// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_SPACES_H_ #define V8_HEAP_SPACES_H_ #include <list> #include "src/allocation.h" #include "src/base/atomic-utils.h" #include "src/base/atomicops.h" #include "src/base/bits.h" #include "src/base/hashmap.h" #include "src/base/platform/mutex.h" #include "src/flags.h" #include "src/list.h" #include "src/objects.h" #include "src/utils.h" namespace v8 { namespace internal { class AllocationInfo; class AllocationObserver; class CompactionSpace; class CompactionSpaceCollection; class FreeList; class Isolate; class LocalArrayBufferTracker; class MemoryAllocator; class MemoryChunk; class Page; class PagedSpace; class SemiSpace; class SkipList; class SlotsBuffer; class SlotSet; class TypedSlotSet; class Space; // ----------------------------------------------------------------------------- // Heap structures: // // A JS heap consists of a young generation, an old generation, and a large // object space. The young generation is divided into two semispaces. A // scavenger implements Cheney's copying algorithm. The old generation is // separated into a map space and an old object space. The map space contains // all (and only) map objects, the rest of old objects go into the old space. // The old generation is collected by a mark-sweep-compact collector. // // The semispaces of the young generation are contiguous. The old and map // spaces consists of a list of pages. A page has a page header and an object // area. // // There is a separate large object space for objects larger than // Page::kMaxRegularHeapObjectSize, so that they do not have to move during // collection. The large object space is paged. Pages in large object space // may be larger than the page size. // // A store-buffer based write barrier is used to keep track of intergenerational // references. See heap/store-buffer.h. // // During scavenges and mark-sweep collections we sometimes (after a store // buffer overflow) iterate intergenerational pointers without decoding heap // object maps so if the page belongs to old space or large object space // it is essential to guarantee that the page does not contain any // garbage pointers to new space: every pointer aligned word which satisfies // the Heap::InNewSpace() predicate must be a pointer to a live heap object in // new space. Thus objects in old space and large object spaces should have a // special layout (e.g. no bare integer fields). This requirement does not // apply to map space which is iterated in a special fashion. However we still // require pointer fields of dead maps to be cleaned. // // To enable lazy cleaning of old space pages we can mark chunks of the page // as being garbage. Garbage sections are marked with a special map. These // sections are skipped when scanning the page, even if we are otherwise // scanning without regard for object boundaries. Garbage sections are chained // together to form a free list after a GC. Garbage sections created outside // of GCs by object trunctation etc. may not be in the free list chain. Very // small free spaces are ignored, they need only be cleaned of bogus pointers // into new space. // // Each page may have up to one special garbage section. The start of this // section is denoted by the top field in the space. The end of the section // is denoted by the limit field in the space. This special garbage section // is not marked with a free space map in the data. The point of this section // is to enable linear allocation without having to constantly update the byte // array every time the top field is updated and a new object is created. The // special garbage section is not in the chain of garbage sections. // // Since the top and limit fields are in the space, not the page, only one page // has a special garbage section, and if the top and limit are equal then there // is no special garbage section. // Some assertion macros used in the debugging mode. #define DCHECK_PAGE_ALIGNED(address) \ DCHECK((OffsetFrom(address) & Page::kPageAlignmentMask) == 0) #define DCHECK_OBJECT_ALIGNED(address) \ DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0) #define DCHECK_OBJECT_SIZE(size) \ DCHECK((0 < size) && (size <= Page::kMaxRegularHeapObjectSize)) #define DCHECK_CODEOBJECT_SIZE(size, code_space) \ DCHECK((0 < size) && (size <= code_space->AreaSize())) #define DCHECK_PAGE_OFFSET(offset) \ DCHECK((Page::kObjectStartOffset <= offset) && (offset <= Page::kPageSize)) class MarkBit { public: typedef uint32_t CellType; inline MarkBit(CellType* cell, CellType mask) : cell_(cell), mask_(mask) {} #ifdef DEBUG bool operator==(const MarkBit& other) { return cell_ == other.cell_ && mask_ == other.mask_; } #endif private: inline CellType* cell() { return cell_; } inline CellType mask() { return mask_; } inline MarkBit Next() { CellType new_mask = mask_ << 1; if (new_mask == 0) { return MarkBit(cell_ + 1, 1); } else { return MarkBit(cell_, new_mask); } } inline void Set() { *cell_ |= mask_; } inline bool Get() { return (*cell_ & mask_) != 0; } inline void Clear() { *cell_ &= ~mask_; } CellType* cell_; CellType mask_; friend class Marking; }; // Bitmap is a sequence of cells each containing fixed number of bits. class Bitmap { public: static const uint32_t kBitsPerCell = 32; static const uint32_t kBitsPerCellLog2 = 5; static const uint32_t kBitIndexMask = kBitsPerCell - 1; static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte; static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2; static const size_t kLength = (1 << kPageSizeBits) >> (kPointerSizeLog2); static const size_t kSize = (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2); static int CellsForLength(int length) { return (length + kBitsPerCell - 1) >> kBitsPerCellLog2; } int CellsCount() { return CellsForLength(kLength); } static int SizeFor(int cells_count) { return sizeof(MarkBit::CellType) * cells_count; } INLINE(static uint32_t IndexToCell(uint32_t index)) { return index >> kBitsPerCellLog2; } V8_INLINE static uint32_t IndexInCell(uint32_t index) { return index & kBitIndexMask; } INLINE(static uint32_t CellToIndex(uint32_t index)) { return index << kBitsPerCellLog2; } INLINE(static uint32_t CellAlignIndex(uint32_t index)) { return (index + kBitIndexMask) & ~kBitIndexMask; } INLINE(MarkBit::CellType* cells()) { return reinterpret_cast<MarkBit::CellType*>(this); } INLINE(Address address()) { return reinterpret_cast<Address>(this); } INLINE(static Bitmap* FromAddress(Address addr)) { return reinterpret_cast<Bitmap*>(addr); } inline MarkBit MarkBitFromIndex(uint32_t index) { MarkBit::CellType mask = 1u << IndexInCell(index); MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2); return MarkBit(cell, mask); } static inline void Clear(MemoryChunk* chunk); static inline void SetAllBits(MemoryChunk* chunk); static void PrintWord(uint32_t word, uint32_t himask = 0) { for (uint32_t mask = 1; mask != 0; mask <<= 1) { if ((mask & himask) != 0) PrintF("["); PrintF((mask & word) ? "1" : "0"); if ((mask & himask) != 0) PrintF("]"); } } class CellPrinter { public: CellPrinter() : seq_start(0), seq_type(0), seq_length(0) {} void Print(uint32_t pos, uint32_t cell) { if (cell == seq_type) { seq_length++; return; } Flush(); if (IsSeq(cell)) { seq_start = pos; seq_length = 0; seq_type = cell; return; } PrintF("%d: ", pos); PrintWord(cell); PrintF("\n"); } void Flush() { if (seq_length > 0) { PrintF("%d: %dx%d\n", seq_start, seq_type == 0 ? 0 : 1, seq_length * kBitsPerCell); seq_length = 0; } } static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; } private: uint32_t seq_start; uint32_t seq_type; uint32_t seq_length; }; void Print() { CellPrinter printer; for (int i = 0; i < CellsCount(); i++) { printer.Print(i, cells()[i]); } printer.Flush(); PrintF("\n"); } bool IsClean() { for (int i = 0; i < CellsCount(); i++) { if (cells()[i] != 0) { return false; } } return true; } // Clears all bits starting from {cell_base_index} up to and excluding // {index}. Note that {cell_base_index} is required to be cell aligned. void ClearRange(uint32_t cell_base_index, uint32_t index) { DCHECK_EQ(IndexInCell(cell_base_index), 0u); DCHECK_GE(index, cell_base_index); uint32_t start_cell_index = IndexToCell(cell_base_index); uint32_t end_cell_index = IndexToCell(index); DCHECK_GE(end_cell_index, start_cell_index); // Clear all cells till the cell containing the last index. for (uint32_t i = start_cell_index; i < end_cell_index; i++) { cells()[i] = 0; } // Clear all bits in the last cell till the last bit before index. uint32_t clear_mask = ~((1u << IndexInCell(index)) - 1); cells()[end_cell_index] &= clear_mask; } }; enum FreeListCategoryType { kTiniest, kTiny, kSmall, kMedium, kLarge, kHuge, kFirstCategory = kTiniest, kLastCategory = kHuge, kNumberOfCategories = kLastCategory + 1, kInvalidCategory }; enum FreeMode { kLinkCategory, kDoNotLinkCategory }; // A free list category maintains a linked list of free memory blocks. class FreeListCategory { public: static const int kSize = kIntSize + // FreeListCategoryType type_ kIntSize + // int available_ kPointerSize + // FreeSpace* top_ kPointerSize + // FreeListCategory* prev_ kPointerSize; // FreeListCategory* next_ FreeListCategory() : type_(kInvalidCategory), available_(0), top_(nullptr), prev_(nullptr), next_(nullptr) {} void Initialize(FreeListCategoryType type) { type_ = type; available_ = 0; top_ = nullptr; prev_ = nullptr; next_ = nullptr; } void Invalidate(); void Reset(); void ResetStats() { Reset(); } void RepairFreeList(Heap* heap); // Relinks the category into the currently owning free list. Requires that the // category is currently unlinked. void Relink(); bool Free(FreeSpace* node, int size_in_bytes, FreeMode mode); // Picks a node from the list and stores its size in |node_size|. Returns // nullptr if the category is empty. FreeSpace* PickNodeFromList(int* node_size); // Performs a single try to pick a node of at least |minimum_size| from the // category. Stores the actual size in |node_size|. Returns nullptr if no // node is found. FreeSpace* TryPickNodeFromList(int minimum_size, int* node_size); // Picks a node of at least |minimum_size| from the category. Stores the // actual size in |node_size|. Returns nullptr if no node is found. FreeSpace* SearchForNodeInList(int minimum_size, int* node_size); inline FreeList* owner(); inline bool is_linked(); bool is_empty() { return top() == nullptr; } int available() const { return available_; } #ifdef DEBUG intptr_t SumFreeList(); int FreeListLength(); #endif private: // For debug builds we accurately compute free lists lengths up until // {kVeryLongFreeList} by manually walking the list. static const int kVeryLongFreeList = 500; inline Page* page(); FreeSpace* top() { return top_; } void set_top(FreeSpace* top) { top_ = top; } FreeListCategory* prev() { return prev_; } void set_prev(FreeListCategory* prev) { prev_ = prev; } FreeListCategory* next() { return next_; } void set_next(FreeListCategory* next) { next_ = next; } // |type_|: The type of this free list category. FreeListCategoryType type_; // |available_|: Total available bytes in all blocks of this free list // category. int available_; // |top_|: Points to the top FreeSpace* in the free list category. FreeSpace* top_; FreeListCategory* prev_; FreeListCategory* next_; friend class FreeList; friend class PagedSpace; }; // MemoryChunk represents a memory region owned by a specific space. // It is divided into the header and the body. Chunk start is always // 1MB aligned. Start of the body is aligned so it can accommodate // any heap object. class MemoryChunk { public: enum MemoryChunkFlags { IS_EXECUTABLE, POINTERS_TO_HERE_ARE_INTERESTING, POINTERS_FROM_HERE_ARE_INTERESTING, IN_FROM_SPACE, // Mutually exclusive with IN_TO_SPACE. IN_TO_SPACE, // All pages in new space has one of these two set. NEW_SPACE_BELOW_AGE_MARK, EVACUATION_CANDIDATE, NEVER_EVACUATE, // May contain immortal immutables. // Large objects can have a progress bar in their page header. These object // are scanned in increments and will be kept black while being scanned. // Even if the mutator writes to them they will be kept black and a white // to grey transition is performed in the value. HAS_PROGRESS_BAR, // |PAGE_NEW_OLD_PROMOTION|: A page tagged with this flag has been promoted // from new to old space during evacuation. PAGE_NEW_OLD_PROMOTION, // |PAGE_NEW_NEW_PROMOTION|: A page tagged with this flag has been moved // within the new space during evacuation. PAGE_NEW_NEW_PROMOTION, // A black page has all mark bits set to 1 (black). A black page currently // cannot be iterated because it is not swept. Moreover live bytes are also // not updated. BLACK_PAGE, // This flag is intended to be used for testing. Works only when both // FLAG_stress_compaction and FLAG_manual_evacuation_candidates_selection // are set. It forces the page to become an evacuation candidate at next // candidates selection cycle. FORCE_EVACUATION_CANDIDATE_FOR_TESTING, // This flag is intended to be used for testing. NEVER_ALLOCATE_ON_PAGE, // The memory chunk is already logically freed, however the actual freeing // still has to be performed. PRE_FREED, // |POOLED|: When actually freeing this chunk, only uncommit and do not // give up the reservation as we still reuse the chunk at some point. POOLED, // |COMPACTION_WAS_ABORTED|: Indicates that the compaction in this page // has been aborted and needs special handling by the sweeper. COMPACTION_WAS_ABORTED, // |COMPACTION_WAS_ABORTED_FOR_TESTING|: During stress testing evacuation // on pages is sometimes aborted. The flag is used to avoid repeatedly // triggering on the same page. COMPACTION_WAS_ABORTED_FOR_TESTING, // |ANCHOR|: Flag is set if page is an anchor. ANCHOR, // Last flag, keep at bottom. NUM_MEMORY_CHUNK_FLAGS }; // |kSweepingDone|: The page state when sweeping is complete or sweeping must // not be performed on that page. Sweeper threads that are done with their // work will set this value and not touch the page anymore. // |kSweepingPending|: This page is ready for parallel sweeping. // |kSweepingInProgress|: This page is currently swept by a sweeper thread. enum ConcurrentSweepingState { kSweepingDone, kSweepingPending, kSweepingInProgress, }; // Every n write barrier invocations we go to runtime even though // we could have handled it in generated code. This lets us check // whether we have hit the limit and should do some more marking. static const int kWriteBarrierCounterGranularity = 500; static const int kPointersToHereAreInterestingMask = 1 << POINTERS_TO_HERE_ARE_INTERESTING; static const int kPointersFromHereAreInterestingMask = 1 << POINTERS_FROM_HERE_ARE_INTERESTING; static const int kEvacuationCandidateMask = 1 << EVACUATION_CANDIDATE; static const int kSkipEvacuationSlotsRecordingMask = (1 << EVACUATION_CANDIDATE) | (1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE); static const intptr_t kAlignment = (static_cast<uintptr_t>(1) << kPageSizeBits); static const intptr_t kAlignmentMask = kAlignment - 1; static const intptr_t kSizeOffset = 0; static const intptr_t kFlagsOffset = kSizeOffset + kPointerSize; static const intptr_t kLiveBytesOffset = kSizeOffset + kPointerSize // size_t size + kIntptrSize // intptr_t flags_ + kPointerSize // Address area_start_ + kPointerSize // Address area_end_ + 2 * kPointerSize // base::VirtualMemory reservation_ + kPointerSize // Address owner_ + kPointerSize // Heap* heap_ + kIntSize; // int progress_bar_ static const size_t kOldToNewSlotsOffset = kLiveBytesOffset + kIntSize; // int live_byte_count_ static const size_t kWriteBarrierCounterOffset = kOldToNewSlotsOffset + kPointerSize // SlotSet* old_to_new_slots_; + kPointerSize // SlotSet* old_to_old_slots_; + kPointerSize // TypedSlotSet* typed_old_to_new_slots_; + kPointerSize // TypedSlotSet* typed_old_to_old_slots_; + kPointerSize; // SkipList* skip_list_; static const size_t kMinHeaderSize = kWriteBarrierCounterOffset + kIntptrSize // intptr_t write_barrier_counter_ + kPointerSize // AtomicValue high_water_mark_ + kPointerSize // base::Mutex* mutex_ + kPointerSize // base::AtomicWord concurrent_sweeping_ + 2 * kPointerSize // AtomicNumber free-list statistics + kPointerSize // AtomicValue next_chunk_ + kPointerSize // AtomicValue prev_chunk_ // FreeListCategory categories_[kNumberOfCategories] + FreeListCategory::kSize * kNumberOfCategories + kPointerSize; // LocalArrayBufferTracker* local_tracker_; // We add some more space to the computed header size to amount for missing // alignment requirements in our computation. // Try to get kHeaderSize properly aligned on 32-bit and 64-bit machines. static const size_t kHeaderSize = kMinHeaderSize; static const int kBodyOffset = CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize); // The start offset of the object area in a page. Aligned to both maps and // code alignment to be suitable for both. Also aligned to 32 words because // the marking bitmap is arranged in 32 bit chunks. static const int kObjectStartAlignment = 32 * kPointerSize; static const int kObjectStartOffset = kBodyOffset - 1 + (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); // Page size in bytes. This must be a multiple of the OS page size. static const int kPageSize = 1 << kPageSizeBits; static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; static const int kAllocatableMemory = kPageSize - kObjectStartOffset; static inline void IncrementLiveBytesFromMutator(HeapObject* object, int by); static inline void IncrementLiveBytesFromGC(HeapObject* object, int by); // Only works if the pointer is in the first kPageSize of the MemoryChunk. static MemoryChunk* FromAddress(Address a) { return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask); } static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr); static inline void UpdateHighWaterMark(Address mark) { if (mark == nullptr) return; // Need to subtract one from the mark because when a chunk is full the // top points to the next address after the chunk, which effectively belongs // to another chunk. See the comment to Page::FromTopOrLimit. MemoryChunk* chunk = MemoryChunk::FromAddress(mark - 1); intptr_t new_mark = static_cast<intptr_t>(mark - chunk->address()); intptr_t old_mark = 0; do { old_mark = chunk->high_water_mark_.Value(); } while ((new_mark > old_mark) && !chunk->high_water_mark_.TrySetValue(old_mark, new_mark)); } static bool IsValid(MemoryChunk* chunk) { return chunk != nullptr; } Address address() { return reinterpret_cast<Address>(this); } base::Mutex* mutex() { return mutex_; } bool Contains(Address addr) { return addr >= area_start() && addr < area_end(); } // Checks whether |addr| can be a limit of addresses in this page. It's a // limit if it's in the page, or if it's just after the last byte of the page. bool ContainsLimit(Address addr) { return addr >= area_start() && addr <= area_end(); } base::AtomicValue<ConcurrentSweepingState>& concurrent_sweeping_state() { return concurrent_sweeping_; } // Manage live byte count, i.e., count of bytes in black objects. inline void ResetLiveBytes(); inline void IncrementLiveBytes(int by); int LiveBytes() { DCHECK_LE(static_cast<unsigned>(live_byte_count_), size_); DCHECK(!IsFlagSet(BLACK_PAGE) || live_byte_count_ == 0); return live_byte_count_; } void SetLiveBytes(int live_bytes) { if (IsFlagSet(BLACK_PAGE)) return; DCHECK_GE(live_bytes, 0); DCHECK_LE(static_cast<size_t>(live_bytes), size_); live_byte_count_ = live_bytes; } int write_barrier_counter() { return static_cast<int>(write_barrier_counter_); } void set_write_barrier_counter(int counter) { write_barrier_counter_ = counter; } size_t size() const { return size_; } inline Heap* heap() const { return heap_; } inline SkipList* skip_list() { return skip_list_; } inline void set_skip_list(SkipList* skip_list) { skip_list_ = skip_list; } inline SlotSet* old_to_new_slots() { return old_to_new_slots_; } inline SlotSet* old_to_old_slots() { return old_to_old_slots_; } inline TypedSlotSet* typed_old_to_new_slots() { return typed_old_to_new_slots_; } inline TypedSlotSet* typed_old_to_old_slots() { return typed_old_to_old_slots_; } inline LocalArrayBufferTracker* local_tracker() { return local_tracker_; } void AllocateOldToNewSlots(); void ReleaseOldToNewSlots(); void AllocateOldToOldSlots(); void ReleaseOldToOldSlots(); void AllocateTypedOldToNewSlots(); void ReleaseTypedOldToNewSlots(); void AllocateTypedOldToOldSlots(); void ReleaseTypedOldToOldSlots(); void AllocateLocalTracker(); void ReleaseLocalTracker(); Address area_start() { return area_start_; } Address area_end() { return area_end_; } int area_size() { return static_cast<int>(area_end() - area_start()); } bool CommitArea(size_t requested); // Approximate amount of physical memory committed for this chunk. size_t CommittedPhysicalMemory() { return high_water_mark_.Value(); } Address HighWaterMark() { return address() + high_water_mark_.Value(); } int progress_bar() { DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); return progress_bar_; } void set_progress_bar(int progress_bar) { DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); progress_bar_ = progress_bar; } void ResetProgressBar() { if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { set_progress_bar(0); ClearFlag(MemoryChunk::HAS_PROGRESS_BAR); } } inline Bitmap* markbits() { return Bitmap::FromAddress(address() + kHeaderSize); } inline uint32_t AddressToMarkbitIndex(Address addr) { return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2; } inline Address MarkbitIndexToAddress(uint32_t index) { return this->address() + (index << kPointerSizeLog2); } void PrintMarkbits() { markbits()->Print(); } void SetFlag(int flag) { flags_ |= static_cast<uintptr_t>(1) << flag; } void ClearFlag(int flag) { flags_ &= ~(static_cast<uintptr_t>(1) << flag); } bool IsFlagSet(int flag) { return (flags_ & (static_cast<uintptr_t>(1) << flag)) != 0; } // Set or clear multiple flags at a time. The flags in the mask are set to // the value in "flags", the rest retain the current value in |flags_|. void SetFlags(intptr_t flags, intptr_t mask) { flags_ = (flags_ & ~mask) | (flags & mask); } // Return all current flags. intptr_t GetFlags() { return flags_; } bool NeverEvacuate() { return IsFlagSet(NEVER_EVACUATE); } void MarkNeverEvacuate() { SetFlag(NEVER_EVACUATE); } bool IsEvacuationCandidate() { DCHECK(!(IsFlagSet(NEVER_EVACUATE) && IsFlagSet(EVACUATION_CANDIDATE))); return IsFlagSet(EVACUATION_CANDIDATE); } bool CanAllocate() { return !IsEvacuationCandidate() && !IsFlagSet(NEVER_ALLOCATE_ON_PAGE); } bool ShouldSkipEvacuationSlotRecording() { return ((flags_ & kSkipEvacuationSlotsRecordingMask) != 0) && !IsFlagSet(COMPACTION_WAS_ABORTED); } Executability executable() { return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; } bool InNewSpace() { return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0; } bool InToSpace() { return IsFlagSet(IN_TO_SPACE); } bool InFromSpace() { return IsFlagSet(IN_FROM_SPACE); } MemoryChunk* next_chunk() { return next_chunk_.Value(); } MemoryChunk* prev_chunk() { return prev_chunk_.Value(); } void set_next_chunk(MemoryChunk* next) { next_chunk_.SetValue(next); } void set_prev_chunk(MemoryChunk* prev) { prev_chunk_.SetValue(prev); } Space* owner() const { if ((reinterpret_cast<intptr_t>(owner_) & kPageHeaderTagMask) == kPageHeaderTag) { return reinterpret_cast<Space*>(reinterpret_cast<intptr_t>(owner_) - kPageHeaderTag); } else { return nullptr; } } void set_owner(Space* space) { DCHECK((reinterpret_cast<intptr_t>(space) & kPageHeaderTagMask) == 0); owner_ = reinterpret_cast<Address>(space) + kPageHeaderTag; DCHECK((reinterpret_cast<intptr_t>(owner_) & kPageHeaderTagMask) == kPageHeaderTag); } bool HasPageHeader() { return owner() != nullptr; } void InsertAfter(MemoryChunk* other); void Unlink(); protected: static MemoryChunk* Initialize(Heap* heap, Address base, size_t size, Address area_start, Address area_end, Executability executable, Space* owner, base::VirtualMemory* reservation); // Should be called when memory chunk is about to be freed. void ReleaseAllocatedMemory(); base::VirtualMemory* reserved_memory() { return &reservation_; } size_t size_; intptr_t flags_; // Start and end of allocatable memory on this chunk. Address area_start_; Address area_end_; // If the chunk needs to remember its memory reservation, it is stored here. base::VirtualMemory reservation_; // The identity of the owning space. This is tagged as a failure pointer, but // no failure can be in an object, so this can be distinguished from any entry // in a fixed array. Address owner_; Heap* heap_; // Used by the incremental marker to keep track of the scanning progress in // large objects that have a progress bar and are scanned in increments. int progress_bar_; // Count of bytes marked black on page. int live_byte_count_; // A single slot set for small pages (of size kPageSize) or an array of slot // set for large pages. In the latter case the number of entries in the array // is ceil(size() / kPageSize). SlotSet* old_to_new_slots_; SlotSet* old_to_old_slots_; TypedSlotSet* typed_old_to_new_slots_; TypedSlotSet* typed_old_to_old_slots_; SkipList* skip_list_; intptr_t write_barrier_counter_; // Assuming the initial allocation on a page is sequential, // count highest number of bytes ever allocated on the page. base::AtomicValue<intptr_t> high_water_mark_; base::Mutex* mutex_; base::AtomicValue<ConcurrentSweepingState> concurrent_sweeping_; // PagedSpace free-list statistics. base::AtomicNumber<intptr_t> available_in_free_list_; base::AtomicNumber<intptr_t> wasted_memory_; // next_chunk_ holds a pointer of type MemoryChunk base::AtomicValue<MemoryChunk*> next_chunk_; // prev_chunk_ holds a pointer of type MemoryChunk base::AtomicValue<MemoryChunk*> prev_chunk_; FreeListCategory categories_[kNumberOfCategories]; LocalArrayBufferTracker* local_tracker_; private: void InitializeReservedMemory() { reservation_.Reset(); } friend class MemoryAllocator; friend class MemoryChunkValidator; }; // ----------------------------------------------------------------------------- // A page is a memory chunk of a size 1MB. Large object pages may be larger. // // The only way to get a page pointer is by calling factory methods: // Page* p = Page::FromAddress(addr); or // Page* p = Page::FromTopOrLimit(top); class Page : public MemoryChunk { public: static const intptr_t kCopyAllFlags = ~0; // Page flags copied from from-space to to-space when flipping semispaces. static const intptr_t kCopyOnFlipFlagsMask = (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) | (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); // Maximum object size that gets allocated into regular pages. Objects larger // than that size are allocated in large object space and are never moved in // memory. This also applies to new space allocation, since objects are never // migrated from new space to large object space. Takes double alignment into // account. // TODO(hpayer): This limit should be way smaller but we currently have // short living objects >256K. static const int kMaxRegularHeapObjectSize = 600 * KB; static inline Page* ConvertNewToOld(Page* old_page, PagedSpace* new_owner); // Returns the page containing a given address. The address ranges // from [page_addr .. page_addr + kPageSize[. This only works if the object // is in fact in a page. static Page* FromAddress(Address addr) { return reinterpret_cast<Page*>(OffsetFrom(addr) & ~kPageAlignmentMask); } // Returns the page containing the address provided. The address can // potentially point righter after the page. To be also safe for tagged values // we subtract a hole word. The valid address ranges from // [page_addr + kObjectStartOffset .. page_addr + kPageSize + kPointerSize]. static Page* FromAllocationAreaAddress(Address address) { return Page::FromAddress(address - kPointerSize); } // Checks if address1 and address2 are on the same new space page. static bool OnSamePage(Address address1, Address address2) { return Page::FromAddress(address1) == Page::FromAddress(address2); } // Checks whether an address is page aligned. static bool IsAlignedToPageSize(Address addr) { return (OffsetFrom(addr) & kPageAlignmentMask) == 0; } static bool IsAtObjectStart(Address addr) { return (reinterpret_cast<intptr_t>(addr) & kPageAlignmentMask) == kObjectStartOffset; } inline static Page* FromAnyPointerAddress(Heap* heap, Address addr); // Create a Page object that is only used as anchor for the doubly-linked // list of real pages. explicit Page(Space* owner) { InitializeAsAnchor(owner); } inline void MarkNeverAllocateForTesting(); inline void MarkEvacuationCandidate(); inline void ClearEvacuationCandidate(); Page* next_page() { return static_cast<Page*>(next_chunk()); } Page* prev_page() { return static_cast<Page*>(prev_chunk()); } void set_next_page(Page* page) { set_next_chunk(page); } void set_prev_page(Page* page) { set_prev_chunk(page); } template <typename Callback> inline void ForAllFreeListCategories(Callback callback) { for (int i = kFirstCategory; i < kNumberOfCategories; i++) { callback(&categories_[i]); } } // Returns the offset of a given address to this page. inline int Offset(Address a) { int offset = static_cast<int>(a - address()); return offset; } // Returns the address for a given offset to the this page. Address OffsetToAddress(int offset) { DCHECK_PAGE_OFFSET(offset); return address() + offset; } // WaitUntilSweepingCompleted only works when concurrent sweeping is in // progress. In particular, when we know that right before this call a // sweeper thread was sweeping this page. void WaitUntilSweepingCompleted() { mutex_->Lock(); mutex_->Unlock(); DCHECK(SweepingDone()); } bool SweepingDone() { return concurrent_sweeping_state().Value() == kSweepingDone; } void ResetFreeListStatistics(); int LiveBytesFromFreeList() { return static_cast<int>(area_size() - wasted_memory() - available_in_free_list()); } FreeListCategory* free_list_category(FreeListCategoryType type) { return &categories_[type]; } bool is_anchor() { return IsFlagSet(Page::ANCHOR); } intptr_t wasted_memory() { return wasted_memory_.Value(); } void add_wasted_memory(intptr_t waste) { wasted_memory_.Increment(waste); } intptr_t available_in_free_list() { return available_in_free_list_.Value(); } void add_available_in_free_list(intptr_t available) { available_in_free_list_.Increment(available); } #ifdef DEBUG void Print(); #endif // DEBUG private: enum InitializationMode { kFreeMemory, kDoNotFreeMemory }; template <InitializationMode mode = kFreeMemory> static inline Page* Initialize(Heap* heap, MemoryChunk* chunk, Executability executable, PagedSpace* owner); static inline Page* Initialize(Heap* heap, MemoryChunk* chunk, Executability executable, SemiSpace* owner); inline void InitializeFreeListCategories(); void InitializeAsAnchor(Space* owner); friend class MemoryAllocator; }; class LargePage : public MemoryChunk { public: HeapObject* GetObject() { return HeapObject::FromAddress(area_start()); } inline LargePage* next_page() { return static_cast<LargePage*>(next_chunk()); } inline void set_next_page(LargePage* page) { set_next_chunk(page); } // A limit to guarantee that we do not overflow typed slot offset in // the old to old remembered set. // Note that this limit is higher than what assembler already imposes on // x64 and ia32 architectures. static const int kMaxCodePageSize = 512 * MB; private: static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk, Executability executable, Space* owner); friend class MemoryAllocator; }; // ---------------------------------------------------------------------------- // Space is the abstract superclass for all allocation spaces. class Space : public Malloced { public: Space(Heap* heap, AllocationSpace id, Executability executable) : allocation_observers_(new List<AllocationObserver*>()), allocation_observers_paused_(false), heap_(heap), id_(id), executable_(executable), committed_(0), max_committed_(0) {} virtual ~Space() {} Heap* heap() const { return heap_; } // Does the space need executable memory? Executability executable() { return executable_; } // Identity used in error reporting. AllocationSpace identity() { return id_; } virtual void AddAllocationObserver(AllocationObserver* observer) { allocation_observers_->Add(observer); } virtual void RemoveAllocationObserver(AllocationObserver* observer) { bool removed = allocation_observers_->RemoveElement(observer); USE(removed); DCHECK(removed); } virtual void PauseAllocationObservers() { allocation_observers_paused_ = true; } virtual void ResumeAllocationObservers() { allocation_observers_paused_ = false; } void AllocationStep(Address soon_object, int size); // Return the total amount committed memory for this space, i.e., allocatable // memory and page headers. virtual intptr_t CommittedMemory() { return committed_; } virtual intptr_t MaximumCommittedMemory() { return max_committed_; } // Returns allocated size. virtual intptr_t Size() = 0; // Returns size of objects. Can differ from the allocated size // (e.g. see LargeObjectSpace). virtual intptr_t SizeOfObjects() { return Size(); } // Approximate amount of physical memory committed for this space. virtual size_t CommittedPhysicalMemory() = 0; // Return the available bytes without growing. virtual intptr_t Available() = 0; virtual int RoundSizeDownToObjectAlignment(int size) { if (id_ == CODE_SPACE) { return RoundDown(size, kCodeAlignment); } else { return RoundDown(size, kPointerSize); } } void AccountCommitted(intptr_t bytes) { DCHECK_GE(bytes, 0); committed_ += bytes; if (committed_ > max_committed_) { max_committed_ = committed_; } } void AccountUncommitted(intptr_t bytes) { DCHECK_GE(bytes, 0); committed_ -= bytes; DCHECK_GE(committed_, 0); } #ifdef DEBUG virtual void Print() = 0; #endif protected: v8::base::SmartPointer<List<AllocationObserver*>> allocation_observers_; bool allocation_observers_paused_; private: Heap* heap_; AllocationSpace id_; Executability executable_; // Keeps track of committed memory in a space. intptr_t committed_; intptr_t max_committed_; }; class MemoryChunkValidator { // Computed offsets should match the compiler generated ones. STATIC_ASSERT(MemoryChunk::kSizeOffset == offsetof(MemoryChunk, size_)); STATIC_ASSERT(MemoryChunk::kLiveBytesOffset == offsetof(MemoryChunk, live_byte_count_)); STATIC_ASSERT(MemoryChunk::kOldToNewSlotsOffset == offsetof(MemoryChunk, old_to_new_slots_)); STATIC_ASSERT(MemoryChunk::kWriteBarrierCounterOffset == offsetof(MemoryChunk, write_barrier_counter_)); // Validate our estimates on the header size. STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize); STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize); STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize); }; // ---------------------------------------------------------------------------- // All heap objects containing executable code (code objects) must be allocated // from a 2 GB range of memory, so that they can call each other using 32-bit // displacements. This happens automatically on 32-bit platforms, where 32-bit // displacements cover the entire 4GB virtual address space. On 64-bit // platforms, we support this using the CodeRange object, which reserves and // manages a range of virtual memory. class CodeRange { public: explicit CodeRange(Isolate* isolate); ~CodeRange() { TearDown(); } // Reserves a range of virtual memory, but does not commit any of it. // Can only be called once, at heap initialization time. // Returns false on failure. bool SetUp(size_t requested_size); bool valid() { return code_range_ != NULL; } Address start() { DCHECK(valid()); return static_cast<Address>(code_range_->address()); } size_t size() { DCHECK(valid()); return code_range_->size(); } bool contains(Address address) { if (!valid()) return false; Address start = static_cast<Address>(code_range_->address()); return start <= address && address < start + code_range_->size(); } // Allocates a chunk of memory from the large-object portion of // the code range. On platforms with no separate code range, should // not be called. MUST_USE_RESULT Address AllocateRawMemory(const size_t requested_size, const size_t commit_size, size_t* allocated); bool CommitRawMemory(Address start, size_t length); bool UncommitRawMemory(Address start, size_t length); void FreeRawMemory(Address buf, size_t length); private: class FreeBlock { public: FreeBlock() : start(0), size(0) {} FreeBlock(Address start_arg, size_t size_arg) : start(start_arg), size(size_arg) { DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); DCHECK(size >= static_cast<size_t>(Page::kPageSize)); } FreeBlock(void* start_arg, size_t size_arg) : start(static_cast<Address>(start_arg)), size(size_arg) { DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); DCHECK(size >= static_cast<size_t>(Page::kPageSize)); } Address start; size_t size; }; // Frees the range of virtual memory, and frees the data structures used to // manage it. void TearDown(); // Finds a block on the allocation list that contains at least the // requested amount of memory. If none is found, sorts and merges // the existing free memory blocks, and searches again. // If none can be found, returns false. bool GetNextAllocationBlock(size_t requested); // Compares the start addresses of two free blocks. static int CompareFreeBlockAddress(const FreeBlock* left, const FreeBlock* right); bool ReserveBlock(const size_t requested_size, FreeBlock* block); void ReleaseBlock(const FreeBlock* block); Isolate* isolate_; // The reserved range of virtual memory that all code objects are put in. base::VirtualMemory* code_range_; // The global mutex guards free_list_ and allocation_list_ as GC threads may // access both lists concurrently to the main thread. base::Mutex code_range_mutex_; // Freed blocks of memory are added to the free list. When the allocation // list is exhausted, the free list is sorted and merged to make the new // allocation list. List<FreeBlock> free_list_; // Memory is allocated from the free blocks on the allocation list. // The block at current_allocation_block_index_ is the current block. List<FreeBlock> allocation_list_; int current_allocation_block_index_; DISALLOW_COPY_AND_ASSIGN(CodeRange); }; class SkipList { public: SkipList() { Clear(); } void Clear() { for (int idx = 0; idx < kSize; idx++) { starts_[idx] = reinterpret_cast<Address>(-1); } } Address StartFor(Address addr) { return starts_[RegionNumber(addr)]; } void AddObject(Address addr, int size) { int start_region = RegionNumber(addr); int end_region = RegionNumber(addr + size - kPointerSize); for (int idx = start_region; idx <= end_region; idx++) { if (starts_[idx] > addr) { starts_[idx] = addr; } else { // In the first region, there may already be an object closer to the // start of the region. Do not change the start in that case. If this // is not the first region, you probably added overlapping objects. DCHECK_EQ(start_region, idx); } } } static inline int RegionNumber(Address addr) { return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2; } static void Update(Address addr, int size) { Page* page = Page::FromAddress(addr); SkipList* list = page->skip_list(); if (list == NULL) { list = new SkipList(); page->set_skip_list(list); } list->AddObject(addr, size); } private: static const int kRegionSizeLog2 = 13; static const int kRegionSize = 1 << kRegionSizeLog2; static const int kSize = Page::kPageSize / kRegionSize; STATIC_ASSERT(Page::kPageSize % kRegionSize == 0); Address starts_[kSize]; }; // ---------------------------------------------------------------------------- // A space acquires chunks of memory from the operating system. The memory // allocator allocated and deallocates pages for the paged heap spaces and large // pages for large object space. class MemoryAllocator { public: // Unmapper takes care of concurrently unmapping and uncommitting memory // chunks. class Unmapper { public: class UnmapFreeMemoryTask; explicit Unmapper(MemoryAllocator* allocator) : allocator_(allocator), pending_unmapping_tasks_semaphore_(0), concurrent_unmapping_tasks_active_(0) {} void AddMemoryChunkSafe(MemoryChunk* chunk) { if ((chunk->size() == Page::kPageSize) && (chunk->executable() != EXECUTABLE)) { AddMemoryChunkSafe<kRegular>(chunk); } else { AddMemoryChunkSafe<kNonRegular>(chunk); } } MemoryChunk* TryGetPooledMemoryChunkSafe() { // Procedure: // (1) Try to get a chunk that was declared as pooled and already has // been uncommitted. // (2) Try to steal any memory chunk of kPageSize that would've been // unmapped. MemoryChunk* chunk = GetMemoryChunkSafe<kPooled>(); if (chunk == nullptr) { chunk = GetMemoryChunkSafe<kRegular>(); if (chunk != nullptr) { // For stolen chunks we need to manually free any allocated memory. chunk->ReleaseAllocatedMemory(); } } return chunk; } void FreeQueuedChunks(); bool WaitUntilCompleted(); private: enum ChunkQueueType { kRegular, // Pages of kPageSize that do not live in a CodeRange and // can thus be used for stealing. kNonRegular, // Large chunks and executable chunks. kPooled, // Pooled chunks, already uncommited and ready for reuse. kNumberOfChunkQueues, }; template <ChunkQueueType type> void AddMemoryChunkSafe(MemoryChunk* chunk) { base::LockGuard<base::Mutex> guard(&mutex_); if (type != kRegular || allocator_->CanFreeMemoryChunk(chunk)) { chunks_[type].push_back(chunk); } else { DCHECK_EQ(type, kRegular); delayed_regular_chunks_.push_back(chunk); } } template <ChunkQueueType type> MemoryChunk* GetMemoryChunkSafe() { base::LockGuard<base::Mutex> guard(&mutex_); if (chunks_[type].empty()) return nullptr; MemoryChunk* chunk = chunks_[type].front(); chunks_[type].pop_front(); return chunk; } void ReconsiderDelayedChunks(); void PerformFreeMemoryOnQueuedChunks(); base::Mutex mutex_; MemoryAllocator* allocator_; std::list<MemoryChunk*> chunks_[kNumberOfChunkQueues]; // Delayed chunks cannot be processed in the current unmapping cycle because // of dependencies such as an active sweeper. // See MemoryAllocator::CanFreeMemoryChunk. std::list<MemoryChunk*> delayed_regular_chunks_; base::Semaphore pending_unmapping_tasks_semaphore_; intptr_t concurrent_unmapping_tasks_active_; friend class MemoryAllocator; }; enum AllocationMode { kRegular, kPooled, }; enum FreeMode { kFull, kPreFreeAndQueue, kPooledAndQueue, }; explicit MemoryAllocator(Isolate* isolate); // Initializes its internal bookkeeping structures. // Max capacity of the total space and executable memory limit. bool SetUp(intptr_t max_capacity, intptr_t capacity_executable, intptr_t code_range_size); void TearDown(); // Allocates a Page from the allocator. AllocationMode is used to indicate // whether pooled allocation, which only works for MemoryChunk::kPageSize, // should be tried first. template <MemoryAllocator::AllocationMode alloc_mode = kRegular, typename SpaceType> Page* AllocatePage(intptr_t size, SpaceType* owner, Executability executable); LargePage* AllocateLargePage(intptr_t size, LargeObjectSpace* owner, Executability executable); template <MemoryAllocator::FreeMode mode = kFull> void Free(MemoryChunk* chunk); bool CanFreeMemoryChunk(MemoryChunk* chunk); // Returns allocated spaces in bytes. intptr_t Size() { return size_.Value(); } // Returns allocated executable spaces in bytes. intptr_t SizeExecutable() { return size_executable_.Value(); } // Returns the maximum available bytes of heaps. intptr_t Available() { intptr_t size = Size(); return capacity_ < size ? 0 : capacity_ - size; } // Returns the maximum available executable bytes of heaps. intptr_t AvailableExecutable() { intptr_t executable_size = SizeExecutable(); if (capacity_executable_ < executable_size) return 0; return capacity_executable_ - executable_size; } // Returns maximum available bytes that the old space can have. intptr_t MaxAvailable() { return (Available() / Page::kPageSize) * Page::kAllocatableMemory; } // Returns an indication of whether a pointer is in a space that has // been allocated by this MemoryAllocator. V8_INLINE bool IsOutsideAllocatedSpace(const void* address) { return address < lowest_ever_allocated_.Value() || address >= highest_ever_allocated_.Value(); } #ifdef DEBUG // Reports statistic info of the space. void ReportStatistics(); #endif // Returns a MemoryChunk in which the memory region from commit_area_size to // reserve_area_size of the chunk area is reserved but not committed, it // could be committed later by calling MemoryChunk::CommitArea. MemoryChunk* AllocateChunk(intptr_t reserve_area_size, intptr_t commit_area_size, Executability executable, Space* space); Address ReserveAlignedMemory(size_t requested, size_t alignment, base::VirtualMemory* controller); Address AllocateAlignedMemory(size_t reserve_size, size_t commit_size, size_t alignment, Executability executable, base::VirtualMemory* controller); bool CommitMemory(Address addr, size_t size, Executability executable); void FreeMemory(base::VirtualMemory* reservation, Executability executable); void FreeMemory(Address addr, size_t size, Executability executable); // Commit a contiguous block of memory from the initial chunk. Assumes that // the address is not NULL, the size is greater than zero, and that the // block is contained in the initial chunk. Returns true if it succeeded // and false otherwise. bool CommitBlock(Address start, size_t size, Executability executable); // Uncommit a contiguous block of memory [start..(start+size)[. // start is not NULL, the size is greater than zero, and the // block is contained in the initial chunk. Returns true if it succeeded // and false otherwise. bool UncommitBlock(Address start, size_t size); // Zaps a contiguous block of memory [start..(start+size)[ thus // filling it up with a recognizable non-NULL bit pattern. void ZapBlock(Address start, size_t size); static int CodePageGuardStartOffset(); static int CodePageGuardSize(); static int CodePageAreaStartOffset(); static int CodePageAreaEndOffset(); static int CodePageAreaSize() { return CodePageAreaEndOffset() - CodePageAreaStartOffset(); } static int PageAreaSize(AllocationSpace space) { DCHECK_NE(LO_SPACE, space); return (space == CODE_SPACE) ? CodePageAreaSize() : Page::kAllocatableMemory; } MUST_USE_RESULT bool CommitExecutableMemory(base::VirtualMemory* vm, Address start, size_t commit_size, size_t reserved_size); CodeRange* code_range() { return code_range_; } Unmapper* unmapper() { return &unmapper_; } private: // PreFree logically frees the object, i.e., it takes care of the size // bookkeeping and calls the allocation callback. void PreFreeMemory(MemoryChunk* chunk); // FreeMemory can be called concurrently when PreFree was executed before. void PerformFreeMemory(MemoryChunk* chunk); // See AllocatePage for public interface. Note that currently we only support // pools for NOT_EXECUTABLE pages of size MemoryChunk::kPageSize. template <typename SpaceType> MemoryChunk* AllocatePagePooled(SpaceType* owner); Isolate* isolate_; CodeRange* code_range_; // Maximum space size in bytes. intptr_t capacity_; // Maximum subset of capacity_ that can be executable intptr_t capacity_executable_; // Allocated space size in bytes. base::AtomicNumber<intptr_t> size_; // Allocated executable space size in bytes. base::AtomicNumber<intptr_t> size_executable_; // We keep the lowest and highest addresses allocated as a quick way // of determining that pointers are outside the heap. The estimate is // conservative, i.e. not all addrsses in 'allocated' space are allocated // to our heap. The range is [lowest, highest[, inclusive on the low end // and exclusive on the high end. base::AtomicValue<void*> lowest_ever_allocated_; base::AtomicValue<void*> highest_ever_allocated_; // Initializes pages in a chunk. Returns the first page address. // This function and GetChunkId() are provided for the mark-compact // collector to rebuild page headers in the from space, which is // used as a marking stack and its page headers are destroyed. Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, PagedSpace* owner); void UpdateAllocatedSpaceLimits(void* low, void* high) { // The use of atomic primitives does not guarantee correctness (wrt. // desired semantics) by default. The loop here ensures that we update the // values only if they did not change in between. void* ptr = nullptr; do { ptr = lowest_ever_allocated_.Value(); } while ((low < ptr) && !lowest_ever_allocated_.TrySetValue(ptr, low)); do { ptr = highest_ever_allocated_.Value(); } while ((high > ptr) && !highest_ever_allocated_.TrySetValue(ptr, high)); } base::VirtualMemory last_chunk_; Unmapper unmapper_; friend class TestCodeRangeScope; DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator); }; // ----------------------------------------------------------------------------- // Interface for heap object iterator to be implemented by all object space // object iterators. // // NOTE: The space specific object iterators also implements the own next() // method which is used to avoid using virtual functions // iterating a specific space. class ObjectIterator : public Malloced { public: virtual ~ObjectIterator() {} virtual HeapObject* Next() = 0; }; template <class PAGE_TYPE> class PageIteratorImpl : public std::iterator<std::forward_iterator_tag, PAGE_TYPE> { public: explicit PageIteratorImpl(PAGE_TYPE* p) : p_(p) {} PageIteratorImpl(const PageIteratorImpl<PAGE_TYPE>& other) : p_(other.p_) {} PAGE_TYPE* operator*() { return p_; } bool operator==(const PageIteratorImpl<PAGE_TYPE>& rhs) { return rhs.p_ == p_; } bool operator!=(const PageIteratorImpl<PAGE_TYPE>& rhs) { return rhs.p_ != p_; } inline PageIteratorImpl<PAGE_TYPE>& operator++(); inline PageIteratorImpl<PAGE_TYPE> operator++(int); private: PAGE_TYPE* p_; }; typedef PageIteratorImpl<Page> PageIterator; typedef PageIteratorImpl<LargePage> LargePageIterator; class PageRange { public: typedef PageIterator iterator; PageRange(Page* begin, Page* end) : begin_(begin), end_(end) {} explicit PageRange(Page* page) : PageRange(page, page->next_page()) {} iterator begin() { return iterator(begin_); } iterator end() { return iterator(end_); } private: Page* begin_; Page* end_; }; // ----------------------------------------------------------------------------- // Heap object iterator in new/old/map spaces. // // A HeapObjectIterator iterates objects from the bottom of the given space // to its top or from the bottom of the given page to its top. // // If objects are allocated in the page during iteration the iterator may // or may not iterate over those objects. The caller must create a new // iterator in order to be sure to visit these new objects. class HeapObjectIterator : public ObjectIterator { public: // Creates a new object iterator in a given space. explicit HeapObjectIterator(PagedSpace* space); explicit HeapObjectIterator(Page* page); // Advance to the next object, skipping free spaces and other fillers and // skipping the special garbage section of which there is one per space. // Returns nullptr when the iteration has ended. inline HeapObject* Next() override; private: // Fast (inlined) path of next(). inline HeapObject* FromCurrentPage(); // Slow path of next(), goes into the next page. Returns false if the // iteration has ended. bool AdvanceToNextPage(); Address cur_addr_; // Current iteration point. Address cur_end_; // End iteration point. PagedSpace* space_; PageRange page_range_; PageRange::iterator current_page_; }; // ----------------------------------------------------------------------------- // A space has a circular list of pages. The next page can be accessed via // Page::next_page() call. // An abstraction of allocation and relocation pointers in a page-structured // space. class AllocationInfo { public: AllocationInfo() : top_(nullptr), limit_(nullptr) {} AllocationInfo(Address top, Address limit) : top_(top), limit_(limit) {} void Reset(Address top, Address limit) { set_top(top); set_limit(limit); } INLINE(void set_top(Address top)) { SLOW_DCHECK(top == NULL || (reinterpret_cast<intptr_t>(top) & kHeapObjectTagMask) == 0); top_ = top; } INLINE(Address top()) const { SLOW_DCHECK(top_ == NULL || (reinterpret_cast<intptr_t>(top_) & kHeapObjectTagMask) == 0); return top_; } Address* top_address() { return &top_; } INLINE(void set_limit(Address limit)) { limit_ = limit; } INLINE(Address limit()) const { return limit_; } Address* limit_address() { return &limit_; } #ifdef DEBUG bool VerifyPagedAllocation() { return (Page::FromAllocationAreaAddress(top_) == Page::FromAllocationAreaAddress(limit_)) && (top_ <= limit_); } #endif private: // Current allocation top. Address top_; // Current allocation limit. Address limit_; }; // An abstraction of the accounting statistics of a page-structured space. // // The stats are only set by functions that ensure they stay balanced. These // functions increase or decrease one of the non-capacity stats in conjunction // with capacity, or else they always balance increases and decreases to the // non-capacity stats. class AllocationStats BASE_EMBEDDED { public: AllocationStats() { Clear(); } // Zero out all the allocation statistics (i.e., no capacity). void Clear() { capacity_ = 0; max_capacity_ = 0; size_ = 0; } void ClearSize() { size_ = capacity_; } // Accessors for the allocation statistics. intptr_t Capacity() { return capacity_; } intptr_t MaxCapacity() { return max_capacity_; } intptr_t Size() { CHECK_GE(size_, 0); return size_; } // Grow the space by adding available bytes. They are initially marked as // being in use (part of the size), but will normally be immediately freed, // putting them on the free list and removing them from size_. void ExpandSpace(int size_in_bytes) { capacity_ += size_in_bytes; size_ += size_in_bytes; if (capacity_ > max_capacity_) { max_capacity_ = capacity_; } CHECK(size_ >= 0); } // Shrink the space by removing available bytes. Since shrinking is done // during sweeping, bytes have been marked as being in use (part of the size) // and are hereby freed. void ShrinkSpace(int size_in_bytes) { capacity_ -= size_in_bytes; size_ -= size_in_bytes; CHECK_GE(size_, 0); } // Allocate from available bytes (available -> size). void AllocateBytes(intptr_t size_in_bytes) { size_ += size_in_bytes; CHECK_GE(size_, 0); } // Free allocated bytes, making them available (size -> available). void DeallocateBytes(intptr_t size_in_bytes) { size_ -= size_in_bytes; CHECK_GE(size_, 0); } // Merge {other} into {this}. void Merge(const AllocationStats& other) { capacity_ += other.capacity_; size_ += other.size_; if (other.max_capacity_ > max_capacity_) { max_capacity_ = other.max_capacity_; } CHECK_GE(size_, 0); } void DecreaseCapacity(intptr_t size_in_bytes) { capacity_ -= size_in_bytes; CHECK_GE(capacity_, 0); CHECK_GE(capacity_, size_); } void IncreaseCapacity(intptr_t size_in_bytes) { capacity_ += size_in_bytes; } private: // |capacity_|: The number of object-area bytes (i.e., not including page // bookkeeping structures) currently in the space. intptr_t capacity_; // |max_capacity_|: The maximum capacity ever observed. intptr_t max_capacity_; // |size_|: The number of allocated bytes. intptr_t size_; }; // A free list maintaining free blocks of memory. The free list is organized in // a way to encourage objects allocated around the same time to be near each // other. The normal way to allocate is intended to be by bumping a 'top' // pointer until it hits a 'limit' pointer. When the limit is hit we need to // find a new space to allocate from. This is done with the free list, which is // divided up into rough categories to cut down on waste. Having finer // categories would scatter allocation more. // The free list is organized in categories as follows: // kMinBlockSize-10 words (tiniest): The tiniest blocks are only used for // allocation, when categories >= small do not have entries anymore. // 11-31 words (tiny): The tiny blocks are only used for allocation, when // categories >= small do not have entries anymore. // 32-255 words (small): Used for allocating free space between 1-31 words in // size. // 256-2047 words (medium): Used for allocating free space between 32-255 words // in size. // 1048-16383 words (large): Used for allocating free space between 256-2047 // words in size. // At least 16384 words (huge): This list is for objects of 2048 words or // larger. Empty pages are also added to this list. class FreeList { public: // This method returns how much memory can be allocated after freeing // maximum_freed memory. static inline int GuaranteedAllocatable(int maximum_freed) { if (maximum_freed <= kTiniestListMax) { // Since we are not iterating over all list entries, we cannot guarantee // that we can find the maximum freed block in that free list. return 0; } else if (maximum_freed <= kTinyListMax) { return kTinyAllocationMax; } else if (maximum_freed <= kSmallListMax) { return kSmallAllocationMax; } else if (maximum_freed <= kMediumListMax) { return kMediumAllocationMax; } else if (maximum_freed <= kLargeListMax) { return kLargeAllocationMax; } return maximum_freed; } explicit FreeList(PagedSpace* owner); // Adds a node on the free list. The block of size {size_in_bytes} starting // at {start} is placed on the free list. The return value is the number of // bytes that were not added to the free list, because they freed memory block // was too small. Bookkeeping information will be written to the block, i.e., // its contents will be destroyed. The start address should be word aligned, // and the size should be a non-zero multiple of the word size. int Free(Address start, int size_in_bytes, FreeMode mode); // Allocate a block of size {size_in_bytes} from the free list. The block is // unitialized. A failure is returned if no block is available. The size // should be a non-zero multiple of the word size. MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes); // Clear the free list. void Reset(); void ResetStats() { wasted_bytes_.SetValue(0); ForAllFreeListCategories( [](FreeListCategory* category) { category->ResetStats(); }); } // Return the number of bytes available on the free list. intptr_t Available() { intptr_t available = 0; ForAllFreeListCategories([&available](FreeListCategory* category) { available += category->available(); }); return available; } bool IsEmpty() { bool empty = true; ForAllFreeListCategories([&empty](FreeListCategory* category) { if (!category->is_empty()) empty = false; }); return empty; } // Used after booting the VM. void RepairLists(Heap* heap); intptr_t EvictFreeListItems(Page* page); bool ContainsPageFreeListItems(Page* page); PagedSpace* owner() { return owner_; } intptr_t wasted_bytes() { return wasted_bytes_.Value(); } template <typename Callback> void ForAllFreeListCategories(FreeListCategoryType type, Callback callback) { FreeListCategory* current = categories_[type]; while (current != nullptr) { FreeListCategory* next = current->next(); callback(current); current = next; } } template <typename Callback> void ForAllFreeListCategories(Callback callback) { for (int i = kFirstCategory; i < kNumberOfCategories; i++) { ForAllFreeListCategories(static_cast<FreeListCategoryType>(i), callback); } } bool AddCategory(FreeListCategory* category); void RemoveCategory(FreeListCategory* category); void PrintCategories(FreeListCategoryType type); #ifdef DEBUG intptr_t SumFreeLists(); bool IsVeryLong(); #endif private: class FreeListCategoryIterator { public: FreeListCategoryIterator(FreeList* free_list, FreeListCategoryType type) : current_(free_list->categories_[type]) {} bool HasNext() { return current_ != nullptr; } FreeListCategory* Next() { DCHECK(HasNext()); FreeListCategory* tmp = current_; current_ = current_->next(); return tmp; } private: FreeListCategory* current_; }; // The size range of blocks, in bytes. static const int kMinBlockSize = 3 * kPointerSize; static const int kMaxBlockSize = Page::kAllocatableMemory; static const int kTiniestListMax = 0xa * kPointerSize; static const int kTinyListMax = 0x1f * kPointerSize; static const int kSmallListMax = 0xff * kPointerSize; static const int kMediumListMax = 0x7ff * kPointerSize; static const int kLargeListMax = 0x3fff * kPointerSize; static const int kTinyAllocationMax = kTiniestListMax; static const int kSmallAllocationMax = kTinyListMax; static const int kMediumAllocationMax = kSmallListMax; static const int kLargeAllocationMax = kMediumListMax; FreeSpace* FindNodeFor(int size_in_bytes, int* node_size); // Walks all available categories for a given |type| and tries to retrieve // a node. Returns nullptr if the category is empty. FreeSpace* FindNodeIn(FreeListCategoryType type, int* node_size); // Tries to retrieve a node from the first category in a given |type|. // Returns nullptr if the category is empty. FreeSpace* TryFindNodeIn(FreeListCategoryType type, int* node_size, int minimum_size); // Searches a given |type| for a node of at least |minimum_size|. FreeSpace* SearchForNodeInList(FreeListCategoryType type, int* node_size, int minimum_size); FreeListCategoryType SelectFreeListCategoryType(size_t size_in_bytes) { if (size_in_bytes <= kTiniestListMax) { return kTiniest; } else if (size_in_bytes <= kTinyListMax) { return kTiny; } else if (size_in_bytes <= kSmallListMax) { return kSmall; } else if (size_in_bytes <= kMediumListMax) { return kMedium; } else if (size_in_bytes <= kLargeListMax) { return kLarge; } return kHuge; } // The tiny categories are not used for fast allocation. FreeListCategoryType SelectFastAllocationFreeListCategoryType( size_t size_in_bytes) { if (size_in_bytes <= kSmallAllocationMax) { return kSmall; } else if (size_in_bytes <= kMediumAllocationMax) { return kMedium; } else if (size_in_bytes <= kLargeAllocationMax) { return kLarge; } return kHuge; } FreeListCategory* top(FreeListCategoryType type) { return categories_[type]; } PagedSpace* owner_; base::AtomicNumber<intptr_t> wasted_bytes_; FreeListCategory* categories_[kNumberOfCategories]; friend class FreeListCategory; DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList); }; class AllocationResult { public: // Implicit constructor from Object*. AllocationResult(Object* object) // NOLINT : object_(object) { // AllocationResults can't return Smis, which are used to represent // failure and the space to retry in. CHECK(!object->IsSmi()); } AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {} static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) { return AllocationResult(space); } inline bool IsRetry() { return object_->IsSmi(); } template <typename T> bool To(T** obj) { if (IsRetry()) return false; *obj = T::cast(object_); return true; } Object* ToObjectChecked() { CHECK(!IsRetry()); return object_; } inline AllocationSpace RetrySpace(); private: explicit AllocationResult(AllocationSpace space) : object_(Smi::FromInt(static_cast<int>(space))) {} Object* object_; }; STATIC_ASSERT(sizeof(AllocationResult) == kPointerSize); // LocalAllocationBuffer represents a linear allocation area that is created // from a given {AllocationResult} and can be used to allocate memory without // synchronization. // // The buffer is properly closed upon destruction and reassignment. // Example: // { // AllocationResult result = ...; // LocalAllocationBuffer a(heap, result, size); // LocalAllocationBuffer b = a; // CHECK(!a.IsValid()); // CHECK(b.IsValid()); // // {a} is invalid now and cannot be used for further allocations. // } // // Since {b} went out of scope, the LAB is closed, resulting in creating a // // filler object for the remaining area. class LocalAllocationBuffer { public: // Indicates that a buffer cannot be used for allocations anymore. Can result // from either reassigning a buffer, or trying to construct it from an // invalid {AllocationResult}. static inline LocalAllocationBuffer InvalidBuffer(); // Creates a new LAB from a given {AllocationResult}. Results in // InvalidBuffer if the result indicates a retry. static inline LocalAllocationBuffer FromResult(Heap* heap, AllocationResult result, intptr_t size); ~LocalAllocationBuffer() { Close(); } // Convert to C++11 move-semantics once allowed by the style guide. LocalAllocationBuffer(const LocalAllocationBuffer& other); LocalAllocationBuffer& operator=(const LocalAllocationBuffer& other); MUST_USE_RESULT inline AllocationResult AllocateRawAligned( int size_in_bytes, AllocationAlignment alignment); inline bool IsValid() { return allocation_info_.top() != nullptr; } // Try to merge LABs, which is only possible when they are adjacent in memory. // Returns true if the merge was successful, false otherwise. inline bool TryMerge(LocalAllocationBuffer* other); private: LocalAllocationBuffer(Heap* heap, AllocationInfo allocation_info); void Close(); Heap* heap_; AllocationInfo allocation_info_; }; class NewSpacePageRange { public: typedef PageRange::iterator iterator; inline NewSpacePageRange(Address start, Address limit); iterator begin() { return range_.begin(); } iterator end() { return range_.end(); } private: PageRange range_; }; class PagedSpace : public Space { public: typedef PageIterator iterator; static const intptr_t kCompactionMemoryWanted = 500 * KB; // Creates a space with an id. PagedSpace(Heap* heap, AllocationSpace id, Executability executable); ~PagedSpace() override { TearDown(); } // Set up the space using the given address range of virtual memory (from // the memory allocator's initial chunk) if possible. If the block of // addresses is not big enough to contain a single page-aligned page, a // fresh chunk will be allocated. bool SetUp(); // Returns true if the space has been successfully set up and not // subsequently torn down. bool HasBeenSetUp(); // Checks whether an object/address is in this space. inline bool Contains(Address a); inline bool Contains(Object* o); bool ContainsSlow(Address addr); // Given an address occupied by a live object, return that object if it is // in this space, or a Smi if it is not. The implementation iterates over // objects in the page containing the address, the cost is linear in the // number of objects in the page. It may be slow. Object* FindObject(Address addr); // During boot the free_space_map is created, and afterwards we may need // to write it into the free list nodes that were already created. void RepairFreeListsAfterDeserialization(); // Prepares for a mark-compact GC. void PrepareForMarkCompact(); // Current capacity without growing (Size() + Available()). intptr_t Capacity() { return accounting_stats_.Capacity(); } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; void ResetFreeListStatistics(); // Sets the capacity, the available space and the wasted space to zero. // The stats are rebuilt during sweeping by adding each page to the // capacity and the size when it is encountered. As free spaces are // discovered during the sweeping they are subtracted from the size and added // to the available and wasted totals. void ClearStats() { accounting_stats_.ClearSize(); free_list_.ResetStats(); ResetFreeListStatistics(); } // Available bytes without growing. These are the bytes on the free list. // The bytes in the linear allocation area are not included in this total // because updating the stats would slow down allocation. New pages are // immediately added to the free list so they show up here. intptr_t Available() override { return free_list_.Available(); } // Allocated bytes in this space. Garbage bytes that were not found due to // concurrent sweeping are counted as being allocated! The bytes in the // current linear allocation area (between top and limit) are also counted // here. intptr_t Size() override { return accounting_stats_.Size(); } // As size, but the bytes in lazily swept pages are estimated and the bytes // in the current linear allocation area are not included. intptr_t SizeOfObjects() override; // Wasted bytes in this space. These are just the bytes that were thrown away // due to being too small to use for allocation. virtual intptr_t Waste() { return free_list_.wasted_bytes(); } // Returns the allocation pointer in this space. Address top() { return allocation_info_.top(); } Address limit() { return allocation_info_.limit(); } // The allocation top address. Address* allocation_top_address() { return allocation_info_.top_address(); } // The allocation limit address. Address* allocation_limit_address() { return allocation_info_.limit_address(); } enum UpdateSkipList { UPDATE_SKIP_LIST, IGNORE_SKIP_LIST }; // Allocate the requested number of bytes in the space if possible, return a // failure object if not. Only use IGNORE_SKIP_LIST if the skip list is going // to be manually updated later. MUST_USE_RESULT inline AllocationResult AllocateRawUnaligned( int size_in_bytes, UpdateSkipList update_skip_list = UPDATE_SKIP_LIST); MUST_USE_RESULT inline AllocationResult AllocateRawUnalignedSynchronized( int size_in_bytes); // Allocate the requested number of bytes in the space double aligned if // possible, return a failure object if not. MUST_USE_RESULT inline AllocationResult AllocateRawAligned( int size_in_bytes, AllocationAlignment alignment); // Allocate the requested number of bytes in the space and consider allocation // alignment if needed. MUST_USE_RESULT inline AllocationResult AllocateRaw( int size_in_bytes, AllocationAlignment alignment); // Give a block of memory to the space's free list. It might be added to // the free list or accounted as waste. // If add_to_freelist is false then just accounting stats are updated and // no attempt to add area to free list is made. int Free(Address start, int size_in_bytes) { int wasted = free_list_.Free(start, size_in_bytes, kLinkCategory); accounting_stats_.DeallocateBytes(size_in_bytes); return size_in_bytes - wasted; } int UnaccountedFree(Address start, int size_in_bytes) { int wasted = free_list_.Free(start, size_in_bytes, kDoNotLinkCategory); return size_in_bytes - wasted; } void ResetFreeList() { free_list_.Reset(); } // Set space allocation info. void SetTopAndLimit(Address top, Address limit) { DCHECK(top == limit || Page::FromAddress(top) == Page::FromAddress(limit - 1)); MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); allocation_info_.Reset(top, limit); } // Empty space allocation info, returning unused area to free list. void EmptyAllocationInfo() { // Mark the old linear allocation area with a free space map so it can be // skipped when scanning the heap. int old_linear_size = static_cast<int>(limit() - top()); Free(top(), old_linear_size); SetTopAndLimit(NULL, NULL); } void Allocate(int bytes) { accounting_stats_.AllocateBytes(bytes); } void IncreaseCapacity(int size); // Releases an unused page and shrinks the space. void ReleasePage(Page* page); // The dummy page that anchors the linked list of pages. Page* anchor() { return &anchor_; } // Collect code size related statistics void CollectCodeStatistics(); // Reset code size related statistics static void ResetCodeAndMetadataStatistics(Isolate* isolate); #ifdef VERIFY_HEAP // Verify integrity of this space. virtual void Verify(ObjectVisitor* visitor); // Overridden by subclasses to verify space-specific object // properties (e.g., only maps or free-list nodes are in map space). virtual void VerifyObject(HeapObject* obj) {} #endif #ifdef DEBUG // Print meta info and objects in this space. void Print() override; // Reports statistics for the space void ReportStatistics(); // Report code object related statistics static void ReportCodeStatistics(Isolate* isolate); static void ResetCodeStatistics(Isolate* isolate); #endif Page* FirstPage() { return anchor_.next_page(); } Page* LastPage() { return anchor_.prev_page(); } void EvictEvacuationCandidatesFromLinearAllocationArea(); bool CanExpand(size_t size); // Returns the number of total pages in this space. int CountTotalPages(); // Return size of allocatable area on a page in this space. inline int AreaSize() { return area_size_; } virtual bool is_local() { return false; } // Merges {other} into the current space. Note that this modifies {other}, // e.g., removes its bump pointer area and resets statistics. void MergeCompactionSpace(CompactionSpace* other); // Refills the free list from the corresponding free list filled by the // sweeper. virtual void RefillFreeList(); FreeList* free_list() { return &free_list_; } base::Mutex* mutex() { return &space_mutex_; } inline void UnlinkFreeListCategories(Page* page); inline intptr_t RelinkFreeListCategories(Page* page); iterator begin() { return iterator(anchor_.next_page()); } iterator end() { return iterator(&anchor_); } protected: // PagedSpaces that should be included in snapshots have different, i.e., // smaller, initial pages. virtual bool snapshotable() { return true; } bool HasPages() { return anchor_.next_page() != &anchor_; } // Cleans up the space, frees all pages in this space except those belonging // to the initial chunk, uncommits addresses in the initial chunk. void TearDown(); // Expands the space by allocating a fixed number of pages. Returns false if // it cannot allocate requested number of pages from OS, or if the hard heap // size limit has been hit. bool Expand(); // Generic fast case allocation function that tries linear allocation at the // address denoted by top in allocation_info_. inline HeapObject* AllocateLinearly(int size_in_bytes); // Generic fast case allocation function that tries aligned linear allocation // at the address denoted by top in allocation_info_. Writes the aligned // allocation size, which includes the filler size, to size_in_bytes. inline HeapObject* AllocateLinearlyAligned(int* size_in_bytes, AllocationAlignment alignment); // If sweeping is still in progress try to sweep unswept pages. If that is // not successful, wait for the sweeper threads and re-try free-list // allocation. MUST_USE_RESULT virtual HeapObject* SweepAndRetryAllocation( int size_in_bytes); // Slow path of AllocateRaw. This function is space-dependent. MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes); int area_size_; // Accounting information for this space. AllocationStats accounting_stats_; // The dummy page that anchors the double linked list of pages. Page anchor_; // The space's free list. FreeList free_list_; // Normal allocation information. AllocationInfo allocation_info_; // Mutex guarding any concurrent access to the space. base::Mutex space_mutex_; friend class IncrementalMarking; friend class MarkCompactCollector; // Used in cctest. friend class HeapTester; }; class NumberAndSizeInfo BASE_EMBEDDED { public: NumberAndSizeInfo() : number_(0), bytes_(0) {} int number() const { return number_; } void increment_number(int num) { number_ += num; } int bytes() const { return bytes_; } void increment_bytes(int size) { bytes_ += size; } void clear() { number_ = 0; bytes_ = 0; } private: int number_; int bytes_; }; // HistogramInfo class for recording a single "bar" of a histogram. This // class is used for collecting statistics to print to the log file. class HistogramInfo : public NumberAndSizeInfo { public: HistogramInfo() : NumberAndSizeInfo() {} const char* name() { return name_; } void set_name(const char* name) { name_ = name; } private: const char* name_; }; enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 }; // ----------------------------------------------------------------------------- // SemiSpace in young generation // // A SemiSpace is a contiguous chunk of memory holding page-like memory chunks. // The mark-compact collector uses the memory of the first page in the from // space as a marking stack when tracing live objects. class SemiSpace : public Space { public: typedef PageIterator iterator; static void Swap(SemiSpace* from, SemiSpace* to); SemiSpace(Heap* heap, SemiSpaceId semispace) : Space(heap, NEW_SPACE, NOT_EXECUTABLE), current_capacity_(0), maximum_capacity_(0), minimum_capacity_(0), age_mark_(nullptr), committed_(false), id_(semispace), anchor_(this), current_page_(nullptr), pages_used_(0) {} inline bool Contains(HeapObject* o); inline bool Contains(Object* o); inline bool ContainsSlow(Address a); void SetUp(int initial_capacity, int maximum_capacity); void TearDown(); bool HasBeenSetUp() { return maximum_capacity_ != 0; } bool Commit(); bool Uncommit(); bool is_committed() { return committed_; } // Grow the semispace to the new capacity. The new capacity requested must // be larger than the current capacity and less than the maximum capacity. bool GrowTo(int new_capacity); // Shrinks the semispace to the new capacity. The new capacity requested // must be more than the amount of used memory in the semispace and less // than the current capacity. bool ShrinkTo(int new_capacity); bool EnsureCurrentCapacity(); // Returns the start address of the first page of the space. Address space_start() { DCHECK_NE(anchor_.next_page(), anchor()); return anchor_.next_page()->area_start(); } Page* first_page() { return anchor_.next_page(); } Page* current_page() { return current_page_; } int pages_used() { return pages_used_; } // Returns one past the end address of the space. Address space_end() { return anchor_.prev_page()->area_end(); } // Returns the start address of the current page of the space. Address page_low() { return current_page_->area_start(); } // Returns one past the end address of the current page of the space. Address page_high() { return current_page_->area_end(); } bool AdvancePage() { Page* next_page = current_page_->next_page(); // We cannot expand if we reached the maximum number of pages already. Note // that we need to account for the next page already for this check as we // could potentially fill the whole page after advancing. const bool reached_max_pages = (pages_used_ + 1) == max_pages(); if (next_page == anchor() || reached_max_pages) { return false; } current_page_ = next_page; pages_used_++; return true; } // Resets the space to using the first page. void Reset(); void RemovePage(Page* page); void PrependPage(Page* page); // Age mark accessors. Address age_mark() { return age_mark_; } void set_age_mark(Address mark); // Returns the current capacity of the semispace. int current_capacity() { return current_capacity_; } // Returns the maximum capacity of the semispace. int maximum_capacity() { return maximum_capacity_; } // Returns the initial capacity of the semispace. int minimum_capacity() { return minimum_capacity_; } SemiSpaceId id() { return id_; } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; // If we don't have these here then SemiSpace will be abstract. However // they should never be called: intptr_t Size() override { UNREACHABLE(); return 0; } intptr_t SizeOfObjects() override { return Size(); } intptr_t Available() override { UNREACHABLE(); return 0; } #ifdef DEBUG void Print() override; // Validate a range of of addresses in a SemiSpace. // The "from" address must be on a page prior to the "to" address, // in the linked page order, or it must be earlier on the same page. static void AssertValidRange(Address from, Address to); #else // Do nothing. inline static void AssertValidRange(Address from, Address to) {} #endif #ifdef VERIFY_HEAP virtual void Verify(); #endif iterator begin() { return iterator(anchor_.next_page()); } iterator end() { return iterator(anchor()); } private: void RewindPages(Page* start, int num_pages); inline Page* anchor() { return &anchor_; } inline int max_pages() { return current_capacity_ / Page::kPageSize; } // Copies the flags into the masked positions on all pages in the space. void FixPagesFlags(intptr_t flags, intptr_t flag_mask); // The currently committed space capacity. int current_capacity_; // The maximum capacity that can be used by this space. A space cannot grow // beyond that size. int maximum_capacity_; // The minimum capacity for the space. A space cannot shrink below this size. int minimum_capacity_; // Used to govern object promotion during mark-compact collection. Address age_mark_; bool committed_; SemiSpaceId id_; Page anchor_; Page* current_page_; int pages_used_; friend class NewSpace; friend class SemiSpaceIterator; }; // A SemiSpaceIterator is an ObjectIterator that iterates over the active // semispace of the heap's new space. It iterates over the objects in the // semispace from a given start address (defaulting to the bottom of the // semispace) to the top of the semispace. New objects allocated after the // iterator is created are not iterated. class SemiSpaceIterator : public ObjectIterator { public: // Create an iterator over the allocated objects in the given to-space. explicit SemiSpaceIterator(NewSpace* space); inline HeapObject* Next() override; private: void Initialize(Address start, Address end); // The current iteration point. Address current_; // The end of iteration. Address limit_; }; // ----------------------------------------------------------------------------- // The young generation space. // // The new space consists of a contiguous pair of semispaces. It simply // forwards most functions to the appropriate semispace. class NewSpace : public Space { public: typedef PageIterator iterator; explicit NewSpace(Heap* heap) : Space(heap, NEW_SPACE, NOT_EXECUTABLE), to_space_(heap, kToSpace), from_space_(heap, kFromSpace), reservation_(), top_on_previous_step_(0), allocated_histogram_(nullptr), promoted_histogram_(nullptr) {} inline bool Contains(HeapObject* o); inline bool ContainsSlow(Address a); inline bool Contains(Object* o); bool SetUp(int initial_semispace_capacity, int max_semispace_capacity); // Tears down the space. Heap memory was not allocated by the space, so it // is not deallocated here. void TearDown(); // True if the space has been set up but not torn down. bool HasBeenSetUp() { return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp(); } // Flip the pair of spaces. void Flip(); // Grow the capacity of the semispaces. Assumes that they are not at // their maximum capacity. void Grow(); // Shrink the capacity of the semispaces. void Shrink(); // Return the allocated bytes in the active semispace. intptr_t Size() override { return to_space_.pages_used() * Page::kAllocatableMemory + static_cast<int>(top() - to_space_.page_low()); } // The same, but returning an int. We have to have the one that returns // intptr_t because it is inherited, but if we know we are dealing with the // new space, which can't get as big as the other spaces then this is useful: int SizeAsInt() { return static_cast<int>(Size()); } // Return the allocatable capacity of a semispace. intptr_t Capacity() { SLOW_DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); return (to_space_.current_capacity() / Page::kPageSize) * Page::kAllocatableMemory; } // Return the current size of a semispace, allocatable and non-allocatable // memory. intptr_t TotalCapacity() { DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); return to_space_.current_capacity(); } // Committed memory for NewSpace is the committed memory of both semi-spaces // combined. intptr_t CommittedMemory() override { return from_space_.CommittedMemory() + to_space_.CommittedMemory(); } intptr_t MaximumCommittedMemory() override { return from_space_.MaximumCommittedMemory() + to_space_.MaximumCommittedMemory(); } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; // Return the available bytes without growing. intptr_t Available() override { return Capacity() - Size(); } size_t AllocatedSinceLastGC() { bool seen_age_mark = false; Address age_mark = to_space_.age_mark(); Page* current_page = to_space_.first_page(); Page* age_mark_page = Page::FromAddress(age_mark); Page* last_page = Page::FromAddress(top() - kPointerSize); if (age_mark_page == last_page) { if (top() - age_mark >= 0) { return top() - age_mark; } // Top was reset at some point, invalidating this metric. return 0; } while (current_page != last_page) { if (current_page == age_mark_page) { seen_age_mark = true; break; } current_page = current_page->next_page(); } if (!seen_age_mark) { // Top was reset at some point, invalidating this metric. return 0; } intptr_t allocated = age_mark_page->area_end() - age_mark; DCHECK_EQ(current_page, age_mark_page); current_page = age_mark_page->next_page(); while (current_page != last_page) { allocated += Page::kAllocatableMemory; current_page = current_page->next_page(); } allocated += top() - current_page->area_start(); DCHECK_LE(0, allocated); DCHECK_LE(allocated, Size()); return static_cast<size_t>(allocated); } void MovePageFromSpaceToSpace(Page* page) { DCHECK(page->InFromSpace()); from_space_.RemovePage(page); to_space_.PrependPage(page); } bool Rebalance(); // Return the maximum capacity of a semispace. int MaximumCapacity() { DCHECK(to_space_.maximum_capacity() == from_space_.maximum_capacity()); return to_space_.maximum_capacity(); } bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); } // Returns the initial capacity of a semispace. int InitialTotalCapacity() { DCHECK(to_space_.minimum_capacity() == from_space_.minimum_capacity()); return to_space_.minimum_capacity(); } // Return the address of the allocation pointer in the active semispace. Address top() { DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.top())); return allocation_info_.top(); } // Return the address of the allocation pointer limit in the active semispace. Address limit() { DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.limit())); return allocation_info_.limit(); } // Return the address of the first object in the active semispace. Address bottom() { return to_space_.space_start(); } // Get the age mark of the inactive semispace. Address age_mark() { return from_space_.age_mark(); } // Set the age mark in the active semispace. void set_age_mark(Address mark) { to_space_.set_age_mark(mark); } // The allocation top and limit address. Address* allocation_top_address() { return allocation_info_.top_address(); } // The allocation limit address. Address* allocation_limit_address() { return allocation_info_.limit_address(); } MUST_USE_RESULT INLINE(AllocationResult AllocateRawAligned( int size_in_bytes, AllocationAlignment alignment)); MUST_USE_RESULT INLINE( AllocationResult AllocateRawUnaligned(int size_in_bytes)); MUST_USE_RESULT INLINE(AllocationResult AllocateRaw( int size_in_bytes, AllocationAlignment alignment)); MUST_USE_RESULT inline AllocationResult AllocateRawSynchronized( int size_in_bytes, AllocationAlignment alignment); // Reset the allocation pointer to the beginning of the active semispace. void ResetAllocationInfo(); // When inline allocation stepping is active, either because of incremental // marking, idle scavenge, or allocation statistics gathering, we 'interrupt' // inline allocation every once in a while. This is done by setting // allocation_info_.limit to be lower than the actual limit and and increasing // it in steps to guarantee that the observers are notified periodically. void UpdateInlineAllocationLimit(int size_in_bytes); void DisableInlineAllocationSteps() { top_on_previous_step_ = 0; UpdateInlineAllocationLimit(0); } // Allows observation of inline allocation. The observer->Step() method gets // called after every step_size bytes have been allocated (approximately). // This works by adjusting the allocation limit to a lower value and adjusting // it after each step. void AddAllocationObserver(AllocationObserver* observer) override; void RemoveAllocationObserver(AllocationObserver* observer) override; // Get the extent of the inactive semispace (for use as a marking stack, // or to zap it). Notice: space-addresses are not necessarily on the // same page, so FromSpaceStart() might be above FromSpaceEnd(). Address FromSpacePageLow() { return from_space_.page_low(); } Address FromSpacePageHigh() { return from_space_.page_high(); } Address FromSpaceStart() { return from_space_.space_start(); } Address FromSpaceEnd() { return from_space_.space_end(); } // Get the extent of the active semispace's pages' memory. Address ToSpaceStart() { return to_space_.space_start(); } Address ToSpaceEnd() { return to_space_.space_end(); } inline bool ToSpaceContainsSlow(Address a); inline bool FromSpaceContainsSlow(Address a); inline bool ToSpaceContains(Object* o); inline bool FromSpaceContains(Object* o); // Try to switch the active semispace to a new, empty, page. // Returns false if this isn't possible or reasonable (i.e., there // are no pages, or the current page is already empty), or true // if successful. bool AddFreshPage(); bool AddFreshPageSynchronized(); #ifdef VERIFY_HEAP // Verify the active semispace. virtual void Verify(); #endif #ifdef DEBUG // Print the active semispace. void Print() override { to_space_.Print(); } #endif // Iterates the active semispace to collect statistics. void CollectStatistics(); // Reports previously collected statistics of the active semispace. void ReportStatistics(); // Clears previously collected statistics. void ClearHistograms(); // Record the allocation or promotion of a heap object. Note that we don't // record every single allocation, but only those that happen in the // to space during a scavenge GC. void RecordAllocation(HeapObject* obj); void RecordPromotion(HeapObject* obj); // Return whether the operation succeded. bool CommitFromSpaceIfNeeded() { if (from_space_.is_committed()) return true; return from_space_.Commit(); } bool UncommitFromSpace() { if (!from_space_.is_committed()) return true; return from_space_.Uncommit(); } bool IsFromSpaceCommitted() { return from_space_.is_committed(); } SemiSpace* active_space() { return &to_space_; } void PauseAllocationObservers() override; void ResumeAllocationObservers() override; iterator begin() { return to_space_.begin(); } iterator end() { return to_space_.end(); } private: // Update allocation info to match the current to-space page. void UpdateAllocationInfo(); base::Mutex mutex_; // The semispaces. SemiSpace to_space_; SemiSpace from_space_; base::VirtualMemory reservation_; // Allocation pointer and limit for normal allocation and allocation during // mark-compact collection. AllocationInfo allocation_info_; Address top_on_previous_step_; HistogramInfo* allocated_histogram_; HistogramInfo* promoted_histogram_; bool EnsureAllocation(int size_in_bytes, AllocationAlignment alignment); // If we are doing inline allocation in steps, this method performs the 'step' // operation. top is the memory address of the bump pointer at the last // inline allocation (i.e. it determines the numbers of bytes actually // allocated since the last step.) new_top is the address of the bump pointer // where the next byte is going to be allocated from. top and new_top may be // different when we cross a page boundary or reset the space. void InlineAllocationStep(Address top, Address new_top, Address soon_object, size_t size); intptr_t GetNextInlineAllocationStepSize(); void StartNextInlineAllocationStep(); friend class SemiSpaceIterator; }; class PauseAllocationObserversScope { public: explicit PauseAllocationObserversScope(Heap* heap); ~PauseAllocationObserversScope(); private: Heap* heap_; DISALLOW_COPY_AND_ASSIGN(PauseAllocationObserversScope); }; // ----------------------------------------------------------------------------- // Compaction space that is used temporarily during compaction. class CompactionSpace : public PagedSpace { public: CompactionSpace(Heap* heap, AllocationSpace id, Executability executable) : PagedSpace(heap, id, executable) {} bool is_local() override { return true; } protected: // The space is temporary and not included in any snapshots. bool snapshotable() override { return false; } MUST_USE_RESULT HeapObject* SweepAndRetryAllocation( int size_in_bytes) override; }; // A collection of |CompactionSpace|s used by a single compaction task. class CompactionSpaceCollection : public Malloced { public: explicit CompactionSpaceCollection(Heap* heap) : old_space_(heap, OLD_SPACE, Executability::NOT_EXECUTABLE), code_space_(heap, CODE_SPACE, Executability::EXECUTABLE) {} CompactionSpace* Get(AllocationSpace space) { switch (space) { case OLD_SPACE: return &old_space_; case CODE_SPACE: return &code_space_; default: UNREACHABLE(); } UNREACHABLE(); return nullptr; } private: CompactionSpace old_space_; CompactionSpace code_space_; }; // ----------------------------------------------------------------------------- // Old object space (includes the old space of objects and code space) class OldSpace : public PagedSpace { public: // Creates an old space object. The constructor does not allocate pages // from OS. OldSpace(Heap* heap, AllocationSpace id, Executability executable) : PagedSpace(heap, id, executable) {} }; // For contiguous spaces, top should be in the space (or at the end) and limit // should be the end of the space. #define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \ SLOW_DCHECK((space).page_low() <= (info).top() && \ (info).top() <= (space).page_high() && \ (info).limit() <= (space).page_high()) // ----------------------------------------------------------------------------- // Old space for all map objects class MapSpace : public PagedSpace { public: // Creates a map space object. MapSpace(Heap* heap, AllocationSpace id) : PagedSpace(heap, id, NOT_EXECUTABLE) {} int RoundSizeDownToObjectAlignment(int size) override { if (base::bits::IsPowerOfTwo32(Map::kSize)) { return RoundDown(size, Map::kSize); } else { return (size / Map::kSize) * Map::kSize; } } #ifdef VERIFY_HEAP void VerifyObject(HeapObject* obj) override; #endif }; // ----------------------------------------------------------------------------- // Large objects ( > Page::kMaxRegularHeapObjectSize ) are allocated and // managed by the large object space. A large object is allocated from OS // heap with extra padding bytes (Page::kPageSize + Page::kObjectStartOffset). // A large object always starts at Page::kObjectStartOffset to a page. // Large objects do not move during garbage collections. class LargeObjectSpace : public Space { public: typedef LargePageIterator iterator; LargeObjectSpace(Heap* heap, AllocationSpace id); virtual ~LargeObjectSpace(); // Initializes internal data structures. bool SetUp(); // Releases internal resources, frees objects in this space. void TearDown(); static intptr_t ObjectSizeFor(intptr_t chunk_size) { if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; return chunk_size - Page::kPageSize - Page::kObjectStartOffset; } // Shared implementation of AllocateRaw, AllocateRawCode and // AllocateRawFixedArray. MUST_USE_RESULT AllocationResult AllocateRaw(int object_size, Executability executable); // Available bytes for objects in this space. inline intptr_t Available() override; intptr_t Size() override { return size_; } intptr_t SizeOfObjects() override { return objects_size_; } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; int PageCount() { return page_count_; } // Finds an object for a given address, returns a Smi if it is not found. // The function iterates through all objects in this space, may be slow. Object* FindObject(Address a); // Finds a large object page containing the given address, returns NULL // if such a page doesn't exist. LargePage* FindPage(Address a); // Clears the marking state of live objects. void ClearMarkingStateOfLiveObjects(); // Frees unmarked objects. void FreeUnmarkedObjects(); // Checks whether a heap object is in this space; O(1). bool Contains(HeapObject* obj); // Checks whether an address is in the object area in this space. Iterates // all objects in the space. May be slow. bool ContainsSlow(Address addr) { return FindObject(addr)->IsHeapObject(); } // Checks whether the space is empty. bool IsEmpty() { return first_page_ == NULL; } void AdjustLiveBytes(int by) { objects_size_ += by; } LargePage* first_page() { return first_page_; } // Collect code statistics. void CollectCodeStatistics(); iterator begin() { return iterator(first_page_); } iterator end() { return iterator(nullptr); } #ifdef VERIFY_HEAP virtual void Verify(); #endif #ifdef DEBUG void Print() override; void ReportStatistics(); #endif private: // The head of the linked list of large object chunks. LargePage* first_page_; intptr_t size_; // allocated bytes int page_count_; // number of chunks intptr_t objects_size_; // size of objects // Map MemoryChunk::kAlignment-aligned chunks to large pages covering them base::HashMap chunk_map_; friend class LargeObjectIterator; }; class LargeObjectIterator : public ObjectIterator { public: explicit LargeObjectIterator(LargeObjectSpace* space); HeapObject* Next() override; private: LargePage* current_; }; // Iterates over the chunks (pages and large object pages) that can contain // pointers to new space or to evacuation candidates. class MemoryChunkIterator BASE_EMBEDDED { public: inline explicit MemoryChunkIterator(Heap* heap); // Return NULL when the iterator is done. inline MemoryChunk* next(); private: enum State { kOldSpaceState, kMapState, kCodeState, kLargeObjectState, kFinishedState }; Heap* heap_; State state_; PageIterator old_iterator_; PageIterator code_iterator_; PageIterator map_iterator_; LargePageIterator lo_iterator_; }; #ifdef DEBUG struct CommentStatistic { const char* comment; int size; int count; void Clear() { comment = NULL; size = 0; count = 0; } // Must be small, since an iteration is used for lookup. static const int kMaxComments = 64; }; #endif } // namespace internal } // namespace v8 #endif // V8_HEAP_SPACES_H_