// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/spaces.h" #include <utility> #include "src/base/bits.h" #include "src/base/platform/platform.h" #include "src/base/platform/semaphore.h" #include "src/full-codegen/full-codegen.h" #include "src/heap/array-buffer-tracker.h" #include "src/heap/slot-set.h" #include "src/macro-assembler.h" #include "src/msan.h" #include "src/snapshot/snapshot.h" #include "src/v8.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // HeapObjectIterator HeapObjectIterator::HeapObjectIterator(PagedSpace* space) : cur_addr_(nullptr), cur_end_(nullptr), space_(space), page_range_(space->anchor()->next_page(), space->anchor()), current_page_(page_range_.begin()) {} HeapObjectIterator::HeapObjectIterator(Page* page) : cur_addr_(nullptr), cur_end_(nullptr), space_(reinterpret_cast<PagedSpace*>(page->owner())), page_range_(page), current_page_(page_range_.begin()) { #ifdef DEBUG Space* owner = page->owner(); DCHECK(owner == page->heap()->old_space() || owner == page->heap()->map_space() || owner == page->heap()->code_space()); #endif // DEBUG } // We have hit the end of the page and should advance to the next block of // objects. This happens at the end of the page. bool HeapObjectIterator::AdvanceToNextPage() { DCHECK_EQ(cur_addr_, cur_end_); if (current_page_ == page_range_.end()) return false; Page* cur_page = *(current_page_++); space_->heap() ->mark_compact_collector() ->sweeper() .SweepOrWaitUntilSweepingCompleted(cur_page); cur_addr_ = cur_page->area_start(); cur_end_ = cur_page->area_end(); DCHECK(cur_page->SweepingDone()); return true; } PauseAllocationObserversScope::PauseAllocationObserversScope(Heap* heap) : heap_(heap) { AllSpaces spaces(heap_); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { space->PauseAllocationObservers(); } } PauseAllocationObserversScope::~PauseAllocationObserversScope() { AllSpaces spaces(heap_); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { space->ResumeAllocationObservers(); } } // ----------------------------------------------------------------------------- // CodeRange CodeRange::CodeRange(Isolate* isolate) : isolate_(isolate), code_range_(NULL), free_list_(0), allocation_list_(0), current_allocation_block_index_(0) {} bool CodeRange::SetUp(size_t requested) { DCHECK(code_range_ == NULL); if (requested == 0) { // When a target requires the code range feature, we put all code objects // in a kMaximalCodeRangeSize range of virtual address space, so that // they can call each other with near calls. if (kRequiresCodeRange) { requested = kMaximalCodeRangeSize; } else { return true; } } if (requested <= kMinimumCodeRangeSize) { requested = kMinimumCodeRangeSize; } const size_t reserved_area = kReservedCodeRangePages * base::OS::CommitPageSize(); if (requested < (kMaximalCodeRangeSize - reserved_area)) requested += reserved_area; DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize); code_range_ = new base::VirtualMemory( requested, Max(kCodeRangeAreaAlignment, static_cast<size_t>(base::OS::AllocateAlignment()))); CHECK(code_range_ != NULL); if (!code_range_->IsReserved()) { delete code_range_; code_range_ = NULL; return false; } // We are sure that we have mapped a block of requested addresses. DCHECK(code_range_->size() == requested); Address base = reinterpret_cast<Address>(code_range_->address()); // On some platforms, specifically Win64, we need to reserve some pages at // the beginning of an executable space. if (reserved_area > 0) { if (!code_range_->Commit(base, reserved_area, true)) { delete code_range_; code_range_ = NULL; return false; } base += reserved_area; } Address aligned_base = RoundUp(base, MemoryChunk::kAlignment); size_t size = code_range_->size() - (aligned_base - base) - reserved_area; allocation_list_.Add(FreeBlock(aligned_base, size)); current_allocation_block_index_ = 0; LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested)); return true; } int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, const FreeBlock* right) { // The entire point of CodeRange is that the difference between two // addresses in the range can be represented as a signed 32-bit int, // so the cast is semantically correct. return static_cast<int>(left->start - right->start); } bool CodeRange::GetNextAllocationBlock(size_t requested) { for (current_allocation_block_index_++; current_allocation_block_index_ < allocation_list_.length(); current_allocation_block_index_++) { if (requested <= allocation_list_[current_allocation_block_index_].size) { return true; // Found a large enough allocation block. } } // Sort and merge the free blocks on the free list and the allocation list. free_list_.AddAll(allocation_list_); allocation_list_.Clear(); free_list_.Sort(&CompareFreeBlockAddress); for (int i = 0; i < free_list_.length();) { FreeBlock merged = free_list_[i]; i++; // Add adjacent free blocks to the current merged block. while (i < free_list_.length() && free_list_[i].start == merged.start + merged.size) { merged.size += free_list_[i].size; i++; } if (merged.size > 0) { allocation_list_.Add(merged); } } free_list_.Clear(); for (current_allocation_block_index_ = 0; current_allocation_block_index_ < allocation_list_.length(); current_allocation_block_index_++) { if (requested <= allocation_list_[current_allocation_block_index_].size) { return true; // Found a large enough allocation block. } } current_allocation_block_index_ = 0; // Code range is full or too fragmented. return false; } Address CodeRange::AllocateRawMemory(const size_t requested_size, const size_t commit_size, size_t* allocated) { // request_size includes guards while committed_size does not. Make sure // callers know about the invariant. CHECK_LE(commit_size, requested_size - 2 * MemoryAllocator::CodePageGuardSize()); FreeBlock current; if (!ReserveBlock(requested_size, ¤t)) { *allocated = 0; return NULL; } *allocated = current.size; DCHECK(*allocated <= current.size); DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment)); if (!isolate_->heap()->memory_allocator()->CommitExecutableMemory( code_range_, current.start, commit_size, *allocated)) { *allocated = 0; ReleaseBlock(¤t); return NULL; } return current.start; } bool CodeRange::CommitRawMemory(Address start, size_t length) { return isolate_->heap()->memory_allocator()->CommitMemory(start, length, EXECUTABLE); } bool CodeRange::UncommitRawMemory(Address start, size_t length) { return code_range_->Uncommit(start, length); } void CodeRange::FreeRawMemory(Address address, size_t length) { DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment)); base::LockGuard<base::Mutex> guard(&code_range_mutex_); free_list_.Add(FreeBlock(address, length)); code_range_->Uncommit(address, length); } void CodeRange::TearDown() { delete code_range_; // Frees all memory in the virtual memory range. code_range_ = NULL; base::LockGuard<base::Mutex> guard(&code_range_mutex_); free_list_.Free(); allocation_list_.Free(); } bool CodeRange::ReserveBlock(const size_t requested_size, FreeBlock* block) { base::LockGuard<base::Mutex> guard(&code_range_mutex_); DCHECK(allocation_list_.length() == 0 || current_allocation_block_index_ < allocation_list_.length()); if (allocation_list_.length() == 0 || requested_size > allocation_list_[current_allocation_block_index_].size) { // Find an allocation block large enough. if (!GetNextAllocationBlock(requested_size)) return false; } // Commit the requested memory at the start of the current allocation block. size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment); *block = allocation_list_[current_allocation_block_index_]; // Don't leave a small free block, useless for a large object or chunk. if (aligned_requested < (block->size - Page::kPageSize)) { block->size = aligned_requested; } DCHECK(IsAddressAligned(block->start, MemoryChunk::kAlignment)); allocation_list_[current_allocation_block_index_].start += block->size; allocation_list_[current_allocation_block_index_].size -= block->size; return true; } void CodeRange::ReleaseBlock(const FreeBlock* block) { base::LockGuard<base::Mutex> guard(&code_range_mutex_); free_list_.Add(*block); } // ----------------------------------------------------------------------------- // MemoryAllocator // MemoryAllocator::MemoryAllocator(Isolate* isolate) : isolate_(isolate), code_range_(nullptr), capacity_(0), capacity_executable_(0), size_(0), size_executable_(0), lowest_ever_allocated_(reinterpret_cast<void*>(-1)), highest_ever_allocated_(reinterpret_cast<void*>(0)), unmapper_(this) {} bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable, intptr_t code_range_size) { capacity_ = RoundUp(capacity, Page::kPageSize); capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); DCHECK_GE(capacity_, capacity_executable_); size_ = 0; size_executable_ = 0; code_range_ = new CodeRange(isolate_); if (!code_range_->SetUp(static_cast<size_t>(code_range_size))) return false; return true; } void MemoryAllocator::TearDown() { unmapper()->WaitUntilCompleted(); MemoryChunk* chunk = nullptr; while ((chunk = unmapper()->TryGetPooledMemoryChunkSafe()) != nullptr) { FreeMemory(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize, NOT_EXECUTABLE); } // Check that spaces were torn down before MemoryAllocator. DCHECK_EQ(size_.Value(), 0); // TODO(gc) this will be true again when we fix FreeMemory. // DCHECK(size_executable_ == 0); capacity_ = 0; capacity_executable_ = 0; if (last_chunk_.IsReserved()) { last_chunk_.Release(); } delete code_range_; code_range_ = nullptr; } class MemoryAllocator::Unmapper::UnmapFreeMemoryTask : public v8::Task { public: explicit UnmapFreeMemoryTask(Unmapper* unmapper) : unmapper_(unmapper) {} private: // v8::Task overrides. void Run() override { unmapper_->PerformFreeMemoryOnQueuedChunks(); unmapper_->pending_unmapping_tasks_semaphore_.Signal(); } Unmapper* unmapper_; DISALLOW_COPY_AND_ASSIGN(UnmapFreeMemoryTask); }; void MemoryAllocator::Unmapper::FreeQueuedChunks() { ReconsiderDelayedChunks(); if (FLAG_concurrent_sweeping) { V8::GetCurrentPlatform()->CallOnBackgroundThread( new UnmapFreeMemoryTask(this), v8::Platform::kShortRunningTask); concurrent_unmapping_tasks_active_++; } else { PerformFreeMemoryOnQueuedChunks(); } } bool MemoryAllocator::Unmapper::WaitUntilCompleted() { bool waited = false; while (concurrent_unmapping_tasks_active_ > 0) { pending_unmapping_tasks_semaphore_.Wait(); concurrent_unmapping_tasks_active_--; waited = true; } return waited; } void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedChunks() { MemoryChunk* chunk = nullptr; // Regular chunks. while ((chunk = GetMemoryChunkSafe<kRegular>()) != nullptr) { bool pooled = chunk->IsFlagSet(MemoryChunk::POOLED); allocator_->PerformFreeMemory(chunk); if (pooled) AddMemoryChunkSafe<kPooled>(chunk); } // Non-regular chunks. while ((chunk = GetMemoryChunkSafe<kNonRegular>()) != nullptr) { allocator_->PerformFreeMemory(chunk); } } void MemoryAllocator::Unmapper::ReconsiderDelayedChunks() { std::list<MemoryChunk*> delayed_chunks(std::move(delayed_regular_chunks_)); // Move constructed, so the permanent list should be empty. DCHECK(delayed_regular_chunks_.empty()); for (auto it = delayed_chunks.begin(); it != delayed_chunks.end(); ++it) { AddMemoryChunkSafe<kRegular>(*it); } } bool MemoryAllocator::CanFreeMemoryChunk(MemoryChunk* chunk) { MarkCompactCollector* mc = isolate_->heap()->mark_compact_collector(); // We cannot free memory chunks in new space while the sweeper is running // since a sweeper thread might be stuck right before trying to lock the // corresponding page. return !chunk->InNewSpace() || (mc == nullptr) || mc->sweeper().IsSweepingCompleted(); } bool MemoryAllocator::CommitMemory(Address base, size_t size, Executability executable) { if (!base::VirtualMemory::CommitRegion(base, size, executable == EXECUTABLE)) { return false; } UpdateAllocatedSpaceLimits(base, base + size); return true; } void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation, Executability executable) { // TODO(gc) make code_range part of memory allocator? // Code which is part of the code-range does not have its own VirtualMemory. DCHECK(code_range() == NULL || !code_range()->contains(static_cast<Address>(reservation->address()))); DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid() || reservation->size() <= Page::kPageSize); reservation->Release(); } void MemoryAllocator::FreeMemory(Address base, size_t size, Executability executable) { // TODO(gc) make code_range part of memory allocator? if (code_range() != NULL && code_range()->contains(static_cast<Address>(base))) { DCHECK(executable == EXECUTABLE); code_range()->FreeRawMemory(base, size); } else { DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid()); bool result = base::VirtualMemory::ReleaseRegion(base, size); USE(result); DCHECK(result); } } Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment, base::VirtualMemory* controller) { base::VirtualMemory reservation(size, alignment); if (!reservation.IsReserved()) return NULL; size_.Increment(static_cast<intptr_t>(reservation.size())); Address base = RoundUp(static_cast<Address>(reservation.address()), alignment); controller->TakeControl(&reservation); return base; } Address MemoryAllocator::AllocateAlignedMemory( size_t reserve_size, size_t commit_size, size_t alignment, Executability executable, base::VirtualMemory* controller) { DCHECK(commit_size <= reserve_size); base::VirtualMemory reservation; Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation); if (base == NULL) return NULL; if (executable == EXECUTABLE) { if (!CommitExecutableMemory(&reservation, base, commit_size, reserve_size)) { base = NULL; } } else { if (reservation.Commit(base, commit_size, false)) { UpdateAllocatedSpaceLimits(base, base + commit_size); } else { base = NULL; } } if (base == NULL) { // Failed to commit the body. Release the mapping and any partially // commited regions inside it. reservation.Release(); return NULL; } controller->TakeControl(&reservation); return base; } void Page::InitializeAsAnchor(Space* space) { set_owner(space); set_next_chunk(this); set_prev_chunk(this); SetFlags(0, ~0); SetFlag(ANCHOR); } MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size, Address area_start, Address area_end, Executability executable, Space* owner, base::VirtualMemory* reservation) { MemoryChunk* chunk = FromAddress(base); DCHECK(base == chunk->address()); chunk->heap_ = heap; chunk->size_ = size; chunk->area_start_ = area_start; chunk->area_end_ = area_end; chunk->flags_ = 0; chunk->set_owner(owner); chunk->InitializeReservedMemory(); chunk->old_to_new_slots_ = nullptr; chunk->old_to_old_slots_ = nullptr; chunk->typed_old_to_new_slots_ = nullptr; chunk->typed_old_to_old_slots_ = nullptr; chunk->skip_list_ = nullptr; chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity; chunk->progress_bar_ = 0; chunk->high_water_mark_.SetValue(static_cast<intptr_t>(area_start - base)); chunk->concurrent_sweeping_state().SetValue(kSweepingDone); chunk->mutex_ = new base::Mutex(); chunk->available_in_free_list_ = 0; chunk->wasted_memory_ = 0; chunk->ResetLiveBytes(); Bitmap::Clear(chunk); chunk->set_next_chunk(nullptr); chunk->set_prev_chunk(nullptr); chunk->local_tracker_ = nullptr; DCHECK(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset); DCHECK(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset); if (executable == EXECUTABLE) { chunk->SetFlag(IS_EXECUTABLE); } if (reservation != nullptr) { chunk->reservation_.TakeControl(reservation); } return chunk; } // Commit MemoryChunk area to the requested size. bool MemoryChunk::CommitArea(size_t requested) { size_t guard_size = IsFlagSet(IS_EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0; size_t header_size = area_start() - address() - guard_size; size_t commit_size = RoundUp(header_size + requested, base::OS::CommitPageSize()); size_t committed_size = RoundUp(header_size + (area_end() - area_start()), base::OS::CommitPageSize()); if (commit_size > committed_size) { // Commit size should be less or equal than the reserved size. DCHECK(commit_size <= size() - 2 * guard_size); // Append the committed area. Address start = address() + committed_size + guard_size; size_t length = commit_size - committed_size; if (reservation_.IsReserved()) { Executability executable = IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; if (!heap()->memory_allocator()->CommitMemory(start, length, executable)) { return false; } } else { CodeRange* code_range = heap_->memory_allocator()->code_range(); DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE)); if (!code_range->CommitRawMemory(start, length)) return false; } if (Heap::ShouldZapGarbage()) { heap_->memory_allocator()->ZapBlock(start, length); } } else if (commit_size < committed_size) { DCHECK(commit_size > 0); // Shrink the committed area. size_t length = committed_size - commit_size; Address start = address() + committed_size + guard_size - length; if (reservation_.IsReserved()) { if (!reservation_.Uncommit(start, length)) return false; } else { CodeRange* code_range = heap_->memory_allocator()->code_range(); DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE)); if (!code_range->UncommitRawMemory(start, length)) return false; } } area_end_ = area_start_ + requested; return true; } void MemoryChunk::InsertAfter(MemoryChunk* other) { MemoryChunk* other_next = other->next_chunk(); set_next_chunk(other_next); set_prev_chunk(other); other_next->set_prev_chunk(this); other->set_next_chunk(this); } void MemoryChunk::Unlink() { MemoryChunk* next_element = next_chunk(); MemoryChunk* prev_element = prev_chunk(); next_element->set_prev_chunk(prev_element); prev_element->set_next_chunk(next_element); set_prev_chunk(NULL); set_next_chunk(NULL); } MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size, intptr_t commit_area_size, Executability executable, Space* owner) { DCHECK(commit_area_size <= reserve_area_size); size_t chunk_size; Heap* heap = isolate_->heap(); Address base = NULL; base::VirtualMemory reservation; Address area_start = NULL; Address area_end = NULL; // // MemoryChunk layout: // // Executable // +----------------------------+<- base aligned with MemoryChunk::kAlignment // | Header | // +----------------------------+<- base + CodePageGuardStartOffset // | Guard | // +----------------------------+<- area_start_ // | Area | // +----------------------------+<- area_end_ (area_start + commit_area_size) // | Committed but not used | // +----------------------------+<- aligned at OS page boundary // | Reserved but not committed | // +----------------------------+<- aligned at OS page boundary // | Guard | // +----------------------------+<- base + chunk_size // // Non-executable // +----------------------------+<- base aligned with MemoryChunk::kAlignment // | Header | // +----------------------------+<- area_start_ (base + kObjectStartOffset) // | Area | // +----------------------------+<- area_end_ (area_start + commit_area_size) // | Committed but not used | // +----------------------------+<- aligned at OS page boundary // | Reserved but not committed | // +----------------------------+<- base + chunk_size // if (executable == EXECUTABLE) { chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size, base::OS::CommitPageSize()) + CodePageGuardSize(); // Check executable memory limit. if ((size_executable_.Value() + static_cast<intptr_t>(chunk_size)) > capacity_executable_) { LOG(isolate_, StringEvent("MemoryAllocator::AllocateRawMemory", "V8 Executable Allocation capacity exceeded")); return NULL; } // Size of header (not executable) plus area (executable). size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size, base::OS::CommitPageSize()); // Allocate executable memory either from code range or from the // OS. #ifdef V8_TARGET_ARCH_MIPS64 // Use code range only for large object space on mips64 to keep address // range within 256-MB memory region. if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) { #else if (code_range()->valid()) { #endif base = code_range()->AllocateRawMemory(chunk_size, commit_size, &chunk_size); DCHECK( IsAligned(reinterpret_cast<intptr_t>(base), MemoryChunk::kAlignment)); if (base == NULL) return NULL; size_.Increment(static_cast<intptr_t>(chunk_size)); // Update executable memory size. size_executable_.Increment(static_cast<intptr_t>(chunk_size)); } else { base = AllocateAlignedMemory(chunk_size, commit_size, MemoryChunk::kAlignment, executable, &reservation); if (base == NULL) return NULL; // Update executable memory size. size_executable_.Increment(static_cast<intptr_t>(reservation.size())); } if (Heap::ShouldZapGarbage()) { ZapBlock(base, CodePageGuardStartOffset()); ZapBlock(base + CodePageAreaStartOffset(), commit_area_size); } area_start = base + CodePageAreaStartOffset(); area_end = area_start + commit_area_size; } else { chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size, base::OS::CommitPageSize()); size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset + commit_area_size, base::OS::CommitPageSize()); base = AllocateAlignedMemory(chunk_size, commit_size, MemoryChunk::kAlignment, executable, &reservation); if (base == NULL) return NULL; if (Heap::ShouldZapGarbage()) { ZapBlock(base, Page::kObjectStartOffset + commit_area_size); } area_start = base + Page::kObjectStartOffset; area_end = area_start + commit_area_size; } // Use chunk_size for statistics and callbacks because we assume that they // treat reserved but not-yet committed memory regions of chunks as allocated. isolate_->counters()->memory_allocated()->Increment( static_cast<int>(chunk_size)); LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); // We cannot use the last chunk in the address space because we would // overflow when comparing top and limit if this chunk is used for a // linear allocation area. if ((reinterpret_cast<uintptr_t>(base) + chunk_size) == 0u) { CHECK(!last_chunk_.IsReserved()); last_chunk_.TakeControl(&reservation); UncommitBlock(reinterpret_cast<Address>(last_chunk_.address()), last_chunk_.size()); size_.Increment(-static_cast<intptr_t>(chunk_size)); if (executable == EXECUTABLE) { size_executable_.Increment(-static_cast<intptr_t>(chunk_size)); } CHECK(last_chunk_.IsReserved()); return AllocateChunk(reserve_area_size, commit_area_size, executable, owner); } return MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end, executable, owner, &reservation); } void Page::ResetFreeListStatistics() { wasted_memory_ = 0; available_in_free_list_ = 0; } void MemoryAllocator::PreFreeMemory(MemoryChunk* chunk) { DCHECK(!chunk->IsFlagSet(MemoryChunk::PRE_FREED)); LOG(isolate_, DeleteEvent("MemoryChunk", chunk)); isolate_->heap()->RememberUnmappedPage(reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate()); intptr_t size; base::VirtualMemory* reservation = chunk->reserved_memory(); if (reservation->IsReserved()) { size = static_cast<intptr_t>(reservation->size()); } else { size = static_cast<intptr_t>(chunk->size()); } DCHECK(size_.Value() >= size); size_.Increment(-size); isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); if (chunk->executable() == EXECUTABLE) { DCHECK(size_executable_.Value() >= size); size_executable_.Increment(-size); } chunk->SetFlag(MemoryChunk::PRE_FREED); } void MemoryAllocator::PerformFreeMemory(MemoryChunk* chunk) { DCHECK(chunk->IsFlagSet(MemoryChunk::PRE_FREED)); chunk->ReleaseAllocatedMemory(); base::VirtualMemory* reservation = chunk->reserved_memory(); if (chunk->IsFlagSet(MemoryChunk::POOLED)) { UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize); } else { if (reservation->IsReserved()) { FreeMemory(reservation, chunk->executable()); } else { FreeMemory(chunk->address(), chunk->size(), chunk->executable()); } } } template <MemoryAllocator::FreeMode mode> void MemoryAllocator::Free(MemoryChunk* chunk) { switch (mode) { case kFull: PreFreeMemory(chunk); PerformFreeMemory(chunk); break; case kPooledAndQueue: DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize)); DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE); chunk->SetFlag(MemoryChunk::POOLED); // Fall through to kPreFreeAndQueue. case kPreFreeAndQueue: PreFreeMemory(chunk); // The chunks added to this queue will be freed by a concurrent thread. unmapper()->AddMemoryChunkSafe(chunk); break; default: UNREACHABLE(); } } template void MemoryAllocator::Free<MemoryAllocator::kFull>(MemoryChunk* chunk); template void MemoryAllocator::Free<MemoryAllocator::kPreFreeAndQueue>( MemoryChunk* chunk); template void MemoryAllocator::Free<MemoryAllocator::kPooledAndQueue>( MemoryChunk* chunk); template <MemoryAllocator::AllocationMode alloc_mode, typename SpaceType> Page* MemoryAllocator::AllocatePage(intptr_t size, SpaceType* owner, Executability executable) { MemoryChunk* chunk = nullptr; if (alloc_mode == kPooled) { DCHECK_EQ(size, static_cast<intptr_t>(MemoryChunk::kAllocatableMemory)); DCHECK_EQ(executable, NOT_EXECUTABLE); chunk = AllocatePagePooled(owner); } if (chunk == nullptr) { chunk = AllocateChunk(size, size, executable, owner); } if (chunk == nullptr) return nullptr; return Page::Initialize(isolate_->heap(), chunk, executable, owner); } template Page* MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>( intptr_t size, PagedSpace* owner, Executability executable); template Page* MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>( intptr_t size, SemiSpace* owner, Executability executable); template Page* MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>( intptr_t size, SemiSpace* owner, Executability executable); LargePage* MemoryAllocator::AllocateLargePage(intptr_t size, LargeObjectSpace* owner, Executability executable) { MemoryChunk* chunk = AllocateChunk(size, size, executable, owner); if (chunk == nullptr) return nullptr; return LargePage::Initialize(isolate_->heap(), chunk, executable, owner); } template <typename SpaceType> MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) { MemoryChunk* chunk = unmapper()->TryGetPooledMemoryChunkSafe(); if (chunk == nullptr) return nullptr; const int size = MemoryChunk::kPageSize; const Address start = reinterpret_cast<Address>(chunk); const Address area_start = start + MemoryChunk::kObjectStartOffset; const Address area_end = start + size; if (!CommitBlock(reinterpret_cast<Address>(chunk), size, NOT_EXECUTABLE)) { return nullptr; } base::VirtualMemory reservation(start, size); MemoryChunk::Initialize(isolate_->heap(), start, size, area_start, area_end, NOT_EXECUTABLE, owner, &reservation); size_.Increment(size); return chunk; } bool MemoryAllocator::CommitBlock(Address start, size_t size, Executability executable) { if (!CommitMemory(start, size, executable)) return false; if (Heap::ShouldZapGarbage()) { ZapBlock(start, size); } isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size)); return true; } bool MemoryAllocator::UncommitBlock(Address start, size_t size) { if (!base::VirtualMemory::UncommitRegion(start, size)) return false; isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); return true; } void MemoryAllocator::ZapBlock(Address start, size_t size) { for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { Memory::Address_at(start + s) = kZapValue; } } #ifdef DEBUG void MemoryAllocator::ReportStatistics() { intptr_t size = Size(); float pct = static_cast<float>(capacity_ - size) / capacity_; PrintF(" capacity: %" V8PRIdPTR ", used: %" V8PRIdPTR ", available: %%%d\n\n", capacity_, size, static_cast<int>(pct * 100)); } #endif int MemoryAllocator::CodePageGuardStartOffset() { // We are guarding code pages: the first OS page after the header // will be protected as non-writable. return RoundUp(Page::kObjectStartOffset, base::OS::CommitPageSize()); } int MemoryAllocator::CodePageGuardSize() { return static_cast<int>(base::OS::CommitPageSize()); } int MemoryAllocator::CodePageAreaStartOffset() { // We are guarding code pages: the first OS page after the header // will be protected as non-writable. return CodePageGuardStartOffset() + CodePageGuardSize(); } int MemoryAllocator::CodePageAreaEndOffset() { // We are guarding code pages: the last OS page will be protected as // non-writable. return Page::kPageSize - static_cast<int>(base::OS::CommitPageSize()); } bool MemoryAllocator::CommitExecutableMemory(base::VirtualMemory* vm, Address start, size_t commit_size, size_t reserved_size) { // Commit page header (not executable). Address header = start; size_t header_size = CodePageGuardStartOffset(); if (vm->Commit(header, header_size, false)) { // Create guard page after the header. if (vm->Guard(start + CodePageGuardStartOffset())) { // Commit page body (executable). Address body = start + CodePageAreaStartOffset(); size_t body_size = commit_size - CodePageGuardStartOffset(); if (vm->Commit(body, body_size, true)) { // Create guard page before the end. if (vm->Guard(start + reserved_size - CodePageGuardSize())) { UpdateAllocatedSpaceLimits(start, start + CodePageAreaStartOffset() + commit_size - CodePageGuardStartOffset()); return true; } vm->Uncommit(body, body_size); } } vm->Uncommit(header, header_size); } return false; } // ----------------------------------------------------------------------------- // MemoryChunk implementation void MemoryChunk::ReleaseAllocatedMemory() { if (skip_list_ != nullptr) { delete skip_list_; skip_list_ = nullptr; } if (mutex_ != nullptr) { delete mutex_; mutex_ = nullptr; } if (old_to_new_slots_ != nullptr) ReleaseOldToNewSlots(); if (old_to_old_slots_ != nullptr) ReleaseOldToOldSlots(); if (typed_old_to_new_slots_ != nullptr) ReleaseTypedOldToNewSlots(); if (typed_old_to_old_slots_ != nullptr) ReleaseTypedOldToOldSlots(); if (local_tracker_ != nullptr) ReleaseLocalTracker(); } static SlotSet* AllocateSlotSet(size_t size, Address page_start) { size_t pages = (size + Page::kPageSize - 1) / Page::kPageSize; DCHECK(pages > 0); SlotSet* slot_set = new SlotSet[pages]; for (size_t i = 0; i < pages; i++) { slot_set[i].SetPageStart(page_start + i * Page::kPageSize); } return slot_set; } void MemoryChunk::AllocateOldToNewSlots() { DCHECK(nullptr == old_to_new_slots_); old_to_new_slots_ = AllocateSlotSet(size_, address()); } void MemoryChunk::ReleaseOldToNewSlots() { delete[] old_to_new_slots_; old_to_new_slots_ = nullptr; } void MemoryChunk::AllocateOldToOldSlots() { DCHECK(nullptr == old_to_old_slots_); old_to_old_slots_ = AllocateSlotSet(size_, address()); } void MemoryChunk::ReleaseOldToOldSlots() { delete[] old_to_old_slots_; old_to_old_slots_ = nullptr; } void MemoryChunk::AllocateTypedOldToNewSlots() { DCHECK(nullptr == typed_old_to_new_slots_); typed_old_to_new_slots_ = new TypedSlotSet(address()); } void MemoryChunk::ReleaseTypedOldToNewSlots() { delete typed_old_to_new_slots_; typed_old_to_new_slots_ = nullptr; } void MemoryChunk::AllocateTypedOldToOldSlots() { DCHECK(nullptr == typed_old_to_old_slots_); typed_old_to_old_slots_ = new TypedSlotSet(address()); } void MemoryChunk::ReleaseTypedOldToOldSlots() { delete typed_old_to_old_slots_; typed_old_to_old_slots_ = nullptr; } void MemoryChunk::AllocateLocalTracker() { DCHECK_NULL(local_tracker_); local_tracker_ = new LocalArrayBufferTracker(heap()); } void MemoryChunk::ReleaseLocalTracker() { DCHECK_NOT_NULL(local_tracker_); delete local_tracker_; local_tracker_ = nullptr; } // ----------------------------------------------------------------------------- // PagedSpace implementation STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::NEW_SPACE) == ObjectSpace::kObjectSpaceNewSpace); STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::OLD_SPACE) == ObjectSpace::kObjectSpaceOldSpace); STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::CODE_SPACE) == ObjectSpace::kObjectSpaceCodeSpace); STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::MAP_SPACE) == ObjectSpace::kObjectSpaceMapSpace); void Space::AllocationStep(Address soon_object, int size) { if (!allocation_observers_paused_) { for (int i = 0; i < allocation_observers_->length(); ++i) { AllocationObserver* o = (*allocation_observers_)[i]; o->AllocationStep(size, soon_object, size); } } } PagedSpace::PagedSpace(Heap* heap, AllocationSpace space, Executability executable) : Space(heap, space, executable), anchor_(this), free_list_(this) { area_size_ = MemoryAllocator::PageAreaSize(space); accounting_stats_.Clear(); allocation_info_.Reset(nullptr, nullptr); } bool PagedSpace::SetUp() { return true; } bool PagedSpace::HasBeenSetUp() { return true; } void PagedSpace::TearDown() { for (auto it = begin(); it != end();) { Page* page = *(it++); // Will be erased. ArrayBufferTracker::FreeAll(page); heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page); } anchor_.set_next_page(&anchor_); anchor_.set_prev_page(&anchor_); accounting_stats_.Clear(); } void PagedSpace::RefillFreeList() { // Any PagedSpace might invoke RefillFreeList. We filter all but our old // generation spaces out. if (identity() != OLD_SPACE && identity() != CODE_SPACE && identity() != MAP_SPACE) { return; } MarkCompactCollector* collector = heap()->mark_compact_collector(); intptr_t added = 0; { Page* p = nullptr; while ((p = collector->sweeper().GetSweptPageSafe(this)) != nullptr) { // Only during compaction pages can actually change ownership. This is // safe because there exists no other competing action on the page links // during compaction. if (is_local() && (p->owner() != this)) { base::LockGuard<base::Mutex> guard( reinterpret_cast<PagedSpace*>(p->owner())->mutex()); p->Unlink(); p->set_owner(this); p->InsertAfter(anchor_.prev_page()); } added += RelinkFreeListCategories(p); added += p->wasted_memory(); if (is_local() && (added > kCompactionMemoryWanted)) break; } } accounting_stats_.IncreaseCapacity(added); } void PagedSpace::MergeCompactionSpace(CompactionSpace* other) { DCHECK(identity() == other->identity()); // Unmerged fields: // area_size_ // anchor_ other->EmptyAllocationInfo(); // Update and clear accounting statistics. accounting_stats_.Merge(other->accounting_stats_); other->accounting_stats_.Clear(); // The linear allocation area of {other} should be destroyed now. DCHECK(other->top() == nullptr); DCHECK(other->limit() == nullptr); AccountCommitted(other->CommittedMemory()); // Move over pages. for (auto it = other->begin(); it != other->end();) { Page* p = *(it++); // Relinking requires the category to be unlinked. other->UnlinkFreeListCategories(p); p->Unlink(); p->set_owner(this); p->InsertAfter(anchor_.prev_page()); RelinkFreeListCategories(p); } } size_t PagedSpace::CommittedPhysicalMemory() { if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory(); MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); size_t size = 0; for (Page* page : *this) { size += page->CommittedPhysicalMemory(); } return size; } bool PagedSpace::ContainsSlow(Address addr) { Page* p = Page::FromAddress(addr); for (Page* page : *this) { if (page == p) return true; } return false; } Object* PagedSpace::FindObject(Address addr) { // Note: this function can only be called on iterable spaces. DCHECK(!heap()->mark_compact_collector()->in_use()); if (!Contains(addr)) return Smi::FromInt(0); // Signaling not found. Page* p = Page::FromAddress(addr); HeapObjectIterator it(p); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { Address cur = obj->address(); Address next = cur + obj->Size(); if ((cur <= addr) && (addr < next)) return obj; } UNREACHABLE(); return Smi::FromInt(0); } bool PagedSpace::Expand() { int size = AreaSize(); if (snapshotable() && !HasPages()) { size = Snapshot::SizeOfFirstPage(heap()->isolate(), identity()); } if (!heap()->CanExpandOldGeneration(size)) return false; Page* p = heap()->memory_allocator()->AllocatePage(size, this, executable()); if (p == nullptr) return false; AccountCommitted(static_cast<intptr_t>(p->size())); // Pages created during bootstrapping may contain immortal immovable objects. if (!heap()->deserialization_complete()) p->MarkNeverEvacuate(); // When incremental marking was activated, old space pages are allocated // black. if (heap()->incremental_marking()->black_allocation() && identity() == OLD_SPACE) { Bitmap::SetAllBits(p); p->SetFlag(Page::BLACK_PAGE); if (FLAG_trace_incremental_marking) { PrintIsolate(heap()->isolate(), "Added black page %p\n", static_cast<void*>(p)); } } DCHECK(Capacity() <= heap()->MaxOldGenerationSize()); p->InsertAfter(anchor_.prev_page()); return true; } int PagedSpace::CountTotalPages() { int count = 0; for (Page* page : *this) { count++; USE(page); } return count; } void PagedSpace::ResetFreeListStatistics() { for (Page* page : *this) { page->ResetFreeListStatistics(); } } void PagedSpace::IncreaseCapacity(int size) { accounting_stats_.ExpandSpace(size); } void PagedSpace::ReleasePage(Page* page) { DCHECK_EQ(page->LiveBytes(), 0); DCHECK_EQ(AreaSize(), page->area_size()); DCHECK_EQ(page->owner(), this); free_list_.EvictFreeListItems(page); DCHECK(!free_list_.ContainsPageFreeListItems(page)); if (Page::FromAllocationAreaAddress(allocation_info_.top()) == page) { allocation_info_.Reset(nullptr, nullptr); } // If page is still in a list, unlink it from that list. if (page->next_chunk() != NULL) { DCHECK(page->prev_chunk() != NULL); page->Unlink(); } AccountUncommitted(static_cast<intptr_t>(page->size())); heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page); DCHECK(Capacity() > 0); accounting_stats_.ShrinkSpace(AreaSize()); } #ifdef DEBUG void PagedSpace::Print() {} #endif #ifdef VERIFY_HEAP void PagedSpace::Verify(ObjectVisitor* visitor) { bool allocation_pointer_found_in_space = (allocation_info_.top() == allocation_info_.limit()); for (Page* page : *this) { CHECK(page->owner() == this); if (page == Page::FromAllocationAreaAddress(allocation_info_.top())) { allocation_pointer_found_in_space = true; } CHECK(page->SweepingDone()); HeapObjectIterator it(page); Address end_of_previous_object = page->area_start(); Address top = page->area_end(); int black_size = 0; for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { CHECK(end_of_previous_object <= object->address()); // The first word should be a map, and we expect all map pointers to // be in map space. Map* map = object->map(); CHECK(map->IsMap()); CHECK(heap()->map_space()->Contains(map)); // Perform space-specific object verification. VerifyObject(object); // The object itself should look OK. object->ObjectVerify(); // All the interior pointers should be contained in the heap. int size = object->Size(); object->IterateBody(map->instance_type(), size, visitor); if (!page->IsFlagSet(Page::BLACK_PAGE) && Marking::IsBlack(Marking::MarkBitFrom(object))) { black_size += size; } CHECK(object->address() + size <= top); end_of_previous_object = object->address() + size; } CHECK_LE(black_size, page->LiveBytes()); } CHECK(allocation_pointer_found_in_space); } #endif // VERIFY_HEAP // ----------------------------------------------------------------------------- // NewSpace implementation bool NewSpace::SetUp(int initial_semispace_capacity, int maximum_semispace_capacity) { DCHECK(initial_semispace_capacity <= maximum_semispace_capacity); DCHECK(base::bits::IsPowerOfTwo32(maximum_semispace_capacity)); to_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity); from_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity); if (!to_space_.Commit()) { return false; } DCHECK(!from_space_.is_committed()); // No need to use memory yet. ResetAllocationInfo(); // Allocate and set up the histogram arrays if necessary. allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); #define SET_NAME(name) \ allocated_histogram_[name].set_name(#name); \ promoted_histogram_[name].set_name(#name); INSTANCE_TYPE_LIST(SET_NAME) #undef SET_NAME return true; } void NewSpace::TearDown() { if (allocated_histogram_) { DeleteArray(allocated_histogram_); allocated_histogram_ = NULL; } if (promoted_histogram_) { DeleteArray(promoted_histogram_); promoted_histogram_ = NULL; } allocation_info_.Reset(nullptr, nullptr); to_space_.TearDown(); from_space_.TearDown(); } void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); } void NewSpace::Grow() { // Double the semispace size but only up to maximum capacity. DCHECK(TotalCapacity() < MaximumCapacity()); int new_capacity = Min(MaximumCapacity(), FLAG_semi_space_growth_factor * static_cast<int>(TotalCapacity())); if (to_space_.GrowTo(new_capacity)) { // Only grow from space if we managed to grow to-space. if (!from_space_.GrowTo(new_capacity)) { // If we managed to grow to-space but couldn't grow from-space, // attempt to shrink to-space. if (!to_space_.ShrinkTo(from_space_.current_capacity())) { // We are in an inconsistent state because we could not // commit/uncommit memory from new space. CHECK(false); } } } DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); } void NewSpace::Shrink() { int new_capacity = Max(InitialTotalCapacity(), 2 * SizeAsInt()); int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize); if (rounded_new_capacity < TotalCapacity() && to_space_.ShrinkTo(rounded_new_capacity)) { // Only shrink from-space if we managed to shrink to-space. from_space_.Reset(); if (!from_space_.ShrinkTo(rounded_new_capacity)) { // If we managed to shrink to-space but couldn't shrink from // space, attempt to grow to-space again. if (!to_space_.GrowTo(from_space_.current_capacity())) { // We are in an inconsistent state because we could not // commit/uncommit memory from new space. CHECK(false); } } } DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); } bool NewSpace::Rebalance() { CHECK(heap()->promotion_queue()->is_empty()); // Order here is important to make use of the page pool. return to_space_.EnsureCurrentCapacity() && from_space_.EnsureCurrentCapacity(); } bool SemiSpace::EnsureCurrentCapacity() { if (is_committed()) { const int expected_pages = current_capacity_ / Page::kPageSize; int actual_pages = 0; Page* current_page = anchor()->next_page(); while (current_page != anchor()) { actual_pages++; current_page = current_page->next_page(); if (actual_pages > expected_pages) { Page* to_remove = current_page->prev_page(); // Make sure we don't overtake the actual top pointer. CHECK_NE(to_remove, current_page_); to_remove->Unlink(); heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>( to_remove); } } while (actual_pages < expected_pages) { actual_pages++; current_page = heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>( Page::kAllocatableMemory, this, executable()); if (current_page == nullptr) return false; DCHECK_NOT_NULL(current_page); current_page->InsertAfter(anchor()); Bitmap::Clear(current_page); current_page->SetFlags(anchor()->prev_page()->GetFlags(), Page::kCopyAllFlags); heap()->CreateFillerObjectAt(current_page->area_start(), current_page->area_size(), ClearRecordedSlots::kNo); } } return true; } void LocalAllocationBuffer::Close() { if (IsValid()) { heap_->CreateFillerObjectAt( allocation_info_.top(), static_cast<int>(allocation_info_.limit() - allocation_info_.top()), ClearRecordedSlots::kNo); } } LocalAllocationBuffer::LocalAllocationBuffer(Heap* heap, AllocationInfo allocation_info) : heap_(heap), allocation_info_(allocation_info) { if (IsValid()) { heap_->CreateFillerObjectAt( allocation_info_.top(), static_cast<int>(allocation_info_.limit() - allocation_info_.top()), ClearRecordedSlots::kNo); } } LocalAllocationBuffer::LocalAllocationBuffer( const LocalAllocationBuffer& other) { *this = other; } LocalAllocationBuffer& LocalAllocationBuffer::operator=( const LocalAllocationBuffer& other) { Close(); heap_ = other.heap_; allocation_info_ = other.allocation_info_; // This is needed since we (a) cannot yet use move-semantics, and (b) want // to make the use of the class easy by it as value and (c) implicitly call // {Close} upon copy. const_cast<LocalAllocationBuffer&>(other) .allocation_info_.Reset(nullptr, nullptr); return *this; } void NewSpace::UpdateAllocationInfo() { MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); allocation_info_.Reset(to_space_.page_low(), to_space_.page_high()); UpdateInlineAllocationLimit(0); DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); } void NewSpace::ResetAllocationInfo() { Address old_top = allocation_info_.top(); to_space_.Reset(); UpdateAllocationInfo(); // Clear all mark-bits in the to-space. for (Page* p : to_space_) { Bitmap::Clear(p); } InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0); } void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) { if (heap()->inline_allocation_disabled()) { // Lowest limit when linear allocation was disabled. Address high = to_space_.page_high(); Address new_top = allocation_info_.top() + size_in_bytes; allocation_info_.set_limit(Min(new_top, high)); } else if (allocation_observers_paused_ || top_on_previous_step_ == 0) { // Normal limit is the end of the current page. allocation_info_.set_limit(to_space_.page_high()); } else { // Lower limit during incremental marking. Address high = to_space_.page_high(); Address new_top = allocation_info_.top() + size_in_bytes; Address new_limit = new_top + GetNextInlineAllocationStepSize() - 1; allocation_info_.set_limit(Min(new_limit, high)); } DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); } bool NewSpace::AddFreshPage() { Address top = allocation_info_.top(); DCHECK(!Page::IsAtObjectStart(top)); if (!to_space_.AdvancePage()) { // No more pages left to advance. return false; } // Clear remainder of current page. Address limit = Page::FromAllocationAreaAddress(top)->area_end(); if (heap()->gc_state() == Heap::SCAVENGE) { heap()->promotion_queue()->SetNewLimit(limit); } int remaining_in_page = static_cast<int>(limit - top); heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo); UpdateAllocationInfo(); return true; } bool NewSpace::AddFreshPageSynchronized() { base::LockGuard<base::Mutex> guard(&mutex_); return AddFreshPage(); } bool NewSpace::EnsureAllocation(int size_in_bytes, AllocationAlignment alignment) { Address old_top = allocation_info_.top(); Address high = to_space_.page_high(); int filler_size = Heap::GetFillToAlign(old_top, alignment); int aligned_size_in_bytes = size_in_bytes + filler_size; if (old_top + aligned_size_in_bytes > high) { // Not enough room in the page, try to allocate a new one. if (!AddFreshPage()) { return false; } InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0); old_top = allocation_info_.top(); high = to_space_.page_high(); filler_size = Heap::GetFillToAlign(old_top, alignment); } DCHECK(old_top + aligned_size_in_bytes <= high); if (allocation_info_.limit() < high) { // Either the limit has been lowered because linear allocation was disabled // or because incremental marking wants to get a chance to do a step, // or because idle scavenge job wants to get a chance to post a task. // Set the new limit accordingly. Address new_top = old_top + aligned_size_in_bytes; Address soon_object = old_top + filler_size; InlineAllocationStep(new_top, new_top, soon_object, size_in_bytes); UpdateInlineAllocationLimit(aligned_size_in_bytes); } return true; } void NewSpace::StartNextInlineAllocationStep() { if (!allocation_observers_paused_) { top_on_previous_step_ = allocation_observers_->length() ? allocation_info_.top() : 0; UpdateInlineAllocationLimit(0); } } intptr_t NewSpace::GetNextInlineAllocationStepSize() { intptr_t next_step = 0; for (int i = 0; i < allocation_observers_->length(); ++i) { AllocationObserver* o = (*allocation_observers_)[i]; next_step = next_step ? Min(next_step, o->bytes_to_next_step()) : o->bytes_to_next_step(); } DCHECK(allocation_observers_->length() == 0 || next_step != 0); return next_step; } void NewSpace::AddAllocationObserver(AllocationObserver* observer) { Space::AddAllocationObserver(observer); StartNextInlineAllocationStep(); } void NewSpace::RemoveAllocationObserver(AllocationObserver* observer) { Space::RemoveAllocationObserver(observer); StartNextInlineAllocationStep(); } void NewSpace::PauseAllocationObservers() { // Do a step to account for memory allocated so far. InlineAllocationStep(top(), top(), nullptr, 0); Space::PauseAllocationObservers(); top_on_previous_step_ = 0; UpdateInlineAllocationLimit(0); } void NewSpace::ResumeAllocationObservers() { DCHECK(top_on_previous_step_ == 0); Space::ResumeAllocationObservers(); StartNextInlineAllocationStep(); } void NewSpace::InlineAllocationStep(Address top, Address new_top, Address soon_object, size_t size) { if (top_on_previous_step_) { int bytes_allocated = static_cast<int>(top - top_on_previous_step_); for (int i = 0; i < allocation_observers_->length(); ++i) { (*allocation_observers_)[i]->AllocationStep(bytes_allocated, soon_object, size); } top_on_previous_step_ = new_top; } } #ifdef VERIFY_HEAP // We do not use the SemiSpaceIterator because verification doesn't assume // that it works (it depends on the invariants we are checking). void NewSpace::Verify() { // The allocation pointer should be in the space or at the very end. DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); // There should be objects packed in from the low address up to the // allocation pointer. Address current = to_space_.first_page()->area_start(); CHECK_EQ(current, to_space_.space_start()); while (current != top()) { if (!Page::IsAlignedToPageSize(current)) { // The allocation pointer should not be in the middle of an object. CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) || current < top()); HeapObject* object = HeapObject::FromAddress(current); // The first word should be a map, and we expect all map pointers to // be in map space. Map* map = object->map(); CHECK(map->IsMap()); CHECK(heap()->map_space()->Contains(map)); // The object should not be code or a map. CHECK(!object->IsMap()); CHECK(!object->IsAbstractCode()); // The object itself should look OK. object->ObjectVerify(); // All the interior pointers should be contained in the heap. VerifyPointersVisitor visitor; int size = object->Size(); object->IterateBody(map->instance_type(), size, &visitor); current += size; } else { // At end of page, switch to next page. Page* page = Page::FromAllocationAreaAddress(current)->next_page(); // Next page should be valid. CHECK(!page->is_anchor()); current = page->area_start(); } } // Check semi-spaces. CHECK_EQ(from_space_.id(), kFromSpace); CHECK_EQ(to_space_.id(), kToSpace); from_space_.Verify(); to_space_.Verify(); } #endif // ----------------------------------------------------------------------------- // SemiSpace implementation void SemiSpace::SetUp(int initial_capacity, int maximum_capacity) { DCHECK_GE(maximum_capacity, Page::kPageSize); minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize); current_capacity_ = minimum_capacity_; maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize); committed_ = false; } void SemiSpace::TearDown() { // Properly uncommit memory to keep the allocator counters in sync. if (is_committed()) { for (Page* p : *this) { ArrayBufferTracker::FreeAll(p); } Uncommit(); } current_capacity_ = maximum_capacity_ = 0; } bool SemiSpace::Commit() { DCHECK(!is_committed()); Page* current = anchor(); const int num_pages = current_capacity_ / Page::kPageSize; for (int pages_added = 0; pages_added < num_pages; pages_added++) { Page* new_page = heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>( Page::kAllocatableMemory, this, executable()); if (new_page == nullptr) { RewindPages(current, pages_added); return false; } new_page->InsertAfter(current); current = new_page; } Reset(); AccountCommitted(current_capacity_); if (age_mark_ == nullptr) { age_mark_ = first_page()->area_start(); } committed_ = true; return true; } bool SemiSpace::Uncommit() { DCHECK(is_committed()); for (auto it = begin(); it != end();) { Page* p = *(it++); heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(p); } anchor()->set_next_page(anchor()); anchor()->set_prev_page(anchor()); AccountUncommitted(current_capacity_); committed_ = false; heap()->memory_allocator()->unmapper()->FreeQueuedChunks(); return true; } size_t SemiSpace::CommittedPhysicalMemory() { if (!is_committed()) return 0; size_t size = 0; for (Page* p : *this) { size += p->CommittedPhysicalMemory(); } return size; } bool SemiSpace::GrowTo(int new_capacity) { if (!is_committed()) { if (!Commit()) return false; } DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0); DCHECK_LE(new_capacity, maximum_capacity_); DCHECK_GT(new_capacity, current_capacity_); const int delta = new_capacity - current_capacity_; DCHECK(IsAligned(delta, base::OS::AllocateAlignment())); const int delta_pages = delta / Page::kPageSize; Page* last_page = anchor()->prev_page(); DCHECK_NE(last_page, anchor()); for (int pages_added = 0; pages_added < delta_pages; pages_added++) { Page* new_page = heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>( Page::kAllocatableMemory, this, executable()); if (new_page == nullptr) { RewindPages(last_page, pages_added); return false; } new_page->InsertAfter(last_page); Bitmap::Clear(new_page); // Duplicate the flags that was set on the old page. new_page->SetFlags(last_page->GetFlags(), Page::kCopyOnFlipFlagsMask); last_page = new_page; } AccountCommitted(static_cast<intptr_t>(delta)); current_capacity_ = new_capacity; return true; } void SemiSpace::RewindPages(Page* start, int num_pages) { Page* new_last_page = nullptr; Page* last_page = start; while (num_pages > 0) { DCHECK_NE(last_page, anchor()); new_last_page = last_page->prev_page(); last_page->prev_page()->set_next_page(last_page->next_page()); last_page->next_page()->set_prev_page(last_page->prev_page()); last_page = new_last_page; num_pages--; } } bool SemiSpace::ShrinkTo(int new_capacity) { DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0); DCHECK_GE(new_capacity, minimum_capacity_); DCHECK_LT(new_capacity, current_capacity_); if (is_committed()) { const int delta = current_capacity_ - new_capacity; DCHECK(IsAligned(delta, base::OS::AllocateAlignment())); int delta_pages = delta / Page::kPageSize; Page* new_last_page; Page* last_page; while (delta_pages > 0) { last_page = anchor()->prev_page(); new_last_page = last_page->prev_page(); new_last_page->set_next_page(anchor()); anchor()->set_prev_page(new_last_page); heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>( last_page); delta_pages--; } AccountUncommitted(static_cast<intptr_t>(delta)); heap()->memory_allocator()->unmapper()->FreeQueuedChunks(); } current_capacity_ = new_capacity; return true; } void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) { anchor_.set_owner(this); anchor_.prev_page()->set_next_page(&anchor_); anchor_.next_page()->set_prev_page(&anchor_); for (Page* page : *this) { page->set_owner(this); page->SetFlags(flags, mask); if (id_ == kToSpace) { page->ClearFlag(MemoryChunk::IN_FROM_SPACE); page->SetFlag(MemoryChunk::IN_TO_SPACE); page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); page->ResetLiveBytes(); } else { page->SetFlag(MemoryChunk::IN_FROM_SPACE); page->ClearFlag(MemoryChunk::IN_TO_SPACE); } DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) || page->IsFlagSet(MemoryChunk::IN_FROM_SPACE)); } } void SemiSpace::Reset() { DCHECK_NE(anchor_.next_page(), &anchor_); current_page_ = anchor_.next_page(); pages_used_ = 0; } void SemiSpace::RemovePage(Page* page) { if (current_page_ == page) { current_page_ = page->prev_page(); } page->Unlink(); } void SemiSpace::PrependPage(Page* page) { page->SetFlags(current_page()->GetFlags(), Page::kCopyAllFlags); page->set_owner(this); page->InsertAfter(anchor()); pages_used_++; } void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) { // We won't be swapping semispaces without data in them. DCHECK_NE(from->anchor_.next_page(), &from->anchor_); DCHECK_NE(to->anchor_.next_page(), &to->anchor_); intptr_t saved_to_space_flags = to->current_page()->GetFlags(); // We swap all properties but id_. std::swap(from->current_capacity_, to->current_capacity_); std::swap(from->maximum_capacity_, to->maximum_capacity_); std::swap(from->minimum_capacity_, to->minimum_capacity_); std::swap(from->age_mark_, to->age_mark_); std::swap(from->committed_, to->committed_); std::swap(from->anchor_, to->anchor_); std::swap(from->current_page_, to->current_page_); to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask); from->FixPagesFlags(0, 0); } void SemiSpace::set_age_mark(Address mark) { DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this); age_mark_ = mark; // Mark all pages up to the one containing mark. for (Page* p : NewSpacePageRange(space_start(), mark)) { p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); } } #ifdef DEBUG void SemiSpace::Print() {} #endif #ifdef VERIFY_HEAP void SemiSpace::Verify() { bool is_from_space = (id_ == kFromSpace); Page* page = anchor_.next_page(); CHECK(anchor_.owner() == this); while (page != &anchor_) { CHECK_EQ(page->owner(), this); CHECK(page->InNewSpace()); CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE : MemoryChunk::IN_TO_SPACE)); CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE : MemoryChunk::IN_FROM_SPACE)); CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING)); if (!is_from_space) { // The pointers-from-here-are-interesting flag isn't updated dynamically // on from-space pages, so it might be out of sync with the marking state. if (page->heap()->incremental_marking()->IsMarking()) { CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); } else { CHECK( !page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); } // TODO(gc): Check that the live_bytes_count_ field matches the // black marking on the page (if we make it match in new-space). } CHECK_EQ(page->prev_page()->next_page(), page); page = page->next_page(); } } #endif #ifdef DEBUG void SemiSpace::AssertValidRange(Address start, Address end) { // Addresses belong to same semi-space Page* page = Page::FromAllocationAreaAddress(start); Page* end_page = Page::FromAllocationAreaAddress(end); SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner()); CHECK_EQ(space, end_page->owner()); // Start address is before end address, either on same page, // or end address is on a later page in the linked list of // semi-space pages. if (page == end_page) { CHECK_LE(start, end); } else { while (page != end_page) { page = page->next_page(); CHECK_NE(page, space->anchor()); } } } #endif // ----------------------------------------------------------------------------- // SemiSpaceIterator implementation. SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { Initialize(space->bottom(), space->top()); } void SemiSpaceIterator::Initialize(Address start, Address end) { SemiSpace::AssertValidRange(start, end); current_ = start; limit_ = end; } #ifdef DEBUG // heap_histograms is shared, always clear it before using it. static void ClearHistograms(Isolate* isolate) { // We reset the name each time, though it hasn't changed. #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name); INSTANCE_TYPE_LIST(DEF_TYPE_NAME) #undef DEF_TYPE_NAME #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear(); INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) #undef CLEAR_HISTOGRAM isolate->js_spill_information()->Clear(); } static void ClearCodeKindStatistics(int* code_kind_statistics) { for (int i = 0; i < AbstractCode::NUMBER_OF_KINDS; i++) { code_kind_statistics[i] = 0; } } static void ReportCodeKindStatistics(int* code_kind_statistics) { PrintF("\n Code kind histograms: \n"); for (int i = 0; i < AbstractCode::NUMBER_OF_KINDS; i++) { if (code_kind_statistics[i] > 0) { PrintF(" %-20s: %10d bytes\n", AbstractCode::Kind2String(static_cast<AbstractCode::Kind>(i)), code_kind_statistics[i]); } } PrintF("\n"); } static int CollectHistogramInfo(HeapObject* obj) { Isolate* isolate = obj->GetIsolate(); InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); DCHECK(isolate->heap_histograms()[type].name() != NULL); isolate->heap_histograms()[type].increment_number(1); isolate->heap_histograms()[type].increment_bytes(obj->Size()); if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { JSObject::cast(obj) ->IncrementSpillStatistics(isolate->js_spill_information()); } return obj->Size(); } static void ReportHistogram(Isolate* isolate, bool print_spill) { PrintF("\n Object Histogram:\n"); for (int i = 0; i <= LAST_TYPE; i++) { if (isolate->heap_histograms()[i].number() > 0) { PrintF(" %-34s%10d (%10d bytes)\n", isolate->heap_histograms()[i].name(), isolate->heap_histograms()[i].number(), isolate->heap_histograms()[i].bytes()); } } PrintF("\n"); // Summarize string types. int string_number = 0; int string_bytes = 0; #define INCREMENT(type, size, name, camel_name) \ string_number += isolate->heap_histograms()[type].number(); \ string_bytes += isolate->heap_histograms()[type].bytes(); STRING_TYPE_LIST(INCREMENT) #undef INCREMENT if (string_number > 0) { PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, string_bytes); } if (FLAG_collect_heap_spill_statistics && print_spill) { isolate->js_spill_information()->Print(); } } #endif // DEBUG // Support for statistics gathering for --heap-stats and --log-gc. void NewSpace::ClearHistograms() { for (int i = 0; i <= LAST_TYPE; i++) { allocated_histogram_[i].clear(); promoted_histogram_[i].clear(); } } // Because the copying collector does not touch garbage objects, we iterate // the new space before a collection to get a histogram of allocated objects. // This only happens when --log-gc flag is set. void NewSpace::CollectStatistics() { ClearHistograms(); SemiSpaceIterator it(this); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) RecordAllocation(obj); } static void DoReportStatistics(Isolate* isolate, HistogramInfo* info, const char* description) { LOG(isolate, HeapSampleBeginEvent("NewSpace", description)); // Lump all the string types together. int string_number = 0; int string_bytes = 0; #define INCREMENT(type, size, name, camel_name) \ string_number += info[type].number(); \ string_bytes += info[type].bytes(); STRING_TYPE_LIST(INCREMENT) #undef INCREMENT if (string_number > 0) { LOG(isolate, HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); } // Then do the other types. for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { if (info[i].number() > 0) { LOG(isolate, HeapSampleItemEvent(info[i].name(), info[i].number(), info[i].bytes())); } } LOG(isolate, HeapSampleEndEvent("NewSpace", description)); } void NewSpace::ReportStatistics() { #ifdef DEBUG if (FLAG_heap_stats) { float pct = static_cast<float>(Available()) / TotalCapacity(); PrintF(" capacity: %" V8PRIdPTR ", available: %" V8PRIdPTR ", %%%d\n", TotalCapacity(), Available(), static_cast<int>(pct * 100)); PrintF("\n Object Histogram:\n"); for (int i = 0; i <= LAST_TYPE; i++) { if (allocated_histogram_[i].number() > 0) { PrintF(" %-34s%10d (%10d bytes)\n", allocated_histogram_[i].name(), allocated_histogram_[i].number(), allocated_histogram_[i].bytes()); } } PrintF("\n"); } #endif // DEBUG if (FLAG_log_gc) { Isolate* isolate = heap()->isolate(); DoReportStatistics(isolate, allocated_histogram_, "allocated"); DoReportStatistics(isolate, promoted_histogram_, "promoted"); } } void NewSpace::RecordAllocation(HeapObject* obj) { InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); allocated_histogram_[type].increment_number(1); allocated_histogram_[type].increment_bytes(obj->Size()); } void NewSpace::RecordPromotion(HeapObject* obj) { InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); promoted_histogram_[type].increment_number(1); promoted_histogram_[type].increment_bytes(obj->Size()); } size_t NewSpace::CommittedPhysicalMemory() { if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory(); MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); size_t size = to_space_.CommittedPhysicalMemory(); if (from_space_.is_committed()) { size += from_space_.CommittedPhysicalMemory(); } return size; } // ----------------------------------------------------------------------------- // Free lists for old object spaces implementation void FreeListCategory::Reset() { set_top(nullptr); set_prev(nullptr); set_next(nullptr); available_ = 0; } FreeSpace* FreeListCategory::PickNodeFromList(int* node_size) { DCHECK(page()->CanAllocate()); FreeSpace* node = top(); if (node == nullptr) return nullptr; set_top(node->next()); *node_size = node->Size(); available_ -= *node_size; return node; } FreeSpace* FreeListCategory::TryPickNodeFromList(int minimum_size, int* node_size) { DCHECK(page()->CanAllocate()); FreeSpace* node = PickNodeFromList(node_size); if ((node != nullptr) && (*node_size < minimum_size)) { Free(node, *node_size, kLinkCategory); *node_size = 0; return nullptr; } return node; } FreeSpace* FreeListCategory::SearchForNodeInList(int minimum_size, int* node_size) { DCHECK(page()->CanAllocate()); FreeSpace* prev_non_evac_node = nullptr; for (FreeSpace* cur_node = top(); cur_node != nullptr; cur_node = cur_node->next()) { int size = cur_node->size(); if (size >= minimum_size) { available_ -= size; if (cur_node == top()) { set_top(cur_node->next()); } if (prev_non_evac_node != nullptr) { prev_non_evac_node->set_next(cur_node->next()); } *node_size = size; return cur_node; } prev_non_evac_node = cur_node; } return nullptr; } bool FreeListCategory::Free(FreeSpace* free_space, int size_in_bytes, FreeMode mode) { if (!page()->CanAllocate()) return false; free_space->set_next(top()); set_top(free_space); available_ += size_in_bytes; if ((mode == kLinkCategory) && (prev() == nullptr) && (next() == nullptr)) { owner()->AddCategory(this); } return true; } void FreeListCategory::RepairFreeList(Heap* heap) { FreeSpace* n = top(); while (n != NULL) { Map** map_location = reinterpret_cast<Map**>(n->address()); if (*map_location == NULL) { *map_location = heap->free_space_map(); } else { DCHECK(*map_location == heap->free_space_map()); } n = n->next(); } } void FreeListCategory::Relink() { DCHECK(!is_linked()); owner()->AddCategory(this); } void FreeListCategory::Invalidate() { page()->add_available_in_free_list(-available()); Reset(); type_ = kInvalidCategory; } FreeList::FreeList(PagedSpace* owner) : owner_(owner), wasted_bytes_(0) { for (int i = kFirstCategory; i < kNumberOfCategories; i++) { categories_[i] = nullptr; } Reset(); } void FreeList::Reset() { ForAllFreeListCategories( [](FreeListCategory* category) { category->Reset(); }); for (int i = kFirstCategory; i < kNumberOfCategories; i++) { categories_[i] = nullptr; } ResetStats(); } int FreeList::Free(Address start, int size_in_bytes, FreeMode mode) { if (size_in_bytes == 0) return 0; owner()->heap()->CreateFillerObjectAt(start, size_in_bytes, ClearRecordedSlots::kNo); Page* page = Page::FromAddress(start); // Blocks have to be a minimum size to hold free list items. if (size_in_bytes < kMinBlockSize) { page->add_wasted_memory(size_in_bytes); wasted_bytes_.Increment(size_in_bytes); return size_in_bytes; } FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(start)); // Insert other blocks at the head of a free list of the appropriate // magnitude. FreeListCategoryType type = SelectFreeListCategoryType(size_in_bytes); if (page->free_list_category(type)->Free(free_space, size_in_bytes, mode)) { page->add_available_in_free_list(size_in_bytes); } return 0; } FreeSpace* FreeList::FindNodeIn(FreeListCategoryType type, int* node_size) { FreeListCategoryIterator it(this, type); FreeSpace* node = nullptr; while (it.HasNext()) { FreeListCategory* current = it.Next(); node = current->PickNodeFromList(node_size); if (node != nullptr) { Page::FromAddress(node->address()) ->add_available_in_free_list(-(*node_size)); DCHECK(IsVeryLong() || Available() == SumFreeLists()); return node; } RemoveCategory(current); } return node; } FreeSpace* FreeList::TryFindNodeIn(FreeListCategoryType type, int* node_size, int minimum_size) { if (categories_[type] == nullptr) return nullptr; FreeSpace* node = categories_[type]->TryPickNodeFromList(minimum_size, node_size); if (node != nullptr) { Page::FromAddress(node->address()) ->add_available_in_free_list(-(*node_size)); DCHECK(IsVeryLong() || Available() == SumFreeLists()); } return node; } FreeSpace* FreeList::SearchForNodeInList(FreeListCategoryType type, int* node_size, int minimum_size) { FreeListCategoryIterator it(this, type); FreeSpace* node = nullptr; while (it.HasNext()) { FreeListCategory* current = it.Next(); node = current->SearchForNodeInList(minimum_size, node_size); if (node != nullptr) { Page::FromAddress(node->address()) ->add_available_in_free_list(-(*node_size)); DCHECK(IsVeryLong() || Available() == SumFreeLists()); return node; } } return node; } FreeSpace* FreeList::FindNodeFor(int size_in_bytes, int* node_size) { FreeSpace* node = nullptr; // First try the allocation fast path: try to allocate the minimum element // size of a free list category. This operation is constant time. FreeListCategoryType type = SelectFastAllocationFreeListCategoryType(size_in_bytes); for (int i = type; i < kHuge; i++) { node = FindNodeIn(static_cast<FreeListCategoryType>(i), node_size); if (node != nullptr) return node; } // Next search the huge list for free list nodes. This takes linear time in // the number of huge elements. node = SearchForNodeInList(kHuge, node_size, size_in_bytes); if (node != nullptr) { DCHECK(IsVeryLong() || Available() == SumFreeLists()); return node; } // We need a huge block of memory, but we didn't find anything in the huge // list. if (type == kHuge) return nullptr; // Now search the best fitting free list for a node that has at least the // requested size. type = SelectFreeListCategoryType(size_in_bytes); node = TryFindNodeIn(type, node_size, size_in_bytes); DCHECK(IsVeryLong() || Available() == SumFreeLists()); return node; } // Allocation on the old space free list. If it succeeds then a new linear // allocation space has been set up with the top and limit of the space. If // the allocation fails then NULL is returned, and the caller can perform a GC // or allocate a new page before retrying. HeapObject* FreeList::Allocate(int size_in_bytes) { DCHECK(0 < size_in_bytes); DCHECK(size_in_bytes <= kMaxBlockSize); DCHECK(IsAligned(size_in_bytes, kPointerSize)); // Don't free list allocate if there is linear space available. DCHECK(owner_->limit() - owner_->top() < size_in_bytes); int old_linear_size = static_cast<int>(owner_->limit() - owner_->top()); // Mark the old linear allocation area with a free space map so it can be // skipped when scanning the heap. This also puts it back in the free list // if it is big enough. owner_->Free(owner_->top(), old_linear_size); owner_->SetTopAndLimit(nullptr, nullptr); owner_->heap()->incremental_marking()->OldSpaceStep(size_in_bytes - old_linear_size); int new_node_size = 0; FreeSpace* new_node = FindNodeFor(size_in_bytes, &new_node_size); if (new_node == nullptr) return nullptr; int bytes_left = new_node_size - size_in_bytes; DCHECK(bytes_left >= 0); #ifdef DEBUG for (int i = 0; i < size_in_bytes / kPointerSize; i++) { reinterpret_cast<Object**>(new_node->address())[i] = Smi::FromInt(kCodeZapValue); } #endif // The old-space-step might have finished sweeping and restarted marking. // Verify that it did not turn the page of the new node into an evacuation // candidate. DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node)); const int kThreshold = IncrementalMarking::kAllocatedThreshold; // Memory in the linear allocation area is counted as allocated. We may free // a little of this again immediately - see below. owner_->Allocate(new_node_size); if (owner_->heap()->inline_allocation_disabled()) { // Keep the linear allocation area empty if requested to do so, just // return area back to the free list instead. owner_->Free(new_node->address() + size_in_bytes, bytes_left); owner_->SetTopAndLimit(new_node->address() + size_in_bytes, new_node->address() + size_in_bytes); } else if (bytes_left > kThreshold && owner_->heap()->incremental_marking()->IsMarkingIncomplete() && FLAG_incremental_marking) { int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold); // We don't want to give too large linear areas to the allocator while // incremental marking is going on, because we won't check again whether // we want to do another increment until the linear area is used up. owner_->Free(new_node->address() + size_in_bytes + linear_size, new_node_size - size_in_bytes - linear_size); owner_->SetTopAndLimit(new_node->address() + size_in_bytes, new_node->address() + size_in_bytes + linear_size); } else { DCHECK(bytes_left >= 0); // Normally we give the rest of the node to the allocator as its new // linear allocation area. owner_->SetTopAndLimit(new_node->address() + size_in_bytes, new_node->address() + new_node_size); } owner_->AllocationStep(new_node->address(), size_in_bytes); return new_node; } intptr_t FreeList::EvictFreeListItems(Page* page) { intptr_t sum = 0; page->ForAllFreeListCategories( [this, &sum, page](FreeListCategory* category) { DCHECK_EQ(this, category->owner()); sum += category->available(); RemoveCategory(category); category->Invalidate(); }); return sum; } bool FreeList::ContainsPageFreeListItems(Page* page) { bool contained = false; page->ForAllFreeListCategories( [this, &contained](FreeListCategory* category) { if (category->owner() == this && category->is_linked()) { contained = true; } }); return contained; } void FreeList::RepairLists(Heap* heap) { ForAllFreeListCategories( [heap](FreeListCategory* category) { category->RepairFreeList(heap); }); } bool FreeList::AddCategory(FreeListCategory* category) { FreeListCategoryType type = category->type_; FreeListCategory* top = categories_[type]; if (category->is_empty()) return false; if (top == category) return false; // Common double-linked list insertion. if (top != nullptr) { top->set_prev(category); } category->set_next(top); categories_[type] = category; return true; } void FreeList::RemoveCategory(FreeListCategory* category) { FreeListCategoryType type = category->type_; FreeListCategory* top = categories_[type]; // Common double-linked list removal. if (top == category) { categories_[type] = category->next(); } if (category->prev() != nullptr) { category->prev()->set_next(category->next()); } if (category->next() != nullptr) { category->next()->set_prev(category->prev()); } category->set_next(nullptr); category->set_prev(nullptr); } void FreeList::PrintCategories(FreeListCategoryType type) { FreeListCategoryIterator it(this, type); PrintF("FreeList[%p, top=%p, %d] ", static_cast<void*>(this), static_cast<void*>(categories_[type]), type); while (it.HasNext()) { FreeListCategory* current = it.Next(); PrintF("%p -> ", static_cast<void*>(current)); } PrintF("null\n"); } #ifdef DEBUG intptr_t FreeListCategory::SumFreeList() { intptr_t sum = 0; FreeSpace* cur = top(); while (cur != NULL) { DCHECK(cur->map() == cur->GetHeap()->root(Heap::kFreeSpaceMapRootIndex)); sum += cur->nobarrier_size(); cur = cur->next(); } return sum; } int FreeListCategory::FreeListLength() { int length = 0; FreeSpace* cur = top(); while (cur != NULL) { length++; cur = cur->next(); if (length == kVeryLongFreeList) return length; } return length; } bool FreeList::IsVeryLong() { int len = 0; for (int i = kFirstCategory; i < kNumberOfCategories; i++) { FreeListCategoryIterator it(this, static_cast<FreeListCategoryType>(i)); while (it.HasNext()) { len += it.Next()->FreeListLength(); if (len >= FreeListCategory::kVeryLongFreeList) return true; } } return false; } // This can take a very long time because it is linear in the number of entries // on the free list, so it should not be called if FreeListLength returns // kVeryLongFreeList. intptr_t FreeList::SumFreeLists() { intptr_t sum = 0; ForAllFreeListCategories( [&sum](FreeListCategory* category) { sum += category->SumFreeList(); }); return sum; } #endif // ----------------------------------------------------------------------------- // OldSpace implementation void PagedSpace::PrepareForMarkCompact() { // We don't have a linear allocation area while sweeping. It will be restored // on the first allocation after the sweep. EmptyAllocationInfo(); // Clear the free list before a full GC---it will be rebuilt afterward. free_list_.Reset(); } intptr_t PagedSpace::SizeOfObjects() { const intptr_t size = Size() - (limit() - top()); CHECK_GE(limit(), top()); CHECK_GE(size, 0); USE(size); return size; } // After we have booted, we have created a map which represents free space // on the heap. If there was already a free list then the elements on it // were created with the wrong FreeSpaceMap (normally NULL), so we need to // fix them. void PagedSpace::RepairFreeListsAfterDeserialization() { free_list_.RepairLists(heap()); // Each page may have a small free space that is not tracked by a free list. // Update the maps for those free space objects. for (Page* page : *this) { int size = static_cast<int>(page->wasted_memory()); if (size == 0) continue; Address address = page->OffsetToAddress(Page::kPageSize - size); heap()->CreateFillerObjectAt(address, size, ClearRecordedSlots::kNo); } } void PagedSpace::EvictEvacuationCandidatesFromLinearAllocationArea() { if (allocation_info_.top() >= allocation_info_.limit()) return; if (!Page::FromAllocationAreaAddress(allocation_info_.top())->CanAllocate()) { // Create filler object to keep page iterable if it was iterable. int remaining = static_cast<int>(allocation_info_.limit() - allocation_info_.top()); heap()->CreateFillerObjectAt(allocation_info_.top(), remaining, ClearRecordedSlots::kNo); allocation_info_.Reset(nullptr, nullptr); } } HeapObject* PagedSpace::SweepAndRetryAllocation(int size_in_bytes) { MarkCompactCollector* collector = heap()->mark_compact_collector(); if (collector->sweeping_in_progress()) { // Wait for the sweeper threads here and complete the sweeping phase. collector->EnsureSweepingCompleted(); // After waiting for the sweeper threads, there may be new free-list // entries. return free_list_.Allocate(size_in_bytes); } return nullptr; } HeapObject* CompactionSpace::SweepAndRetryAllocation(int size_in_bytes) { MarkCompactCollector* collector = heap()->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->SweepAndRefill(this); return free_list_.Allocate(size_in_bytes); } return nullptr; } HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) { const int kMaxPagesToSweep = 1; // Allocation in this space has failed. MarkCompactCollector* collector = heap()->mark_compact_collector(); // Sweeping is still in progress. if (collector->sweeping_in_progress()) { // First try to refill the free-list, concurrent sweeper threads // may have freed some objects in the meantime. RefillFreeList(); // Retry the free list allocation. HeapObject* object = free_list_.Allocate(size_in_bytes); if (object != NULL) return object; // If sweeping is still in progress try to sweep pages on the main thread. int max_freed = collector->sweeper().ParallelSweepSpace( identity(), size_in_bytes, kMaxPagesToSweep); RefillFreeList(); if (max_freed >= size_in_bytes) { object = free_list_.Allocate(size_in_bytes); if (object != nullptr) return object; } } // Free list allocation failed and there is no next page. Fail if we have // hit the old generation size limit that should cause a garbage // collection. if (!heap()->always_allocate() && heap()->OldGenerationAllocationLimitReached()) { // If sweeper threads are active, wait for them at that point and steal // elements form their free-lists. HeapObject* object = SweepAndRetryAllocation(size_in_bytes); return object; } // Try to expand the space and allocate in the new next page. if (Expand()) { DCHECK((CountTotalPages() > 1) || (size_in_bytes <= free_list_.Available())); return free_list_.Allocate(size_in_bytes); } // If sweeper threads are active, wait for them at that point and steal // elements form their free-lists. Allocation may still fail their which // would indicate that there is not enough memory for the given allocation. return SweepAndRetryAllocation(size_in_bytes); } #ifdef DEBUG void PagedSpace::ReportCodeStatistics(Isolate* isolate) { CommentStatistic* comments_statistics = isolate->paged_space_comments_statistics(); ReportCodeKindStatistics(isolate->code_kind_statistics()); PrintF("Code size including metadata : %10d bytes\n", isolate->code_and_metadata_size()); PrintF("Bytecode size including metadata: %10d bytes\n", isolate->bytecode_and_metadata_size()); PrintF( "Code comment statistics (\" [ comment-txt : size/ " "count (average)\"):\n"); for (int i = 0; i <= CommentStatistic::kMaxComments; i++) { const CommentStatistic& cs = comments_statistics[i]; if (cs.size > 0) { PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, cs.size / cs.count); } } PrintF("\n"); } void PagedSpace::ResetCodeStatistics(Isolate* isolate) { CommentStatistic* comments_statistics = isolate->paged_space_comments_statistics(); ClearCodeKindStatistics(isolate->code_kind_statistics()); for (int i = 0; i < CommentStatistic::kMaxComments; i++) { comments_statistics[i].Clear(); } comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown"; comments_statistics[CommentStatistic::kMaxComments].size = 0; comments_statistics[CommentStatistic::kMaxComments].count = 0; } // Adds comment to 'comment_statistics' table. Performance OK as long as // 'kMaxComments' is small static void EnterComment(Isolate* isolate, const char* comment, int delta) { CommentStatistic* comments_statistics = isolate->paged_space_comments_statistics(); // Do not count empty comments if (delta <= 0) return; CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments]; // Search for a free or matching entry in 'comments_statistics': 'cs' // points to result. for (int i = 0; i < CommentStatistic::kMaxComments; i++) { if (comments_statistics[i].comment == NULL) { cs = &comments_statistics[i]; cs->comment = comment; break; } else if (strcmp(comments_statistics[i].comment, comment) == 0) { cs = &comments_statistics[i]; break; } } // Update entry for 'comment' cs->size += delta; cs->count += 1; } // Call for each nested comment start (start marked with '[ xxx', end marked // with ']'. RelocIterator 'it' must point to a comment reloc info. static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) { DCHECK(!it->done()); DCHECK(it->rinfo()->rmode() == RelocInfo::COMMENT); const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); if (tmp[0] != '[') { // Not a nested comment; skip return; } // Search for end of nested comment or a new nested comment const char* const comment_txt = reinterpret_cast<const char*>(it->rinfo()->data()); const byte* prev_pc = it->rinfo()->pc(); int flat_delta = 0; it->next(); while (true) { // All nested comments must be terminated properly, and therefore exit // from loop. DCHECK(!it->done()); if (it->rinfo()->rmode() == RelocInfo::COMMENT) { const char* const txt = reinterpret_cast<const char*>(it->rinfo()->data()); flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc); if (txt[0] == ']') break; // End of nested comment // A new comment CollectCommentStatistics(isolate, it); // Skip code that was covered with previous comment prev_pc = it->rinfo()->pc(); } it->next(); } EnterComment(isolate, comment_txt, flat_delta); } // Collects code comment statistics static void CollectCodeCommentStatistics(HeapObject* obj, Isolate* isolate) { if (!obj->IsCode()) { return; } Code* code = Code::cast(obj); RelocIterator it(code); int delta = 0; const byte* prev_pc = code->instruction_start(); while (!it.done()) { if (it.rinfo()->rmode() == RelocInfo::COMMENT) { delta += static_cast<int>(it.rinfo()->pc() - prev_pc); CollectCommentStatistics(isolate, &it); prev_pc = it.rinfo()->pc(); } it.next(); } DCHECK(code->instruction_start() <= prev_pc && prev_pc <= code->instruction_end()); delta += static_cast<int>(code->instruction_end() - prev_pc); EnterComment(isolate, "NoComment", delta); } void PagedSpace::ReportStatistics() { int pct = static_cast<int>(Available() * 100 / Capacity()); PrintF(" capacity: %" V8PRIdPTR ", waste: %" V8PRIdPTR ", available: %" V8PRIdPTR ", %%%d\n", Capacity(), Waste(), Available(), pct); if (heap()->mark_compact_collector()->sweeping_in_progress()) { heap()->mark_compact_collector()->EnsureSweepingCompleted(); } ClearHistograms(heap()->isolate()); HeapObjectIterator obj_it(this); for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) CollectHistogramInfo(obj); ReportHistogram(heap()->isolate(), true); } #endif static void RecordCodeSizeIncludingMetadata(AbstractCode* abstract_code, Isolate* isolate) { int size = abstract_code->SizeIncludingMetadata(); if (abstract_code->IsCode()) { size += isolate->code_and_metadata_size(); isolate->set_code_and_metadata_size(size); } else { size += isolate->bytecode_and_metadata_size(); isolate->set_bytecode_and_metadata_size(size); } } // Collects code size statistics: // - code and metadata size // - by code kind (only in debug mode) // - by code comment (only in debug mode) void PagedSpace::CollectCodeStatistics() { Isolate* isolate = heap()->isolate(); HeapObjectIterator obj_it(this); for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { if (obj->IsAbstractCode()) { AbstractCode* code = AbstractCode::cast(obj); RecordCodeSizeIncludingMetadata(code, isolate); #ifdef DEBUG isolate->code_kind_statistics()[code->kind()] += code->Size(); CollectCodeCommentStatistics(obj, isolate); #endif } } } void PagedSpace::ResetCodeAndMetadataStatistics(Isolate* isolate) { isolate->set_code_and_metadata_size(0); isolate->set_bytecode_and_metadata_size(0); #ifdef DEBUG ResetCodeStatistics(isolate); #endif } // ----------------------------------------------------------------------------- // MapSpace implementation #ifdef VERIFY_HEAP void MapSpace::VerifyObject(HeapObject* object) { CHECK(object->IsMap()); } #endif // ----------------------------------------------------------------------------- // LargeObjectIterator LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { current_ = space->first_page_; } HeapObject* LargeObjectIterator::Next() { if (current_ == NULL) return NULL; HeapObject* object = current_->GetObject(); current_ = current_->next_page(); return object; } // ----------------------------------------------------------------------------- // LargeObjectSpace LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id) : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis first_page_(NULL), size_(0), page_count_(0), objects_size_(0), chunk_map_(base::HashMap::PointersMatch, 1024) {} LargeObjectSpace::~LargeObjectSpace() {} bool LargeObjectSpace::SetUp() { first_page_ = NULL; size_ = 0; page_count_ = 0; objects_size_ = 0; chunk_map_.Clear(); return true; } void LargeObjectSpace::TearDown() { while (first_page_ != NULL) { LargePage* page = first_page_; first_page_ = first_page_->next_page(); LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address())); heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page); } SetUp(); } AllocationResult LargeObjectSpace::AllocateRaw(int object_size, Executability executable) { // Check if we want to force a GC before growing the old space further. // If so, fail the allocation. if (!heap()->CanExpandOldGeneration(object_size)) { return AllocationResult::Retry(identity()); } LargePage* page = heap()->memory_allocator()->AllocateLargePage( object_size, this, executable); if (page == NULL) return AllocationResult::Retry(identity()); DCHECK(page->area_size() >= object_size); size_ += static_cast<int>(page->size()); AccountCommitted(static_cast<intptr_t>(page->size())); objects_size_ += object_size; page_count_++; page->set_next_page(first_page_); first_page_ = page; // Register all MemoryChunk::kAlignment-aligned chunks covered by // this large page in the chunk map. uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment; uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment; for (uintptr_t key = base; key <= limit; key++) { base::HashMap::Entry* entry = chunk_map_.LookupOrInsert( reinterpret_cast<void*>(key), static_cast<uint32_t>(key)); DCHECK(entry != NULL); entry->value = page; } HeapObject* object = page->GetObject(); MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), object_size); if (Heap::ShouldZapGarbage()) { // Make the object consistent so the heap can be verified in OldSpaceStep. // We only need to do this in debug builds or if verify_heap is on. reinterpret_cast<Object**>(object->address())[0] = heap()->fixed_array_map(); reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0); } heap()->incremental_marking()->OldSpaceStep(object_size); AllocationStep(object->address(), object_size); return object; } size_t LargeObjectSpace::CommittedPhysicalMemory() { // On a platform that provides lazy committing of memory, we over-account // the actually committed memory. There is no easy way right now to support // precise accounting of committed memory in large object space. return CommittedMemory(); } // GC support Object* LargeObjectSpace::FindObject(Address a) { LargePage* page = FindPage(a); if (page != NULL) { return page->GetObject(); } return Smi::FromInt(0); // Signaling not found. } LargePage* LargeObjectSpace::FindPage(Address a) { uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment; base::HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key), static_cast<uint32_t>(key)); if (e != NULL) { DCHECK(e->value != NULL); LargePage* page = reinterpret_cast<LargePage*>(e->value); DCHECK(LargePage::IsValid(page)); if (page->Contains(a)) { return page; } } return NULL; } void LargeObjectSpace::ClearMarkingStateOfLiveObjects() { LargePage* current = first_page_; while (current != NULL) { HeapObject* object = current->GetObject(); MarkBit mark_bit = Marking::MarkBitFrom(object); DCHECK(Marking::IsBlack(mark_bit)); Marking::BlackToWhite(mark_bit); Page::FromAddress(object->address())->ResetProgressBar(); Page::FromAddress(object->address())->ResetLiveBytes(); current = current->next_page(); } } void LargeObjectSpace::FreeUnmarkedObjects() { LargePage* previous = NULL; LargePage* current = first_page_; while (current != NULL) { HeapObject* object = current->GetObject(); MarkBit mark_bit = Marking::MarkBitFrom(object); DCHECK(!Marking::IsGrey(mark_bit)); if (Marking::IsBlack(mark_bit)) { previous = current; current = current->next_page(); } else { LargePage* page = current; // Cut the chunk out from the chunk list. current = current->next_page(); if (previous == NULL) { first_page_ = current; } else { previous->set_next_page(current); } // Free the chunk. size_ -= static_cast<int>(page->size()); AccountUncommitted(static_cast<intptr_t>(page->size())); objects_size_ -= object->Size(); page_count_--; // Remove entries belonging to this page. // Use variable alignment to help pass length check (<= 80 characters) // of single line in tools/presubmit.py. const intptr_t alignment = MemoryChunk::kAlignment; uintptr_t base = reinterpret_cast<uintptr_t>(page) / alignment; uintptr_t limit = base + (page->size() - 1) / alignment; for (uintptr_t key = base; key <= limit; key++) { chunk_map_.Remove(reinterpret_cast<void*>(key), static_cast<uint32_t>(key)); } heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page); } } } bool LargeObjectSpace::Contains(HeapObject* object) { Address address = object->address(); MemoryChunk* chunk = MemoryChunk::FromAddress(address); bool owned = (chunk->owner() == this); SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject()); return owned; } #ifdef VERIFY_HEAP // We do not assume that the large object iterator works, because it depends // on the invariants we are checking during verification. void LargeObjectSpace::Verify() { for (LargePage* chunk = first_page_; chunk != NULL; chunk = chunk->next_page()) { // Each chunk contains an object that starts at the large object page's // object area start. HeapObject* object = chunk->GetObject(); Page* page = Page::FromAddress(object->address()); CHECK(object->address() == page->area_start()); // The first word should be a map, and we expect all map pointers to be // in map space. Map* map = object->map(); CHECK(map->IsMap()); CHECK(heap()->map_space()->Contains(map)); // We have only code, sequential strings, external strings // (sequential strings that have been morphed into external // strings), fixed arrays, byte arrays, and constant pool arrays in the // large object space. CHECK(object->IsAbstractCode() || object->IsSeqString() || object->IsExternalString() || object->IsFixedArray() || object->IsFixedDoubleArray() || object->IsByteArray()); // The object itself should look OK. object->ObjectVerify(); // Byte arrays and strings don't have interior pointers. if (object->IsAbstractCode()) { VerifyPointersVisitor code_visitor; object->IterateBody(map->instance_type(), object->Size(), &code_visitor); } else if (object->IsFixedArray()) { FixedArray* array = FixedArray::cast(object); for (int j = 0; j < array->length(); j++) { Object* element = array->get(j); if (element->IsHeapObject()) { HeapObject* element_object = HeapObject::cast(element); CHECK(heap()->Contains(element_object)); CHECK(element_object->map()->IsMap()); } } } } } #endif void LargeObjectSpace::CollectCodeStatistics() { Isolate* isolate = heap()->isolate(); LargeObjectIterator obj_it(this); for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { if (obj->IsAbstractCode()) { AbstractCode* code = AbstractCode::cast(obj); RecordCodeSizeIncludingMetadata(code, isolate); #ifdef DEBUG isolate->code_kind_statistics()[code->kind()] += code->Size(); CollectCodeCommentStatistics(obj, isolate); #endif } } } #ifdef DEBUG void LargeObjectSpace::Print() { OFStream os(stdout); LargeObjectIterator it(this); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { obj->Print(os); } } void LargeObjectSpace::ReportStatistics() { PrintF(" size: %" V8PRIdPTR "\n", size_); int num_objects = 0; ClearHistograms(heap()->isolate()); LargeObjectIterator it(this); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { num_objects++; CollectHistogramInfo(obj); } PrintF( " number of objects %d, " "size of objects %" V8PRIdPTR "\n", num_objects, objects_size_); if (num_objects > 0) ReportHistogram(heap()->isolate(), false); } void Page::Print() { // Make a best-effort to print the objects in the page. PrintF("Page@%p in %s\n", static_cast<void*>(this->address()), AllocationSpaceName(this->owner()->identity())); printf(" --------------------------------------\n"); HeapObjectIterator objects(this); unsigned mark_size = 0; for (HeapObject* object = objects.Next(); object != NULL; object = objects.Next()) { bool is_marked = Marking::IsBlackOrGrey(Marking::MarkBitFrom(object)); PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little. if (is_marked) { mark_size += object->Size(); } object->ShortPrint(); PrintF("\n"); } printf(" --------------------------------------\n"); printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes()); } #endif // DEBUG } // namespace internal } // namespace v8