->valid() || memory_allocator()->code_range()->contains(code->address()) || obj_size <= code_space()->AreaSize()); new_code->Relocate(new_addr - old_addr); // We have to iterate over the object and process its pointers when black // allocation is on. incremental_marking()->IterateBlackObject(new_code); return new_code; } AllocationResult Heap::CopyBytecodeArray(BytecodeArray* bytecode_array) { int size = BytecodeArray::SizeFor(bytecode_array->length()); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(bytecode_array_map()); BytecodeArray* copy = BytecodeArray::cast(result); copy->set_length(bytecode_array->length()); copy->set_frame_size(bytecode_array->frame_size()); copy->set_parameter_count(bytecode_array->parameter_count()); copy->set_constant_pool(bytecode_array->constant_pool()); copy->set_handler_table(bytecode_array->handler_table()); copy->set_source_position_table(bytecode_array->source_position_table()); copy->set_interrupt_budget(bytecode_array->interrupt_budget()); bytecode_array->CopyBytecodesTo(copy); return copy; } void Heap::InitializeAllocationMemento(AllocationMemento* memento, AllocationSite* allocation_site) { memento->set_map_no_write_barrier(allocation_memento_map()); DCHECK(allocation_site->map() == allocation_site_map()); memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); if (FLAG_allocation_site_pretenuring) { allocation_site->IncrementMementoCreateCount(); } } AllocationResult Heap::Allocate(Map* map, AllocationSpace space, AllocationSite* allocation_site) { DCHECK(gc_state_ == NOT_IN_GC); DCHECK(map->instance_type() != MAP_TYPE); int size = map->instance_size(); if (allocation_site != NULL) { size += AllocationMemento::kSize; } HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; // No need for write barrier since object is white and map is in old space. result->set_map_no_write_barrier(map); if (allocation_site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( reinterpret_cast<Address>(result) + map->instance_size()); InitializeAllocationMemento(alloc_memento, allocation_site); } return result; } void Heap::InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, Map* map) { obj->set_properties(properties); obj->initialize_elements(); // TODO(1240798): Initialize the object's body using valid initial values // according to the object's initial map. For example, if the map's // instance type is JS_ARRAY_TYPE, the length field should be initialized // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object // verification code has to cope with (temporarily) invalid objects. See // for example, JSArray::JSArrayVerify). InitializeJSObjectBody(obj, map, JSObject::kHeaderSize); } void Heap::InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset) { if (start_offset == map->instance_size()) return; DCHECK_LT(start_offset, map->instance_size()); // We cannot always fill with one_pointer_filler_map because objects // created from API functions expect their internal fields to be initialized // with undefined_value. // Pre-allocated fields need to be initialized with undefined_value as well // so that object accesses before the constructor completes (e.g. in the // debugger) will not cause a crash. // In case of Array subclassing the |map| could already be transitioned // to different elements kind from the initial map on which we track slack. bool in_progress = map->IsInobjectSlackTrackingInProgress(); Object* filler; if (in_progress) { filler = one_pointer_filler_map(); } else { filler = undefined_value(); } obj->InitializeBody(map, start_offset, Heap::undefined_value(), filler); if (in_progress) { map->FindRootMap()->InobjectSlackTrackingStep(); } } AllocationResult Heap::AllocateJSObjectFromMap( Map* map, PretenureFlag pretenure, AllocationSite* allocation_site) { // JSFunctions should be allocated using AllocateFunction to be // properly initialized. DCHECK(map->instance_type() != JS_FUNCTION_TYPE); // Both types of global objects should be allocated using // AllocateGlobalObject to be properly initialized. DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); // Allocate the backing storage for the properties. FixedArray* properties = empty_fixed_array(); // Allocate the JSObject. AllocationSpace space = SelectSpace(pretenure); JSObject* js_obj = nullptr; AllocationResult allocation = Allocate(map, space, allocation_site); if (!allocation.To(&js_obj)) return allocation; // Initialize the JSObject. InitializeJSObjectFromMap(js_obj, properties, map); DCHECK(js_obj->HasFastElements() || js_obj->HasFixedTypedArrayElements() || js_obj->HasFastStringWrapperElements() || js_obj->HasFastArgumentsElements()); return js_obj; } AllocationResult Heap::AllocateJSObject(JSFunction* constructor, PretenureFlag pretenure, AllocationSite* allocation_site) { DCHECK(constructor->has_initial_map()); // Allocate the object based on the constructors initial map. AllocationResult allocation = AllocateJSObjectFromMap( constructor->initial_map(), pretenure, allocation_site); #ifdef DEBUG // Make sure result is NOT a global object if valid. HeapObject* obj = nullptr; DCHECK(!allocation.To(&obj) || !obj->IsJSGlobalObject()); #endif return allocation; } AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) { // Make the clone. Map* map = source->map(); // We can only clone regexps, normal objects, api objects, errors or arrays. // Copying anything else will break invariants. CHECK(map->instance_type() == JS_REGEXP_TYPE || map->instance_type() == JS_OBJECT_TYPE || map->instance_type() == JS_ERROR_TYPE || map->instance_type() == JS_ARRAY_TYPE || map->instance_type() == JS_API_OBJECT_TYPE || map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE); int object_size = map->instance_size(); HeapObject* clone = nullptr; DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type())); int adjusted_object_size = site != NULL ? object_size + AllocationMemento::kSize : object_size; AllocationResult allocation = AllocateRaw(adjusted_object_size, NEW_SPACE); if (!allocation.To(&clone)) return allocation; SLOW_DCHECK(InNewSpace(clone)); // Since we know the clone is allocated in new space, we can copy // the contents without worrying about updating the write barrier. CopyBlock(clone->address(), source->address(), object_size); if (site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( reinterpret_cast<Address>(clone) + object_size); InitializeAllocationMemento(alloc_memento, site); } SLOW_DCHECK(JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind()); FixedArrayBase* elements = FixedArrayBase::cast(source->elements()); FixedArray* properties = FixedArray::cast(source->properties()); // Update elements if necessary. if (elements->length() > 0) { FixedArrayBase* elem = nullptr; { AllocationResult allocation; if (elements->map() == fixed_cow_array_map()) { allocation = FixedArray::cast(elements); } else if (source->HasFastDoubleElements()) { allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements)); } else { allocation = CopyFixedArray(FixedArray::cast(elements)); } if (!allocation.To(&elem)) return allocation; } JSObject::cast(clone)->set_elements(elem, SKIP_WRITE_BARRIER); } // Update properties if necessary. if (properties->length() > 0) { FixedArray* prop = nullptr; { AllocationResult allocation = CopyFixedArray(properties); if (!allocation.To(&prop)) return allocation; } JSObject::cast(clone)->set_properties(prop, SKIP_WRITE_BARRIER); } // Return the new clone. return clone; } static inline void WriteOneByteData(Vector<const char> vector, uint8_t* chars, int len) { // Only works for one byte strings. DCHECK(vector.length() == len); MemCopy(chars, vector.start(), len); } static inline void WriteTwoByteData(Vector<const char> vector, uint16_t* chars, int len) { const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start()); size_t stream_length = vector.length(); while (stream_length != 0) { size_t consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed); DCHECK(c != unibrow::Utf8::kBadChar); DCHECK(consumed <= stream_length); stream_length -= consumed; stream += consumed; if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) { len -= 2; if (len < 0) break; *chars++ = unibrow::Utf16::LeadSurrogate(c); *chars++ = unibrow::Utf16::TrailSurrogate(c); } else { len -= 1; if (len < 0) break; *chars++ = c; } } DCHECK(stream_length == 0); DCHECK(len == 0); } static inline void WriteOneByteData(String* s, uint8_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } template <bool is_one_byte, typename T> AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field) { DCHECK(chars >= 0); // Compute map and object size. int size; Map* map; DCHECK_LE(0, chars); DCHECK_GE(String::kMaxLength, chars); if (is_one_byte) { map = one_byte_internalized_string_map(); size = SeqOneByteString::SizeFor(chars); } else { map = internalized_string_map(); size = SeqTwoByteString::SizeFor(chars); } // Allocate string. HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(chars); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); if (is_one_byte) { WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars); } else { WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars); } return answer; } // Need explicit instantiations. template AllocationResult Heap::AllocateInternalizedStringImpl<true>(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl<false>(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl<false>( Vector<const char>, int, uint32_t); AllocationResult Heap::AllocateRawOneByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqOneByteString::SizeFor(length); DCHECK(size <= SeqOneByteString::kMaxSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_no_write_barrier(one_byte_string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqTwoByteString::SizeFor(length); DCHECK(size <= SeqTwoByteString::kMaxSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_no_write_barrier(string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateEmptyFixedArray() { int size = FixedArray::SizeFor(0); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } // Initialize the object. result->set_map_no_write_barrier(fixed_array_map()); FixedArray::cast(result)->set_length(0); return result; } AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) { if (!InNewSpace(src)) { return src; } int len = src->length(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(len, TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); // TODO(mvstanton): The map is set twice because of protection against calling // set() on a COW FixedArray. Issue v8:3221 created to track this, and // we might then be able to remove this whole method. HeapObject::cast(obj)->set_map_no_write_barrier(fixed_cow_array_map()); return result; } AllocationResult Heap::AllocateEmptyFixedTypedArray( ExternalArrayType array_type) { return AllocateFixedTypedArray(0, array_type, false, TENURED); } AllocationResult Heap::CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure) { int old_len = src->length(); int new_len = old_len + grow_by; DCHECK(new_len >= old_len); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(new_len, pretenure); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray* result = FixedArray::cast(obj); result->set_length(new_len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc); for (int i = 0; i < old_len; i++) result->set(i, src->get(i), mode); MemsetPointer(result->data_start() + old_len, undefined_value(), grow_by); return result; } AllocationResult Heap::CopyFixedArrayUpTo(FixedArray* src, int new_len, PretenureFlag pretenure) { if (new_len == 0) return empty_fixed_array(); DCHECK_LE(new_len, src->length()); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(new_len, pretenure); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray* result = FixedArray::cast(obj); result->set_length(new_len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < new_len; i++) result->set(i, src->get(i), mode); return result; } AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) { int len = src->length(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(map); if (InNewSpace(obj)) { CopyBlock(obj->address() + kPointerSize, src->address() + kPointerSize, FixedArray::SizeFor(len) - kPointerSize); return obj; } FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); return result; } AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map) { int len = src->length(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(map); CopyBlock(obj->address() + FixedDoubleArray::kLengthOffset, src->address() + FixedDoubleArray::kLengthOffset, FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); return obj; } AllocationResult Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = FixedArray::SizeFor(length); AllocationSpace space = SelectSpace(pretenure); return AllocateRaw(size, space); } AllocationResult Heap::AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, Object* filler) { DCHECK(length >= 0); DCHECK(empty_fixed_array()->IsFixedArray()); if (length == 0) return empty_fixed_array(); DCHECK(!InNewSpace(filler)); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRawFixedArray(length, pretenure); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(fixed_array_map()); FixedArray* array = FixedArray::cast(result); array->set_length(length); MemsetPointer(array->data_start(), filler, length); return array; } AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) { return AllocateFixedArrayWithFiller(length, pretenure, undefined_value()); } AllocationResult Heap::AllocateUninitializedFixedArray(int length) { if (length == 0) return empty_fixed_array(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray::cast(obj)->set_length(length); return obj; } AllocationResult Heap::AllocateUninitializedFixedDoubleArray( int length, PretenureFlag pretenure) { if (length == 0) return empty_fixed_array(); HeapObject* elements = nullptr; AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure); if (!allocation.To(&elements)) return allocation; elements->set_map_no_write_barrier(fixed_double_array_map()); FixedDoubleArray::cast(elements)->set_length(length); return elements; } AllocationResult Heap::AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedDoubleArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = FixedDoubleArray::SizeFor(length); AllocationSpace space = SelectSpace(pretenure); HeapObject* object = nullptr; { AllocationResult allocation = AllocateRaw(size, space, kDoubleAligned); if (!allocation.To(&object)) return allocation; } return object; } AllocationResult Heap::AllocateSymbol() { // Statically ensure that it is safe to allocate symbols in paged spaces. STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(Symbol::kSize, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(symbol_map()); // Generate a random hash value. int hash; int attempts = 0; do { hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask; attempts++; } while (hash == 0 && attempts < 30); if (hash == 0) hash = 1; // never return 0 Symbol::cast(result) ->set_hash_field(Name::kIsNotArrayIndexMask | (hash << Name::kHashShift)); Symbol::cast(result)->set_name(undefined_value()); Symbol::cast(result)->set_flags(0); DCHECK(!Symbol::cast(result)->is_private()); return result; } AllocationResult Heap::AllocateStruct(InstanceType type) { Map* map; switch (type) { #define MAKE_CASE(NAME, Name, name) \ case NAME##_TYPE: \ map = name##_map(); \ break; STRUCT_LIST(MAKE_CASE) #undef MAKE_CASE default: UNREACHABLE(); return exception(); } int size = map->instance_size(); Struct* result = nullptr; { AllocationResult allocation = Allocate(map, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->InitializeBody(size); return result; } bool Heap::IsHeapIterable() { // TODO(hpayer): This function is not correct. Allocation folding in old // space breaks the iterability. return new_space_top_after_last_gc_ == new_space()->top(); } void Heap::MakeHeapIterable() { DCHECK(AllowHeapAllocation::IsAllowed()); if (!IsHeapIterable()) { CollectAllGarbage(kMakeHeapIterableMask, "Heap::MakeHeapIterable"); } if (mark_compact_collector()->sweeping_in_progress()) { mark_compact_collector()->EnsureSweepingCompleted(); } DCHECK(IsHeapIterable()); } static double ComputeMutatorUtilization(double mutator_speed, double gc_speed) { const double kMinMutatorUtilization = 0.0; const double kConservativeGcSpeedInBytesPerMillisecond = 200000; if (mutator_speed == 0) return kMinMutatorUtilization; if (gc_speed == 0) gc_speed = kConservativeGcSpeedInBytesPerMillisecond; // Derivation: // mutator_utilization = mutator_time / (mutator_time + gc_time) // mutator_time = 1 / mutator_speed // gc_time = 1 / gc_speed // mutator_utilization = (1 / mutator_speed) / // (1 / mutator_speed + 1 / gc_speed) // mutator_utilization = gc_speed / (mutator_speed + gc_speed) return gc_speed / (mutator_speed + gc_speed); } double Heap::YoungGenerationMutatorUtilization() { double mutator_speed = static_cast<double>( tracer()->NewSpaceAllocationThroughputInBytesPerMillisecond()); double gc_speed = tracer()->ScavengeSpeedInBytesPerMillisecond(kForSurvivedObjects); double result = ComputeMutatorUtilization(mutator_speed, gc_speed); if (FLAG_trace_mutator_utilization) { PrintIsolate(isolate(), "Young generation mutator utilization = %.3f (" "mutator_speed=%.f, gc_speed=%.f)\n", result, mutator_speed, gc_speed); } return result; } double Heap::OldGenerationMutatorUtilization() { double mutator_speed = static_cast<double>( tracer()->OldGenerationAllocationThroughputInBytesPerMillisecond()); double gc_speed = static_cast<double>( tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond()); double result = ComputeMutatorUtilization(mutator_speed, gc_speed); if (FLAG_trace_mutator_utilization) { PrintIsolate(isolate(), "Old generation mutator utilization = %.3f (" "mutator_speed=%.f, gc_speed=%.f)\n", result, mutator_speed, gc_speed); } return result; } bool Heap::HasLowYoungGenerationAllocationRate() { const double high_mutator_utilization = 0.993; return YoungGenerationMutatorUtilization() > high_mutator_utilization; } bool Heap::HasLowOldGenerationAllocationRate() { const double high_mutator_utilization = 0.993; return OldGenerationMutatorUtilization() > high_mutator_utilization; } bool Heap::HasLowAllocationRate() { return HasLowYoungGenerationAllocationRate() && HasLowOldGenerationAllocationRate(); } bool Heap::HasHighFragmentation() { intptr_t used = PromotedSpaceSizeOfObjects(); intptr_t committed = CommittedOldGenerationMemory(); return HasHighFragmentation(used, committed); } bool Heap::HasHighFragmentation(intptr_t used, intptr_t committed) { const intptr_t kSlack = 16 * MB; // Fragmentation is high if committed > 2 * used + kSlack. // Rewrite the exression to avoid overflow. return committed - used > used + kSlack; } void Heap::SetOptimizeForMemoryUsage() { // Activate memory reducer when switching to background if // - there was no mark compact since the start. // - the committed memory can be potentially reduced. // 2 pages for the old, code, and map space + 1 page for new space. const int kMinCommittedMemory = 7 * Page::kPageSize; if (ms_count_ == 0 && CommittedMemory() > kMinCommittedMemory) { MemoryReducer::Event event; event.type = MemoryReducer::kPossibleGarbage; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyPossibleGarbage(event); } optimize_for_memory_usage_ = true; } void Heap::ReduceNewSpaceSize() { // TODO(ulan): Unify this constant with the similar constant in // GCIdleTimeHandler once the change is merged to 4.5. static const size_t kLowAllocationThroughput = 1000; const double allocation_throughput = tracer()->CurrentAllocationThroughputInBytesPerMillisecond(); if (FLAG_predictable) return; if (ShouldReduceMemory() || ((allocation_throughput != 0) && (allocation_throughput < kLowAllocationThroughput))) { new_space_.Shrink(); UncommitFromSpace(); } } void Heap::FinalizeIncrementalMarkingIfComplete(const char* comment) { if (incremental_marking()->IsMarking() && (incremental_marking()->IsReadyToOverApproximateWeakClosure() || (!incremental_marking()->finalize_marking_completed() && mark_compact_collector()->marking_deque()->IsEmpty()))) { FinalizeIncrementalMarking(comment); } else if (incremental_marking()->IsComplete() || (mark_compact_collector()->marking_deque()->IsEmpty())) { CollectAllGarbage(current_gc_flags_, comment); } } bool Heap::TryFinalizeIdleIncrementalMarking(double idle_time_in_ms) { size_t size_of_objects = static_cast<size_t>(SizeOfObjects()); double final_incremental_mark_compact_speed_in_bytes_per_ms = tracer()->FinalIncrementalMarkCompactSpeedInBytesPerMillisecond(); if (incremental_marking()->IsReadyToOverApproximateWeakClosure() || (!incremental_marking()->finalize_marking_completed() && mark_compact_collector()->marking_deque()->IsEmpty() && gc_idle_time_handler_->ShouldDoOverApproximateWeakClosure( idle_time_in_ms))) { FinalizeIncrementalMarking( "Idle notification: finalize incremental marking"); return true; } else if (incremental_marking()->IsComplete() || (mark_compact_collector()->marking_deque()->IsEmpty() && gc_idle_time_handler_->ShouldDoFinalIncrementalMarkCompact( idle_time_in_ms, size_of_objects, final_incremental_mark_compact_speed_in_bytes_per_ms))) { CollectAllGarbage(current_gc_flags_, "idle notification: finalize incremental marking"); return true; } return false; } void Heap::RegisterReservationsForBlackAllocation(Reservation* reservations) { // TODO(hpayer): We do not have to iterate reservations on black objects // for marking. We just have to execute the special visiting side effect // code that adds objects to global data structures, e.g. for array buffers. // Code space, map space, and large object space do not use black pages. // Hence we have to color all objects of the reservation first black to avoid // unnecessary marking deque load. if (incremental_marking()->black_allocation()) { for (int i = CODE_SPACE; i < Serializer::kNumberOfSpaces; i++) { const Heap::Reservation& res = reservations[i]; for (auto& chunk : res) { Address addr = chunk.start; while (addr < chunk.end) { HeapObject* obj = HeapObject::FromAddress(addr); Marking::MarkBlack(Marking::MarkBitFrom(obj)); MemoryChunk::IncrementLiveBytesFromGC(obj, obj->Size()); addr += obj->Size(); } } } for (int i = OLD_SPACE; i < Serializer::kNumberOfSpaces; i++) { const Heap::Reservation& res = reservations[i]; for (auto& chunk : res) { Address addr = chunk.start; while (addr < chunk.end) { HeapObject* obj = HeapObject::FromAddress(addr); incremental_marking()->IterateBlackObject(obj); addr += obj->Size(); } } } } } GCIdleTimeHeapState Heap::ComputeHeapState() { GCIdleTimeHeapState heap_state; heap_state.contexts_disposed = contexts_disposed_; heap_state.contexts_disposal_rate = tracer()->ContextDisposalRateInMilliseconds(); heap_state.size_of_objects = static_cast<size_t>(SizeOfObjects()); heap_state.incremental_marking_stopped = incremental_marking()->IsStopped(); return heap_state; } bool Heap::PerformIdleTimeAction(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double deadline_in_ms) { bool result = false; switch (action.type) { case DONE: result = true; break; case DO_INCREMENTAL_STEP: { if (incremental_marking()->incremental_marking_job()->IdleTaskPending()) { result = true; } else { incremental_marking() ->incremental_marking_job() ->NotifyIdleTaskProgress(); result = IncrementalMarkingJob::IdleTask::Step(this, deadline_in_ms) == IncrementalMarkingJob::IdleTask::kDone; } break; } case DO_FULL_GC: { DCHECK(contexts_disposed_ > 0); HistogramTimerScope scope(isolate_->counters()->gc_context()); TRACE_EVENT0("v8", "V8.GCContext"); CollectAllGarbage(kNoGCFlags, "idle notification: contexts disposed"); break; } case DO_NOTHING: break; } return result; } void Heap::IdleNotificationEpilogue(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double start_ms, double deadline_in_ms) { double idle_time_in_ms = deadline_in_ms - start_ms; double current_time = MonotonicallyIncreasingTimeInMs(); last_idle_notification_time_ = current_time; double deadline_difference = deadline_in_ms - current_time; contexts_disposed_ = 0; isolate()->counters()->gc_idle_time_allotted_in_ms()->AddSample( static_cast<int>(idle_time_in_ms)); if (deadline_in_ms - start_ms > GCIdleTimeHandler::kMaxFrameRenderingIdleTime) { int committed_memory = static_cast<int>(CommittedMemory() / KB); int used_memory = static_cast<int>(heap_state.size_of_objects / KB); isolate()->counters()->aggregated_memory_heap_committed()->AddSample( start_ms, committed_memory); isolate()->counters()->aggregated_memory_heap_used()->AddSample( start_ms, used_memory); } if (deadline_difference >= 0) { if (action.type != DONE && action.type != DO_NOTHING) { isolate()->counters()->gc_idle_time_limit_undershot()->AddSample( static_cast<int>(deadline_difference)); } } else { isolate()->counters()->gc_idle_time_limit_overshot()->AddSample( static_cast<int>(-deadline_difference)); } if ((FLAG_trace_idle_notification && action.type > DO_NOTHING) || FLAG_trace_idle_notification_verbose) { PrintIsolate(isolate_, "%8.0f ms: ", isolate()->time_millis_since_init()); PrintF( "Idle notification: requested idle time %.2f ms, used idle time %.2f " "ms, deadline usage %.2f ms [", idle_time_in_ms, idle_time_in_ms - deadline_difference, deadline_difference); action.Print(); PrintF("]"); if (FLAG_trace_idle_notification_verbose) { PrintF("["); heap_state.Print(); PrintF("]"); } PrintF("\n"); } } double Heap::MonotonicallyIncreasingTimeInMs() { return V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() * static_cast<double>(base::Time::kMillisecondsPerSecond); } bool Heap::IdleNotification(int idle_time_in_ms) { return IdleNotification( V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() + (static_cast<double>(idle_time_in_ms) / static_cast<double>(base::Time::kMillisecondsPerSecond))); } bool Heap::IdleNotification(double deadline_in_seconds) { CHECK(HasBeenSetUp()); double deadline_in_ms = deadline_in_seconds * static_cast<double>(base::Time::kMillisecondsPerSecond); HistogramTimerScope idle_notification_scope( isolate_->counters()->gc_idle_notification()); TRACE_EVENT0("v8", "V8.GCIdleNotification"); double start_ms = MonotonicallyIncreasingTimeInMs(); double idle_time_in_ms = deadline_in_ms - start_ms; tracer()->SampleAllocation(start_ms, NewSpaceAllocationCounter(), OldGenerationAllocationCounter()); GCIdleTimeHeapState heap_state = ComputeHeapState(); GCIdleTimeAction action = gc_idle_time_handler_->Compute(idle_time_in_ms, heap_state); bool result = PerformIdleTimeAction(action, heap_state, deadline_in_ms); IdleNotificationEpilogue(action, heap_state, start_ms, deadline_in_ms); return result; } bool Heap::RecentIdleNotificationHappened() { return (last_idle_notification_time_ + GCIdleTimeHandler::kMaxScheduledIdleTime) > MonotonicallyIncreasingTimeInMs(); } class MemoryPressureInterruptTask : public CancelableTask { public: explicit MemoryPressureInterruptTask(Heap* heap) : CancelableTask(heap->isolate()), heap_(heap) {} virtual ~MemoryPressureInterruptTask() {} private: // v8::internal::CancelableTask overrides. void RunInternal() override { heap_->CheckMemoryPressure(); } Heap* heap_; DISALLOW_COPY_AND_ASSIGN(MemoryPressureInterruptTask); }; void Heap::CheckMemoryPressure() { if (memory_pressure_level_.Value() == MemoryPressureLevel::kCritical) { CollectGarbageOnMemoryPressure("memory pressure"); } else if (memory_pressure_level_.Value() == MemoryPressureLevel::kModerate) { if (FLAG_incremental_marking && incremental_marking()->IsStopped()) { StartIdleIncrementalMarking(); } } MemoryReducer::Event event; event.type = MemoryReducer::kPossibleGarbage; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyPossibleGarbage(event); } void Heap::CollectGarbageOnMemoryPressure(const char* source) { const int kGarbageThresholdInBytes = 8 * MB; const double kGarbageThresholdAsFractionOfTotalMemory = 0.1; // This constant is the maximum response time in RAIL performance model. const double kMaxMemoryPressurePauseMs = 100; double start = MonotonicallyIncreasingTimeInMs(); CollectAllGarbage(kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, source, kGCCallbackFlagCollectAllAvailableGarbage); double end = MonotonicallyIncreasingTimeInMs(); // Estimate how much memory we can free. int64_t potential_garbage = (CommittedMemory() - SizeOfObjects()) + external_memory_; // If we can potentially free large amount of memory, then start GC right // away instead of waiting for memory reducer. if (potential_garbage >= kGarbageThresholdInBytes && potential_garbage >= CommittedMemory() * kGarbageThresholdAsFractionOfTotalMemory) { // If we spent less than half of the time budget, then perform full GC // Otherwise, start incremental marking. if (end - start < kMaxMemoryPressurePauseMs / 2) { CollectAllGarbage( kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, source, kGCCallbackFlagCollectAllAvailableGarbage); } else { if (FLAG_incremental_marking && incremental_marking()->IsStopped()) { StartIdleIncrementalMarking(); } } } } void Heap::MemoryPressureNotification(MemoryPressureLevel level, bool is_isolate_locked) { MemoryPressureLevel previous = memory_pressure_level_.Value(); memory_pressure_level_.SetValue(level); if ((previous != MemoryPressureLevel::kCritical && level == MemoryPressureLevel::kCritical) || (previous == MemoryPressureLevel::kNone && level == MemoryPressureLevel::kModerate)) { if (is_isolate_locked) { CheckMemoryPressure(); } else { ExecutionAccess access(isolate()); isolate()->stack_guard()->RequestGC(); V8::GetCurrentPlatform()->CallOnForegroundThread( reinterpret_cast<v8::Isolate*>(isolate()), new MemoryPressureInterruptTask(this)); } } } void Heap::CollectCodeStatistics() { PagedSpace::ResetCodeAndMetadataStatistics(isolate()); // We do not look for code in new space, or map space. If code // somehow ends up in those spaces, we would miss it here. code_space_->CollectCodeStatistics(); old_space_->CollectCodeStatistics(); lo_space_->CollectCodeStatistics(); } #ifdef DEBUG void Heap::Print() { if (!HasBeenSetUp()) return; isolate()->PrintStack(stdout); AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { space->Print(); } } void Heap::ReportCodeStatistics(const char* title) { PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title); CollectCodeStatistics(); PagedSpace::ReportCodeStatistics(isolate()); } // This function expects that NewSpace's allocated objects histogram is // populated (via a call to CollectStatistics or else as a side effect of a // just-completed scavenge collection). void Heap::ReportHeapStatistics(const char* title) { USE(title); PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n", title, gc_count_); PrintF("old_generation_allocation_limit_ %" V8PRIdPTR "\n", old_generation_allocation_limit_); PrintF("\n"); PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_)); isolate_->global_handles()->PrintStats(); PrintF("\n"); PrintF("Heap statistics : "); memory_allocator()->ReportStatistics(); PrintF("To space : "); new_space_.ReportStatistics(); PrintF("Old space : "); old_space_->ReportStatistics(); PrintF("Code space : "); code_space_->ReportStatistics(); PrintF("Map space : "); map_space_->ReportStatistics(); PrintF("Large object space : "); lo_space_->ReportStatistics(); PrintF(">>>>>> ========================================= >>>>>>\n"); } #endif // DEBUG bool Heap::Contains(HeapObject* value) { if (memory_allocator()->IsOutsideAllocatedSpace(value->address())) { return false; } return HasBeenSetUp() && (new_space_.ToSpaceContains(value) || old_space_->Contains(value) || code_space_->Contains(value) || map_space_->Contains(value) || lo_space_->Contains(value)); } bool Heap::ContainsSlow(Address addr) { if (memory_allocator()->IsOutsideAllocatedSpace(addr)) { return false; } return HasBeenSetUp() && (new_space_.ToSpaceContainsSlow(addr) || old_space_->ContainsSlow(addr) || code_space_->ContainsSlow(addr) || map_space_->ContainsSlow(addr) || lo_space_->ContainsSlow(addr)); } bool Heap::InSpace(HeapObject* value, AllocationSpace space) { if (memory_allocator()->IsOutsideAllocatedSpace(value->address())) { return false; } if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_.ToSpaceContains(value); case OLD_SPACE: return old_space_->Contains(value); case CODE_SPACE: return code_space_->Contains(value); case MAP_SPACE: return map_space_->Contains(value); case LO_SPACE: return lo_space_->Contains(value); } UNREACHABLE(); return false; } bool Heap::InSpaceSlow(Address addr, AllocationSpace space) { if (memory_allocator()->IsOutsideAllocatedSpace(addr)) { return false; } if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_.ToSpaceContainsSlow(addr); case OLD_SPACE: return old_space_->ContainsSlow(addr); case CODE_SPACE: return code_space_->ContainsSlow(addr); case MAP_SPACE: return map_space_->ContainsSlow(addr); case LO_SPACE: return lo_space_->ContainsSlow(addr); } UNREACHABLE(); return false; } bool Heap::IsValidAllocationSpace(AllocationSpace space) { switch (space) { case NEW_SPACE: case OLD_SPACE: case CODE_SPACE: case MAP_SPACE: case LO_SPACE: return true; default: return false; } } bool Heap::RootIsImmortalImmovable(int root_index) { switch (root_index) { #define IMMORTAL_IMMOVABLE_ROOT(name) case Heap::k##name##RootIndex: IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT) #undef IMMORTAL_IMMOVABLE_ROOT #define INTERNALIZED_STRING(name, value) case Heap::k##name##RootIndex: INTERNALIZED_STRING_LIST(INTERNALIZED_STRING) #undef INTERNALIZED_STRING #define STRING_TYPE(NAME, size, name, Name) case Heap::k##Name##MapRootIndex: STRING_TYPE_LIST(STRING_TYPE) #undef STRING_TYPE return true; default: return false; } } #ifdef VERIFY_HEAP void Heap::Verify() { CHECK(HasBeenSetUp()); HandleScope scope(isolate()); if (mark_compact_collector()->sweeping_in_progress()) { // We have to wait here for the sweeper threads to have an iterable heap. mark_compact_collector()->EnsureSweepingCompleted(); } VerifyPointersVisitor visitor; IterateRoots(&visitor, VISIT_ONLY_STRONG); VerifySmisVisitor smis_visitor; IterateSmiRoots(&smis_visitor); new_space_.Verify(); old_space_->Verify(&visitor); map_space_->Verify(&visitor); VerifyPointersVisitor no_dirty_regions_visitor; code_space_->Verify(&no_dirty_regions_visitor); lo_space_->Verify(); mark_compact_collector()->VerifyWeakEmbeddedObjectsInCode(); if (FLAG_omit_map_checks_for_leaf_maps) { mark_compact_collector()->VerifyOmittedMapChecks(); } } #endif void Heap::ZapFromSpace() { if (!new_space_.IsFromSpaceCommitted()) return; for (Page* page : NewSpacePageRange(new_space_.FromSpaceStart(), new_space_.FromSpaceEnd())) { for (Address cursor = page->area_start(), limit = page->area_end(); cursor < limit; cursor += kPointerSize) { Memory::Address_at(cursor) = kFromSpaceZapValue; } } } void Heap::IteratePromotedObjectPointers(HeapObject* object, Address start, Address end, bool record_slots, ObjectSlotCallback callback) { Address slot_address = start; Page* page = Page::FromAddress(start); while (slot_address < end) { Object** slot = reinterpret_cast<Object**>(slot_address); Object* target = *slot; if (target->IsHeapObject()) { if (Heap::InFromSpace(target)) { callback(reinterpret_cast<HeapObject**>(slot), HeapObject::cast(target)); Object* new_target = *slot; if (InNewSpace(new_target)) { SLOW_DCHECK(Heap::InToSpace(new_target)); SLOW_DCHECK(new_target->IsHeapObject()); RememberedSet<OLD_TO_NEW>::Insert(page, slot_address); } SLOW_DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_target)); } else if (record_slots && MarkCompactCollector::IsOnEvacuationCandidate(target)) { mark_compact_collector()->RecordSlot(object, slot, target); } } slot_address += kPointerSize; } } class IteratePromotedObjectsVisitor final : public ObjectVisitor { public: IteratePromotedObjectsVisitor(Heap* heap, HeapObject* target, bool record_slots, ObjectSlotCallback callback) : heap_(heap), target_(target), record_slots_(record_slots), callback_(callback) {} V8_INLINE void VisitPointers(Object** start, Object** end) override { heap_->IteratePromotedObjectPointers( target_, reinterpret_cast<Address>(start), reinterpret_cast<Address>(end), record_slots_, callback_); } V8_INLINE void VisitCodeEntry(Address code_entry_slot) override { // Black allocation requires us to process objects referenced by // promoted objects. if (heap_->incremental_marking()->black_allocation()) { Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot)); IncrementalMarking::MarkObject(heap_, code); } } private: Heap* heap_; HeapObject* target_; bool record_slots_; ObjectSlotCallback callback_; }; void Heap::IteratePromotedObject(HeapObject* target, int size, bool was_marked_black, ObjectSlotCallback callback) { // We are not collecting slots on new space objects during mutation // thus we have to scan for pointers to evacuation candidates when we // promote objects. But we should not record any slots in non-black // objects. Grey object's slots would be rescanned. // White object might not survive until the end of collection // it would be a violation of the invariant to record it's slots. bool record_slots = false; if (incremental_marking()->IsCompacting()) { MarkBit mark_bit = Marking::MarkBitFrom(target); record_slots = Marking::IsBlack(mark_bit); } IteratePromotedObjectsVisitor visitor(this, target, record_slots, callback); target->IterateBody(target->map()->instance_type(), size, &visitor); // When black allocations is on, we have to visit not already marked black // objects (in new space) promoted to black pages to keep their references // alive. // TODO(hpayer): Implement a special promotion visitor that incorporates // regular visiting and IteratePromotedObjectPointers. if (!was_marked_black) { if (incremental_marking()->black_allocation()) { IncrementalMarking::MarkObject(this, target->map()); incremental_marking()->IterateBlackObject(target); } } } void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) { IterateStrongRoots(v, mode); IterateWeakRoots(v, mode); } void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointer(reinterpret_cast<Object**>(&roots_[kStringTableRootIndex])); v->Synchronize(VisitorSynchronization::kStringTable); if (mode != VISIT_ALL_IN_SCAVENGE && mode != VISIT_ALL_IN_SWEEP_NEWSPACE) { // Scavenge collections have special processing for this. external_string_table_.Iterate(v); } v->Synchronize(VisitorSynchronization::kExternalStringsTable); } void Heap::IterateSmiRoots(ObjectVisitor* v) { // Acquire execution access since we are going to read stack limit values. ExecutionAccess access(isolate()); v->VisitPointers(&roots_[kSmiRootsStart], &roots_[kRootListLength]); v->Synchronize(VisitorSynchronization::kSmiRootList); } void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]); v->Synchronize(VisitorSynchronization::kStrongRootList); // The serializer/deserializer iterates the root list twice, first to pick // off immortal immovable roots to make sure they end up on the first page, // and then again for the rest. if (mode == VISIT_ONLY_STRONG_ROOT_LIST) return; isolate_->bootstrapper()->Iterate(v); v->Synchronize(VisitorSynchronization::kBootstrapper); isolate_->Iterate(v); v->Synchronize(VisitorSynchronization::kTop); Relocatable::Iterate(isolate_, v); v->Synchronize(VisitorSynchronization::kRelocatable); isolate_->debug()->Iterate(v); v->Synchronize(VisitorSynchronization::kDebug); isolate_->compilation_cache()->Iterate(v); v->Synchronize(VisitorSynchronization::kCompilationCache); // Iterate over local handles in handle scopes. isolate_->handle_scope_implementer()->Iterate(v); isolate_->IterateDeferredHandles(v); v->Synchronize(VisitorSynchronization::kHandleScope); // Iterate over the builtin code objects and code stubs in the // heap. Note that it is not necessary to iterate over code objects // on scavenge collections. if (mode != VISIT_ALL_IN_SCAVENGE) { isolate_->builtins()->IterateBuiltins(v); v->Synchronize(VisitorSynchronization::kBuiltins); isolate_->interpreter()->IterateDispatchTable(v); v->Synchronize(VisitorSynchronization::kDispatchTable); } // Iterate over global handles. switch (mode) { case VISIT_ONLY_STRONG_ROOT_LIST: UNREACHABLE(); break; case VISIT_ONLY_STRONG: case VISIT_ONLY_STRONG_FOR_SERIALIZATION: isolate_->global_handles()->IterateStrongRoots(v); break; case VISIT_ALL_IN_SCAVENGE: isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v); break; case VISIT_ALL_IN_SWEEP_NEWSPACE: case VISIT_ALL: isolate_->global_handles()->IterateAllRoots(v); break; } v->Synchronize(VisitorSynchronization::kGlobalHandles); // Iterate over eternal handles. if (mode == VISIT_ALL_IN_SCAVENGE) { isolate_->eternal_handles()->IterateNewSpaceRoots(v); } else { isolate_->eternal_handles()->IterateAllRoots(v); } v->Synchronize(VisitorSynchronization::kEternalHandles); // Iterate over pointers being held by inactive threads. isolate_->thread_manager()->Iterate(v); v->Synchronize(VisitorSynchronization::kThreadManager); // Iterate over other strong roots (currently only identity maps). for (StrongRootsList* list = strong_roots_list_; list; list = list->next) { v->VisitPointers(list->start, list->end); } v->Synchronize(VisitorSynchronization::kStrongRoots); // Iterate over the partial snapshot cache unless serializing. if (mode != VISIT_ONLY_STRONG_FOR_SERIALIZATION) { SerializerDeserializer::Iterate(isolate_, v); } // We don't do a v->Synchronize call here, because in debug mode that will // output a flag to the snapshot. However at this point the serializer and // deserializer are deliberately a little unsynchronized (see above) so the // checking of the sync flag in the snapshot would fail. } // TODO(1236194): Since the heap size is configurable on the command line // and through the API, we should gracefully handle the case that the heap // size is not big enough to fit all the initial objects. bool Heap::ConfigureHeap(int max_semi_space_size, int max_old_space_size, int max_executable_size, size_t code_range_size) { if (HasBeenSetUp()) return false; // Overwrite default configuration. if (max_semi_space_size > 0) { max_semi_space_size_ = max_semi_space_size * MB; } if (max_old_space_size > 0) { max_old_generation_size_ = static_cast<intptr_t>(max_old_space_size) * MB; } if (max_executable_size > 0) { max_executable_size_ = static_cast<intptr_t>(max_executable_size) * MB; } // If max space size flags are specified overwrite the configuration. if (FLAG_max_semi_space_size > 0) { max_semi_space_size_ = FLAG_max_semi_space_size * MB; } if (FLAG_max_old_space_size > 0) { max_old_generation_size_ = static_cast<intptr_t>(FLAG_max_old_space_size) * MB; } if (FLAG_max_executable_size > 0) { max_executable_size_ = static_cast<intptr_t>(FLAG_max_executable_size) * MB; } if (Page::kPageSize > MB) { max_semi_space_size_ = ROUND_UP(max_semi_space_size_, Page::kPageSize); max_old_generation_size_ = ROUND_UP(max_old_generation_size_, Page::kPageSize); max_executable_size_ = ROUND_UP(max_executable_size_, Page::kPageSize); } if (FLAG_stress_compaction) { // This will cause more frequent GCs when stressing. max_semi_space_size_ = Page::kPageSize; } // The new space size must be a power of two to support single-bit testing // for containment. max_semi_space_size_ = base::bits::RoundUpToPowerOfTwo32(max_semi_space_size_); if (FLAG_min_semi_space_size > 0) { int initial_semispace_size = FLAG_min_semi_space_size * MB; if (initial_semispace_size > max_semi_space_size_) { initial_semispace_size_ = max_semi_space_size_; if (FLAG_trace_gc) { PrintIsolate(isolate_, "Min semi-space size cannot be more than the maximum " "semi-space size of %d MB\n", max_semi_space_size_ / MB); } } else { initial_semispace_size_ = ROUND_UP(initial_semispace_size, Page::kPageSize); } } initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_); if (FLAG_semi_space_growth_factor < 2) { FLAG_semi_space_growth_factor = 2; } // The old generation is paged and needs at least one page for each space. int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1; max_old_generation_size_ = Max(static_cast<intptr_t>(paged_space_count * Page::kPageSize), max_old_generation_size_); // The max executable size must be less than or equal to the max old // generation size. if (max_executable_size_ > max_old_generation_size_) { max_executable_size_ = max_old_generation_size_; } if (FLAG_initial_old_space_size > 0) { initial_old_generation_size_ = FLAG_initial_old_space_size * MB; } else { initial_old_generation_size_ = max_old_generation_size_ / kInitalOldGenerationLimitFactor; } old_generation_allocation_limit_ = initial_old_generation_size_; // We rely on being able to allocate new arrays in paged spaces. DCHECK(Page::kMaxRegularHeapObjectSize >= (JSArray::kSize + FixedArray::SizeFor(JSArray::kInitialMaxFastElementArray) + AllocationMemento::kSize)); code_range_size_ = code_range_size * MB; configured_ = true; return true; } void Heap::AddToRingBuffer(const char* string) { size_t first_part = Min(strlen(string), kTraceRingBufferSize - ring_buffer_end_); memcpy(trace_ring_buffer_ + ring_buffer_end_, string, first_part); ring_buffer_end_ += first_part; if (first_part < strlen(string)) { ring_buffer_full_ = true; size_t second_part = strlen(string) - first_part; memcpy(trace_ring_buffer_, string + first_part, second_part); ring_buffer_end_ = second_part; } } void Heap::GetFromRingBuffer(char* buffer) { size_t copied = 0; if (ring_buffer_full_) { copied = kTraceRingBufferSize - ring_buffer_end_; memcpy(buffer, trace_ring_buffer_ + ring_buffer_end_, copied); } memcpy(buffer + copied, trace_ring_buffer_, ring_buffer_end_); } bool Heap::ConfigureHeapDefault() { return ConfigureHeap(0, 0, 0, 0); } void Heap::RecordStats(HeapStats* stats, bool take_snapshot) { *stats->start_marker = HeapStats::kStartMarker; *stats->end_marker = HeapStats::kEndMarker; *stats->new_space_size = new_space_.SizeAsInt(); *stats->new_space_capacity = static_cast<int>(new_space_.Capacity()); *stats->old_space_size = old_space_->SizeOfObjects(); *stats->old_space_capacity = old_space_->Capacity(); *stats->code_space_size = code_space_->SizeOfObjects(); *stats->code_space_capacity = code_space_->Capacity(); *stats->map_space_size = map_space_->SizeOfObjects(); *stats->map_space_capacity = map_space_->Capacity(); *stats->lo_space_size = lo_space_->Size(); isolate_->global_handles()->RecordStats(stats); *stats->memory_allocator_size = memory_allocator()->Size(); *stats->memory_allocator_capacity = memory_allocator()->Size() + memory_allocator()->Available(); *stats->os_error = base::OS::GetLastError(); memory_allocator()->Available(); if (take_snapshot) { HeapIterator iterator(this); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); stats->objects_per_type[type]++; stats->size_per_type[type] += obj->Size(); } } if (stats->last_few_messages != NULL) GetFromRingBuffer(stats->last_few_messages); if (stats->js_stacktrace != NULL) { FixedStringAllocator fixed(stats->js_stacktrace, kStacktraceBufferSize - 1); StringStream accumulator(&fixed, StringStream::kPrintObjectConcise); if (gc_state() == Heap::NOT_IN_GC) { isolate()->PrintStack(&accumulator, Isolate::kPrintStackVerbose); } else { accumulator.Add("Cannot get stack trace in GC."); } } } intptr_t Heap::PromotedSpaceSizeOfObjects() { return old_space_->SizeOfObjects() + code_space_->SizeOfObjects() + map_space_->SizeOfObjects() + lo_space_->SizeOfObjects(); } int64_t Heap::PromotedExternalMemorySize() { if (external_memory_ <= external_memory_at_last_mark_compact_) return 0; return external_memory_ - external_memory_at_last_mark_compact_; } const double Heap::kMinHeapGrowingFactor = 1.1; const double Heap::kMaxHeapGrowingFactor = 4.0; const double Heap::kMaxHeapGrowingFactorMemoryConstrained = 2.0; const double Heap::kMaxHeapGrowingFactorIdle = 1.5; const double Heap::kTargetMutatorUtilization = 0.97; // Given GC speed in bytes per ms, the allocation throughput in bytes per ms // (mutator speed), this function returns the heap growing factor that will // achieve the kTargetMutatorUtilisation if the GC speed and the mutator speed // remain the same until the next GC. // // For a fixed time-frame T = TM + TG, the mutator utilization is the ratio // TM / (TM + TG), where TM is the time spent in the mutator and TG is the // time spent in the garbage collector. // // Let MU be kTargetMutatorUtilisation, the desired mutator utilization for the // time-frame from the end of the current GC to the end of the next GC. Based // on the MU we can compute the heap growing factor F as // // F = R * (1 - MU) / (R * (1 - MU) - MU), where R = gc_speed / mutator_speed. // // This formula can be derived as follows. // // F = Limit / Live by definition, where the Limit is the allocation limit, // and the Live is size of live objects. // Let’s assume that we already know the Limit. Then: // TG = Limit / gc_speed // TM = (TM + TG) * MU, by definition of MU. // TM = TG * MU / (1 - MU) // TM = Limit * MU / (gc_speed * (1 - MU)) // On the other hand, if the allocation throughput remains constant: // Limit = Live + TM * allocation_throughput = Live + TM * mutator_speed // Solving it for TM, we get // TM = (Limit - Live) / mutator_speed // Combining the two equation for TM: // (Limit - Live) / mutator_speed = Limit * MU / (gc_speed * (1 - MU)) // (Limit - Live) = Limit * MU * mutator_speed / (gc_speed * (1 - MU)) // substitute R = gc_speed / mutator_speed // (Limit - Live) = Limit * MU / (R * (1 - MU)) // substitute F = Limit / Live // F - 1 = F * MU / (R * (1 - MU)) // F - F * MU / (R * (1 - MU)) = 1 // F * (1 - MU / (R * (1 - MU))) = 1 // F * (R * (1 - MU) - MU) / (R * (1 - MU)) = 1 // F = R * (1 - MU) / (R * (1 - MU) - MU) double Heap::HeapGrowingFactor(double gc_speed, double mutator_speed) { if (gc_speed == 0 || mutator_speed == 0) return kMaxHeapGrowingFactor; const double speed_ratio = gc_speed / mutator_speed; const double mu = kTargetMutatorUtilization; const double a = speed_ratio * (1 - mu); const double b = speed_ratio * (1 - mu) - mu; // The factor is a / b, but we need to check for small b first. double factor = (a < b * kMaxHeapGrowingFactor) ? a / b : kMaxHeapGrowingFactor; factor = Min(factor, kMaxHeapGrowingFactor); factor = Max(factor, kMinHeapGrowingFactor); return factor; } intptr_t Heap::CalculateOldGenerationAllocationLimit(double factor, intptr_t old_gen_size) { CHECK(factor > 1.0); CHECK(old_gen_size > 0); intptr_t limit = static_cast<intptr_t>(old_gen_size * factor); limit = Max(limit, old_gen_size + kMinimumOldGenerationAllocationLimit); limit += new_space_.Capacity(); intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2; return Min(limit, halfway_to_the_max); } void Heap::SetOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed, double mutator_speed) { const double kConservativeHeapGrowingFactor = 1.3; double factor = HeapGrowingFactor(gc_speed, mutator_speed); if (FLAG_trace_gc_verbose) { PrintIsolate(isolate_, "Heap growing factor %.1f based on mu=%.3f, speed_ratio=%.f " "(gc=%.f, mutator=%.f)\n", factor, kTargetMutatorUtilization, gc_speed / mutator_speed, gc_speed, mutator_speed); } // We set the old generation growing factor to 2 to grow the heap slower on // memory-constrained devices. if (max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice || FLAG_optimize_for_size) { factor = Min(factor, kMaxHeapGrowingFactorMemoryConstrained); } if (memory_reducer_->ShouldGrowHeapSlowly() || optimize_for_memory_usage_) { factor = Min(factor, kConservativeHeapGrowingFactor); } if (FLAG_stress_compaction || ShouldReduceMemory()) { factor = kMinHeapGrowingFactor; } if (FLAG_heap_growing_percent > 0) { factor = 1.0 + FLAG_heap_growing_percent / 100.0; } old_generation_allocation_limit_ = CalculateOldGenerationAllocationLimit(factor, old_gen_size); if (FLAG_trace_gc_verbose) { PrintIsolate(isolate_, "Grow: old size: %" V8PRIdPTR " KB, new limit: %" V8PRIdPTR " KB (%.1f)\n", old_gen_size / KB, old_generation_allocation_limit_ / KB, factor); } } void Heap::DampenOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed, double mutator_speed) { double factor = HeapGrowingFactor(gc_speed, mutator_speed); intptr_t limit = CalculateOldGenerationAllocationLimit(factor, old_gen_size); if (limit < old_generation_allocation_limit_) { if (FLAG_trace_gc_verbose) { PrintIsolate(isolate_, "Dampen: old size: %" V8PRIdPTR " KB, old limit: %" V8PRIdPTR " KB, " "new limit: %" V8PRIdPTR " KB (%.1f)\n", old_gen_size / KB, old_generation_allocation_limit_ / KB, limit / KB, factor); } old_generation_allocation_limit_ = limit; } } void Heap::EnableInlineAllocation() { if (!inline_allocation_disabled_) return; inline_allocation_disabled_ = false; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); } void Heap::DisableInlineAllocation() { if (inline_allocation_disabled_) return; inline_allocation_disabled_ = true; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); // Update inline allocation limit for old spaces. PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->EmptyAllocationInfo(); } } V8_DECLARE_ONCE(initialize_gc_once); static void InitializeGCOnce() { Scavenger::Initialize(); StaticScavengeVisitor<DEFAULT_PROMOTION>::Initialize(); StaticScavengeVisitor<PROMOTE_MARKED>::Initialize(); MarkCompactCollector::Initialize(); } bool Heap::SetUp() { #ifdef DEBUG allocation_timeout_ = FLAG_gc_interval; #endif // Initialize heap spaces and initial maps and objects. Whenever something // goes wrong, just return false. The caller should check the results and // call Heap::TearDown() to release allocated memory. // // If the heap is not yet configured (e.g. through the API), configure it. // Configuration is based on the flags new-space-size (really the semispace // size) and old-space-size if set or the initial values of semispace_size_ // and old_generation_size_ otherwise. if (!configured_) { if (!ConfigureHeapDefault()) return false; } base::CallOnce(&initialize_gc_once, &InitializeGCOnce); // Set up memory allocator. memory_allocator_ = new MemoryAllocator(isolate_); if (!memory_allocator_->SetUp(MaxReserved(), MaxExecutableSize(), code_range_size_)) return false; // Initialize incremental marking. incremental_marking_ = new IncrementalMarking(this); // Set up new space. if (!new_space_.SetUp(initial_semispace_size_, max_semi_space_size_)) { return false; } new_space_top_after_last_gc_ = new_space()->top(); // Initialize old space. old_space_ = new OldSpace(this, OLD_SPACE, NOT_EXECUTABLE); if (old_space_ == NULL) return false; if (!old_space_->SetUp()) return false; // Initialize the code space, set its maximum capacity to the old // generation size. It needs executable memory. code_space_ = new OldSpace(this, CODE_SPACE, EXECUTABLE); if (code_space_ == NULL) return false; if (!code_space_->SetUp()) return false; // Initialize map space. map_space_ = new MapSpace(this, MAP_SPACE); if (map_space_ == NULL) return false; if (!map_space_->SetUp()) return false; // The large object code space may contain code or data. We set the memory // to be non-executable here for safety, but this means we need to enable it // explicitly when allocating large code objects. lo_space_ = new LargeObjectSpace(this, LO_SPACE); if (lo_space_ == NULL) return false; if (!lo_space_->SetUp()) return false; // Set up the seed that is used to randomize the string hash function. DCHECK(hash_seed() == 0); if (FLAG_randomize_hashes) { if (FLAG_hash_seed == 0) { int rnd = isolate()->random_number_generator()->NextInt(); set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask)); } else { set_hash_seed(Smi::FromInt(FLAG_hash_seed)); } } for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); i++) { deferred_counters_[i] = 0; } tracer_ = new GCTracer(this); scavenge_collector_ = new Scavenger(this); mark_compact_collector_ = new MarkCompactCollector(this); gc_idle_time_handler_ = new GCIdleTimeHandler(); memory_reducer_ = new MemoryReducer(this); object_stats_ = new ObjectStats(this); object_stats_->ClearObjectStats(true); scavenge_job_ = new ScavengeJob(); LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity())); LOG(isolate_, IntPtrTEvent("heap-available", Available())); store_buffer()->SetUp(); mark_compact_collector()->SetUp(); idle_scavenge_observer_ = new IdleScavengeObserver( *this, ScavengeJob::kBytesAllocatedBeforeNextIdleTask); new_space()->AddAllocationObserver(idle_scavenge_observer_); return true; } bool Heap::CreateHeapObjects() { // Create initial maps. if (!CreateInitialMaps()) return false; CreateApiObjects(); // Create initial objects CreateInitialObjects(); CHECK_EQ(0u, gc_count_); set_native_contexts_list(undefined_value()); set_allocation_sites_list(undefined_value()); return true; } void Heap::SetStackLimits() { DCHECK(isolate_ != NULL); DCHECK(isolate_ == isolate()); // On 64 bit machines, pointers are generally out of range of Smis. We write // something that looks like an out of range Smi to the GC. // Set up the special root array entries containing the stack limits. // These are actually addresses, but the tag makes the GC ignore it. roots_[kStackLimitRootIndex] = reinterpret_cast<Object*>( (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag); roots_[kRealStackLimitRootIndex] = reinterpret_cast<Object*>( (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag); } void Heap::ClearStackLimits() { roots_[kStackLimitRootIndex] = Smi::FromInt(0); roots_[kRealStackLimitRootIndex] = Smi::FromInt(0); } void Heap::PrintAlloctionsHash() { uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_); PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count(), hash); } void Heap::NotifyDeserializationComplete() { deserialization_complete_ = true; #ifdef DEBUG // All pages right after bootstrapping must be marked as never-evacuate. PagedSpaces spaces(this); for (PagedSpace* s = spaces.next(); s != NULL; s = spaces.next()) { for (Page* p : *s) { CHECK(p->NeverEvacuate()); } } #endif // DEBUG } void Heap::SetEmbedderHeapTracer(EmbedderHeapTracer* tracer) { mark_compact_collector()->SetEmbedderHeapTracer(tracer); } bool Heap::UsingEmbedderHeapTracer() { return mark_compact_collector()->UsingEmbedderHeapTracer(); } void Heap::TracePossibleWrapper(JSObject* js_object) { mark_compact_collector()->TracePossibleWrapper(js_object); } void Heap::RegisterExternallyReferencedObject(Object** object) { mark_compact_collector()->RegisterExternallyReferencedObject(object); } void Heap::TearDown() { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif UpdateMaximumCommitted(); if (FLAG_print_cumulative_gc_stat) { PrintF("\n"); PrintF("gc_count=%d ", gc_count_); PrintF("mark_sweep_count=%d ", ms_count_); PrintF("max_gc_pause=%.1f ", get_max_gc_pause()); PrintF("total_gc_time=%.1f ", total_gc_time_ms_); PrintF("min_in_mutator=%.1f ", get_min_in_mutator()); PrintF("max_alive_after_gc=%" V8PRIdPTR " ", get_max_alive_after_gc()); PrintF("total_marking_time=%.1f ", tracer()->cumulative_marking_duration()); PrintF("total_sweeping_time=%.1f ", tracer()->cumulative_sweeping_duration()); PrintF("\n\n"); } if (FLAG_print_max_heap_committed) { PrintF("\n"); PrintF("maximum_committed_by_heap=%" V8PRIdPTR " ", MaximumCommittedMemory()); PrintF("maximum_committed_by_new_space=%" V8PRIdPTR " ", new_space_.MaximumCommittedMemory()); PrintF("maximum_committed_by_old_space=%" V8PRIdPTR " ", old_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_code_space=%" V8PRIdPTR " ", code_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_map_space=%" V8PRIdPTR " ", map_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_lo_space=%" V8PRIdPTR " ", lo_space_->MaximumCommittedMemory()); PrintF("\n\n"); } if (FLAG_verify_predictable) { PrintAlloctionsHash(); } new_space()->RemoveAllocationObserver(idle_scavenge_observer_); delete idle_scavenge_observer_; idle_scavenge_observer_ = nullptr; delete scavenge_collector_; scavenge_collector_ = nullptr; if (mark_compact_collector_ != nullptr) { mark_compact_collector_->TearDown(); delete mark_compact_collector_; mark_compact_collector_ = nullptr; } delete incremental_marking_; incremental_marking_ = nullptr; delete gc_idle_time_handler_; gc_idle_time_handler_ = nullptr; if (memory_reducer_ != nullptr) { memory_reducer_->TearDown(); delete memory_reducer_; memory_reducer_ = nullptr; } delete object_stats_; object_stats_ = nullptr; delete scavenge_job_; scavenge_job_ = nullptr; isolate_->global_handles()->TearDown(); external_string_table_.TearDown(); delete tracer_; tracer_ = nullptr; new_space_.TearDown(); if (old_space_ != NULL) { delete old_space_; old_space_ = NULL; } if (code_space_ != NULL) { delete code_space_; code_space_ = NULL; } if (map_space_ != NULL) { delete map_space_; map_space_ = NULL; } if (lo_space_ != NULL) { lo_space_->TearDown(); delete lo_space_; lo_space_ = NULL; } store_buffer()->TearDown(); memory_allocator()->TearDown(); StrongRootsList* next = NULL; for (StrongRootsList* list = strong_roots_list_; list; list = next) { next = list->next; delete list; } strong_roots_list_ = NULL; delete memory_allocator_; memory_allocator_ = nullptr; } void Heap::AddGCPrologueCallback(v8::Isolate::GCCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_prologue_callbacks_.Contains(pair)); return gc_prologue_callbacks_.Add(pair); } void Heap::RemoveGCPrologueCallback(v8::Isolate::GCCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_prologue_callbacks_[i].callback == callback) { gc_prologue_callbacks_.Remove(i); return; } } UNREACHABLE(); } void Heap::AddGCEpilogueCallback(v8::Isolate::GCCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_epilogue_callbacks_.Contains(pair)); return gc_epilogue_callbacks_.Add(pair); } void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_epilogue_callbacks_[i].callback == callback) { gc_epilogue_callbacks_.Remove(i); return; } } UNREACHABLE(); } // TODO(ishell): Find a better place for this. void Heap::AddWeakObjectToCodeDependency(Handle<HeapObject> obj, Handle<DependentCode> dep) { DCHECK(!InNewSpace(*obj)); DCHECK(!InNewSpace(*dep)); Handle<WeakHashTable> table(weak_object_to_code_table(), isolate()); table = WeakHashTable::Put(table, obj, dep); if (*table != weak_object_to_code_table()) set_weak_object_to_code_table(*table); DCHECK_EQ(*dep, LookupWeakObjectToCodeDependency(obj)); } DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle<HeapObject> obj) { Object* dep = weak_object_to_code_table()->Lookup(obj); if (dep->IsDependentCode()) return DependentCode::cast(dep); return DependentCode::cast(empty_fixed_array()); } namespace { void CompactWeakFixedArray(Object* object) { if (object->IsWeakFixedArray()) { WeakFixedArray* array = WeakFixedArray::cast(object); array->Compact<WeakFixedArray::NullCallback>(); } } } // anonymous namespace void Heap::CompactWeakFixedArrays() { // Find known WeakFixedArrays and compact them. HeapIterator iterator(this); for (HeapObject* o = iterator.next(); o != NULL; o = iterator.next()) { if (o->IsPrototypeInfo()) { Object* prototype_users = PrototypeInfo::cast(o)->prototype_users(); if (prototype_users->IsWeakFixedArray()) { WeakFixedArray* array = WeakFixedArray::cast(prototype_users); array->Compact<JSObject::PrototypeRegistryCompactionCallback>(); } } else if (o->IsScript()) { CompactWeakFixedArray(Script::cast(o)->shared_function_infos()); } } CompactWeakFixedArray(noscript_shared_function_infos()); CompactWeakFixedArray(script_list()); CompactWeakFixedArray(weak_stack_trace_list()); } void Heap::AddRetainedMap(Handle<Map> map) { Handle<WeakCell> cell = Map::WeakCellForMap(map); Handle<ArrayList> array(retained_maps(), isolate()); if (array->IsFull()) { CompactRetainedMaps(*array); } array = ArrayList::Add( array, cell, handle(Smi::FromInt(FLAG_retain_maps_for_n_gc), isolate()), ArrayList::kReloadLengthAfterAllocation); if (*array != retained_maps()) { set_retained_maps(*array); } } void Heap::CompactRetainedMaps(ArrayList* retained_maps) { DCHECK_EQ(retained_maps, this->retained_maps()); int length = retained_maps->Length(); int new_length = 0; int new_number_of_disposed_maps = 0; // This loop compacts the array by removing cleared weak cells. for (int i = 0; i < length; i += 2) { DCHECK(retained_maps->Get(i)->IsWeakCell()); WeakCell* cell = WeakCell::cast(retained_maps->Get(i)); Object* age = retained_maps->Get(i + 1); if (cell->cleared()) continue; if (i != new_length) { retained_maps->Set(new_length, cell); retained_maps->Set(new_length + 1, age); } if (i < number_of_disposed_maps_) { new_number_of_disposed_maps += 2; } new_length += 2; } number_of_disposed_maps_ = new_number_of_disposed_maps; Object* undefined = undefined_value(); for (int i = new_length; i < length; i++) { retained_maps->Clear(i, undefined); } if (new_length != length) retained_maps->SetLength(new_length); } void Heap::FatalProcessOutOfMemory(const char* location, bool is_heap_oom) { v8::internal::V8::FatalProcessOutOfMemory(location, is_heap_oom); } #ifdef DEBUG class PrintHandleVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) override { for (Object** p = start; p < end; p++) PrintF(" handle %p to %p\n", reinterpret_cast<void*>(p), reinterpret_cast<void*>(*p)); } }; void Heap::PrintHandles() { PrintF("Handles:\n"); PrintHandleVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } #endif class CheckHandleCountVisitor : public ObjectVisitor { public: CheckHandleCountVisitor() : handle_count_(0) {} ~CheckHandleCountVisitor() override { CHECK(handle_count_ < HandleScope::kCheckHandleThreshold); } void VisitPointers(Object** start, Object** end) override { handle_count_ += end - start; } private: ptrdiff_t handle_count_; }; void Heap::CheckHandleCount() { CheckHandleCountVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } void Heap::ClearRecordedSlot(HeapObject* object, Object** slot) { if (!InNewSpace(object)) { store_buffer()->MoveEntriesToRememberedSet(); Address slot_addr = reinterpret_cast<Address>(slot); Page* page = Page::FromAddress(slot_addr); DCHECK_EQ(page->owner()->identity(), OLD_SPACE); RememberedSet<OLD_TO_NEW>::Remove(page, slot_addr); RememberedSet<OLD_TO_OLD>::Remove(page, slot_addr); } } void Heap::ClearRecordedSlotRange(Address start, Address end) { Page* page = Page::FromAddress(start); if (!page->InNewSpace()) { store_buffer()->MoveEntriesToRememberedSet(); DCHECK_EQ(page->owner()->identity(), OLD_SPACE); RememberedSet<OLD_TO_NEW>::RemoveRange(page, start, end); RememberedSet<OLD_TO_OLD>::RemoveRange(page, start, end); } } Space* AllSpaces::next() { switch (counter_++) { case NEW_SPACE: return heap_->new_space(); case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); case LO_SPACE: return heap_->lo_space(); default: return NULL; } } PagedSpace* PagedSpaces::next() { switch (counter_++) { case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); default: return NULL; } } OldSpace* OldSpaces::next() { switch (counter_++) { case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); default: return NULL; } } SpaceIterator::SpaceIterator(Heap* heap) : heap_(heap), current_space_(FIRST_SPACE), iterator_(NULL) {} SpaceIterator::~SpaceIterator() { // Delete active iterator if any. delete iterator_; } bool SpaceIterator::has_next() { // Iterate until no more spaces. return current_space_ != LAST_SPACE; } ObjectIterator* SpaceIterator::next() { if (iterator_ != NULL) { delete iterator_; iterator_ = NULL; // Move to the next space current_space_++; if (current_space_ > LAST_SPACE) { return NULL; } } // Return iterator for the new current space. return CreateIterator(); } // Create an iterator for the space to iterate. ObjectIterator* SpaceIterator::CreateIterator() { DCHECK(iterator_ == NULL); switch (current_space_) { case NEW_SPACE: iterator_ = new SemiSpaceIterator(heap_->new_space()); break; case OLD_SPACE: iterator_ = new HeapObjectIterator(heap_->old_space()); break; case CODE_SPACE: iterator_ = new HeapObjectIterator(heap_->code_space()); break; case MAP_SPACE: iterator_ = new HeapObjectIterator(heap_->map_space()); break; case LO_SPACE: iterator_ = new LargeObjectIterator(heap_->lo_space()); break; } // Return the newly allocated iterator; DCHECK(iterator_ != NULL); return iterator_; } class HeapObjectsFilter { public: virtual ~HeapObjectsFilter() {} virtual bool SkipObject(HeapObject* object) = 0; }; class UnreachableObjectsFilter : public HeapObjectsFilter { public: explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) { MarkReachableObjects(); } ~UnreachableObjectsFilter() { heap_->mark_compact_collector()->ClearMarkbits(); } bool SkipObject(HeapObject* object) { if (object->IsFiller()) return true; MarkBit mark_bit = Marking::MarkBitFrom(object); return Marking::IsWhite(mark_bit); } private: class MarkingVisitor : public ObjectVisitor { public: MarkingVisitor() : marking_stack_(10) {} void VisitPointers(Object** start, Object** end) override { for (Object** p = start; p < end; p++) { if (!(*p)->IsHeapObject()) continue; HeapObject* obj = HeapObject::cast(*p); MarkBit mark_bit = Marking::MarkBitFrom(obj); if (Marking::IsWhite(mark_bit)) { Marking::WhiteToBlack(mark_bit); marking_stack_.Add(obj); } } } void TransitiveClosure() { while (!marking_stack_.is_empty()) { HeapObject* obj = marking_stack_.RemoveLast(); obj->Iterate(this); } } private: List<HeapObject*> marking_stack_; }; void MarkReachableObjects() { MarkingVisitor visitor; heap_->IterateRoots(&visitor, VISIT_ALL); visitor.TransitiveClosure(); } Heap* heap_; DisallowHeapAllocation no_allocation_; }; HeapIterator::HeapIterator(Heap* heap, HeapIterator::HeapObjectsFiltering filtering) : make_heap_iterable_helper_(heap), no_heap_allocation_(), heap_(heap), filtering_(filtering), filter_(nullptr), space_iterator_(nullptr), object_iterator_(nullptr) { heap_->heap_iterator_start(); // Start the iteration. space_iterator_ = new SpaceIterator(heap_); switch (filtering_) { case kFilterUnreachable: filter_ = new UnreachableObjectsFilter(heap_); break; default: break; } object_iterator_ = space_iterator_->next(); } HeapIterator::~HeapIterator() { heap_->heap_iterator_end(); #ifdef DEBUG // Assert that in filtering mode we have iterated through all // objects. Otherwise, heap will be left in an inconsistent state. if (filtering_ != kNoFiltering) { DCHECK(object_iterator_ == nullptr); } #endif // Make sure the last iterator is deallocated. delete object_iterator_; delete space_iterator_; delete filter_; } HeapObject* HeapIterator::next() { if (filter_ == nullptr) return NextObject(); HeapObject* obj = NextObject(); while ((obj != nullptr) && (filter_->SkipObject(obj))) obj = NextObject(); return obj; } HeapObject* HeapIterator::NextObject() { // No iterator means we are done. if (object_iterator_ == nullptr) return nullptr; if (HeapObject* obj = object_iterator_->Next()) { // If the current iterator has more objects we are fine. return obj; } else { // Go though the spaces looking for one that has objects. while (space_iterator_->has_next()) { object_iterator_ = space_iterator_->next(); if (HeapObject* obj = object_iterator_->Next()) { return obj; } } } // Done with the last space. object_iterator_ = nullptr; return nullptr; } #ifdef DEBUG Object* const PathTracer::kAnyGlobalObject = NULL; class PathTracer::MarkVisitor : public ObjectVisitor { public: explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) override { // Scan all HeapObject pointers in [start, end) for (Object** p = start; !tracer_->found() && (p < end); p++) { if ((*p)->IsHeapObject()) tracer_->MarkRecursively(p, this); } } private: PathTracer* tracer_; }; class PathTracer::UnmarkVisitor : public ObjectVisitor { public: explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) override { // Scan all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) tracer_->UnmarkRecursively(p, this); } } private: PathTracer* tracer_; }; void PathTracer::VisitPointers(Object** start, Object** end) { bool done = ((what_to_find_ == FIND_FIRST) && found_target_); // Visit all HeapObject pointers in [start, end) for (Object** p = start; !done && (p < end); p++) { if ((*p)->IsHeapObject()) { TracePathFrom(p); done = ((what_to_find_ == FIND_FIRST) && found_target_); } } } void PathTracer::Reset() { found_target_ = false; object_stack_.Clear(); } void PathTracer::TracePathFrom(Object** root) { DCHECK((search_target_ == kAnyGlobalObject) || search_target_->IsHeapObject()); found_target_in_trace_ = false; Reset(); MarkVisitor mark_visitor(this); MarkRecursively(root, &mark_visitor); UnmarkVisitor unmark_visitor(this); UnmarkRecursively(root, &unmark_visitor); ProcessResults(); } static bool SafeIsNativeContext(HeapObject* obj) { return obj->map() == obj->GetHeap()->root(Heap::kNativeContextMapRootIndex); } void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); MapWord map_word = obj->map_word(); if (!map_word.ToMap()->IsHeapObject()) return; // visited before if (found_target_in_trace_) return; // stop if target found object_stack_.Add(obj); if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) || (obj == search_target_)) { found_target_in_trace_ = true; found_target_ = true; return; } bool is_native_context = SafeIsNativeContext(obj); // not visited yet Map* map = Map::cast(map_word.ToMap()); MapWord marked_map_word = MapWord::FromRawValue(obj->map_word().ToRawValue() + kMarkTag); obj->set_map_word(marked_map_word); // Scan the object body. if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) { // This is specialized to scan Context's properly. Object** start = reinterpret_cast<Object**>(obj->address() + Context::kHeaderSize); Object** end = reinterpret_cast<Object**>(obj->address() + Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize); mark_visitor->VisitPointers(start, end); } else { obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), mark_visitor); } // Scan the map after the body because the body is a lot more interesting // when doing leak detection. MarkRecursively(reinterpret_cast<Object**>(&map), mark_visitor); if (!found_target_in_trace_) { // don't pop if found the target object_stack_.RemoveLast(); } } void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); MapWord map_word = obj->map_word(); if (map_word.ToMap()->IsHeapObject()) return; // unmarked already MapWord unmarked_map_word = MapWord::FromRawValue(map_word.ToRawValue() - kMarkTag); obj->set_map_word(unmarked_map_word); Map* map = Map::cast(unmarked_map_word.ToMap()); UnmarkRecursively(reinterpret_cast<Object**>(&map), unmark_visitor); obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), unmark_visitor); } void PathTracer::ProcessResults() { if (found_target_) { OFStream os(stdout); os << "=====================================\n" << "==== Path to object ====\n" << "=====================================\n\n"; DCHECK(!object_stack_.is_empty()); for (int i = 0; i < object_stack_.length(); i++) { if (i > 0) os << "\n |\n |\n V\n\n"; object_stack_[i]->Print(os); } os << "=====================================\n"; } } // Triggers a depth-first traversal of reachable objects from one // given root object and finds a path to a specific heap object and // prints it. void Heap::TracePathToObjectFrom(Object* target, Object* root) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); tracer.VisitPointer(&root); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to a specific heap object and prints it. void Heap::TracePathToObject(Object* target) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to any global object and prints it. Useful for // determining the source for leaks of global objects. void Heap::TracePathToGlobal() { PathTracer tracer(PathTracer::kAnyGlobalObject, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } #endif void Heap::UpdateCumulativeGCStatistics(double duration, double spent_in_mutator, double marking_time) { if (FLAG_print_cumulative_gc_stat) { total_gc_time_ms_ += duration; max_gc_pause_ = Max(max_gc_pause_, duration); max_alive_after_gc_ = Max(max_alive_after_gc_, SizeOfObjects()); min_in_mutator_ = Min(min_in_mutator_, spent_in_mutator); } else if (FLAG_trace_gc_verbose) { total_gc_time_ms_ += duration; } marking_time_ += marking_time; } int KeyedLookupCache::Hash(Handle<Map> map, Handle<Name> name) { DisallowHeapAllocation no_gc; // Uses only lower 32 bits if pointers are larger. uintptr_t addr_hash = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*map)) >> kMapHashShift; return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask); } int KeyedLookupCache::Lookup(Handle<Map> map, Handle<Name> name) { DisallowHeapAllocation no_gc; int index = (Hash(map, name) & kHashMask); for (int i = 0; i < kEntriesPerBucket; i++) { Key& key = keys_[index + i]; if ((key.map == *map) && key.name->Equals(*name)) { return field_offsets_[index + i]; } } return kNotFound; } void KeyedLookupCache::Update(Handle<Map> map, Handle<Name> name, int field_offset) { DisallowHeapAllocation no_gc; if (!name->IsUniqueName()) { if (!StringTable::InternalizeStringIfExists( name->GetIsolate(), Handle<String>::cast(name)).ToHandle(&name)) { return; } } // This cache is cleared only between mark compact passes, so we expect the // cache to only contain old space names. DCHECK(!map->GetIsolate()->heap()->InNewSpace(*name)); int index = (Hash(map, name) & kHashMask); // After a GC there will be free slots, so we use them in order (this may // help to get the most frequently used one in position 0). for (int i = 0; i < kEntriesPerBucket; i++) { Key& key = keys_[index]; Object* free_entry_indicator = NULL; if (key.map == free_entry_indicator) { key.map = *map; key.name = *name; field_offsets_[index + i] = field_offset; return; } } // No free entry found in this bucket, so we move them all down one and // put the new entry at position zero. for (int i = kEntriesPerBucket - 1; i > 0; i--) { Key& key = keys_[index + i]; Key& key2 = keys_[index + i - 1]; key = key2; field_offsets_[index + i] = field_offsets_[index + i - 1]; } // Write the new first entry. Key& key = keys_[index]; key.map = *map; key.name = *name; field_offsets_[index] = field_offset; } void KeyedLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].map = NULL; } void DescriptorLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].source = NULL; } void Heap::ExternalStringTable::CleanUp() { int last = 0; Isolate* isolate = heap_->isolate(); for (int i = 0; i < new_space_strings_.length(); ++i) { if (new_space_strings_[i]->IsTheHole(isolate)) { continue; } DCHECK(new_space_strings_[i]->IsExternalString()); if (heap_->InNewSpace(new_space_strings_[i])) { new_space_strings_[last++] = new_space_strings_[i]; } else { old_space_strings_.Add(new_space_strings_[i]); } } new_space_strings_.Rewind(last); new_space_strings_.Trim(); last = 0; for (int i = 0; i < old_space_strings_.length(); ++i) { if (old_space_strings_[i]->IsTheHole(isolate)) { continue; } DCHECK(old_space_strings_[i]->IsExternalString()); DCHECK(!heap_->InNewSpace(old_space_strings_[i])); old_space_strings_[last++] = old_space_strings_[i]; } old_space_strings_.Rewind(last); old_space_strings_.Trim(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void Heap::ExternalStringTable::TearDown() { for (int i = 0; i < new_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i])); } new_space_strings_.Free(); for (int i = 0; i < old_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i])); } old_space_strings_.Free(); } void Heap::RememberUnmappedPage(Address page, bool compacted) { uintptr_t p = reinterpret_cast<uintptr_t>(page); // Tag the page pointer to make it findable in the dump file. if (compacted) { p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared. } else { p ^= 0x1d1ed & (Page::kPageSize - 1); // I died. } remembered_unmapped_pages_[remembered_unmapped_pages_index_] = reinterpret_cast<Address>(p); remembered_unmapped_pages_index_++; remembered_unmapped_pages_index_ %= kRememberedUnmappedPages; } void Heap::RegisterStrongRoots(Object** start, Object** end) { StrongRootsList* list = new StrongRootsList(); list->next = strong_roots_list_; list->start = start; list->end = end; strong_roots_list_ = list; } void Heap::UnregisterStrongRoots(Object** start) { StrongRootsList* prev = NULL; StrongRootsList* list = strong_roots_list_; while (list != nullptr) { StrongRootsList* next = list->next; if (list->start == start) { if (prev) { prev->next = next; } else { strong_roots_list_ = next; } delete list; } else { prev = list; } list = next; } } size_t Heap::NumberOfTrackedHeapObjectTypes() { return ObjectStats::OBJECT_STATS_COUNT; } size_t Heap::ObjectCountAtLastGC(size_t index) { if (index >= ObjectStats::OBJECT_STATS_COUNT) return 0; return object_stats_->object_count_last_gc(index); } size_t Heap::ObjectSizeAtLastGC(size_t index) { if (index >= ObjectStats::OBJECT_STATS_COUNT) return 0; return object_stats_->object_size_last_gc(index); } bool Heap::GetObjectTypeName(size_t index, const char** object_type, const char** object_sub_type) { if (index >= ObjectStats::OBJECT_STATS_COUNT) return false; switch (static_cast<int>(index)) { #define COMPARE_AND_RETURN_NAME(name) \ case name: \ *object_type = #name; \ *object_sub_type = ""; \ return true; INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case ObjectStats::FIRST_CODE_KIND_SUB_TYPE + Code::name: \ *object_type = "CODE_TYPE"; \ *object_sub_type = "CODE_KIND/" #name; \ return true; CODE_KIND_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case ObjectStats::FIRST_FIXED_ARRAY_SUB_TYPE + name: \ *object_type = "FIXED_ARRAY_TYPE"; \ *object_sub_type = #name; \ return true; FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case ObjectStats::FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - \ Code::kFirstCodeAge: \ *object_type = "CODE_TYPE"; \ *object_sub_type = "CODE_AGE/" #name; \ return true; CODE_AGE_LIST_COMPLETE(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME } return false; } // static int Heap::GetStaticVisitorIdForMap(Map* map) { return StaticVisitorBase::GetVisitorId(map); } } // namespace internal } // namespace v8