// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/interpreter/bytecode-generator.h" #include "src/ast/scopes.h" #include "src/code-stubs.h" #include "src/compiler.h" #include "src/interpreter/bytecode-register-allocator.h" #include "src/interpreter/control-flow-builders.h" #include "src/objects.h" #include "src/parsing/parser.h" #include "src/parsing/token.h" namespace v8 { namespace internal { namespace interpreter { // Scoped class tracking context objects created by the visitor. Represents // mutations of the context chain within the function body, allowing pushing and // popping of the current {context_register} during visitation. class BytecodeGenerator::ContextScope BASE_EMBEDDED { public: ContextScope(BytecodeGenerator* generator, Scope* scope, bool should_pop_context = true) : generator_(generator), scope_(scope), outer_(generator_->execution_context()), register_(Register::current_context()), depth_(0), should_pop_context_(should_pop_context) { if (outer_) { depth_ = outer_->depth_ + 1; // Push the outer context into a new context register. Register outer_context_reg(builder()->first_context_register().index() + outer_->depth_); outer_->set_register(outer_context_reg); generator_->builder()->PushContext(outer_context_reg); } generator_->set_execution_context(this); } ~ContextScope() { if (outer_ && should_pop_context_) { DCHECK_EQ(register_.index(), Register::current_context().index()); generator_->builder()->PopContext(outer_->reg()); outer_->set_register(register_); } generator_->set_execution_context(outer_); } // Returns the depth of the given |scope| for the current execution context. int ContextChainDepth(Scope* scope) { return scope_->ContextChainLength(scope); } // Returns the execution context at |depth| in the current context chain if it // is a function local execution context, otherwise returns nullptr. ContextScope* Previous(int depth) { if (depth > depth_) { return nullptr; } ContextScope* previous = this; for (int i = depth; i > 0; --i) { previous = previous->outer_; } return previous; } Scope* scope() const { return scope_; } Register reg() const { return register_; } bool ShouldPopContext() { return should_pop_context_; } private: const BytecodeArrayBuilder* builder() const { return generator_->builder(); } void set_register(Register reg) { register_ = reg; } BytecodeGenerator* generator_; Scope* scope_; ContextScope* outer_; Register register_; int depth_; bool should_pop_context_; }; // Scoped class for tracking control statements entered by the // visitor. The pattern derives AstGraphBuilder::ControlScope. class BytecodeGenerator::ControlScope BASE_EMBEDDED { public: explicit ControlScope(BytecodeGenerator* generator) : generator_(generator), outer_(generator->execution_control()), context_(generator->execution_context()) { generator_->set_execution_control(this); } virtual ~ControlScope() { generator_->set_execution_control(outer()); } void Break(Statement* stmt) { PerformCommand(CMD_BREAK, stmt); } void Continue(Statement* stmt) { PerformCommand(CMD_CONTINUE, stmt); } void ReturnAccumulator() { PerformCommand(CMD_RETURN, nullptr); } void ReThrowAccumulator() { PerformCommand(CMD_RETHROW, nullptr); } class DeferredCommands; protected: enum Command { CMD_BREAK, CMD_CONTINUE, CMD_RETURN, CMD_RETHROW }; void PerformCommand(Command command, Statement* statement); virtual bool Execute(Command command, Statement* statement) = 0; BytecodeGenerator* generator() const { return generator_; } ControlScope* outer() const { return outer_; } ContextScope* context() const { return context_; } private: BytecodeGenerator* generator_; ControlScope* outer_; ContextScope* context_; DISALLOW_COPY_AND_ASSIGN(ControlScope); }; // Helper class for a try-finally control scope. It can record intercepted // control-flow commands that cause entry into a finally-block, and re-apply // them after again leaving that block. Special tokens are used to identify // paths going through the finally-block to dispatch after leaving the block. class BytecodeGenerator::ControlScope::DeferredCommands final { public: DeferredCommands(BytecodeGenerator* generator, Register token_register, Register result_register) : generator_(generator), deferred_(generator->zone()), token_register_(token_register), result_register_(result_register) {} // One recorded control-flow command. struct Entry { Command command; // The command type being applied on this path. Statement* statement; // The target statement for the command or {nullptr}. int token; // A token identifying this particular path. }; // Records a control-flow command while entering the finally-block. This also // generates a new dispatch token that identifies one particular path. This // expects the result to be in the accumulator. void RecordCommand(Command command, Statement* statement) { int token = static_cast<int>(deferred_.size()); deferred_.push_back({command, statement, token}); builder()->StoreAccumulatorInRegister(result_register_); builder()->LoadLiteral(Smi::FromInt(token)); builder()->StoreAccumulatorInRegister(token_register_); } // Records the dispatch token to be used to identify the re-throw path when // the finally-block has been entered through the exception handler. This // expects the exception to be in the accumulator. void RecordHandlerReThrowPath() { // The accumulator contains the exception object. RecordCommand(CMD_RETHROW, nullptr); } // Records the dispatch token to be used to identify the implicit fall-through // path at the end of a try-block into the corresponding finally-block. void RecordFallThroughPath() { builder()->LoadLiteral(Smi::FromInt(-1)); builder()->StoreAccumulatorInRegister(token_register_); } // Applies all recorded control-flow commands after the finally-block again. // This generates a dynamic dispatch on the token from the entry point. void ApplyDeferredCommands() { // The fall-through path is covered by the default case, hence +1 here. SwitchBuilder dispatch(builder(), static_cast<int>(deferred_.size() + 1)); for (size_t i = 0; i < deferred_.size(); ++i) { Entry& entry = deferred_[i]; builder()->LoadLiteral(Smi::FromInt(entry.token)); builder()->CompareOperation(Token::EQ_STRICT, token_register_); dispatch.Case(static_cast<int>(i)); } dispatch.DefaultAt(static_cast<int>(deferred_.size())); for (size_t i = 0; i < deferred_.size(); ++i) { Entry& entry = deferred_[i]; dispatch.SetCaseTarget(static_cast<int>(i)); builder()->LoadAccumulatorWithRegister(result_register_); execution_control()->PerformCommand(entry.command, entry.statement); } dispatch.SetCaseTarget(static_cast<int>(deferred_.size())); } BytecodeArrayBuilder* builder() { return generator_->builder(); } ControlScope* execution_control() { return generator_->execution_control(); } private: BytecodeGenerator* generator_; ZoneVector<Entry> deferred_; Register token_register_; Register result_register_; }; // Scoped class for dealing with control flow reaching the function level. class BytecodeGenerator::ControlScopeForTopLevel final : public BytecodeGenerator::ControlScope { public: explicit ControlScopeForTopLevel(BytecodeGenerator* generator) : ControlScope(generator) {} protected: bool Execute(Command command, Statement* statement) override { switch (command) { case CMD_BREAK: // We should never see break/continue in top-level. case CMD_CONTINUE: UNREACHABLE(); case CMD_RETURN: generator()->builder()->Return(); return true; case CMD_RETHROW: generator()->builder()->ReThrow(); return true; } return false; } }; // Scoped class for enabling break inside blocks and switch blocks. class BytecodeGenerator::ControlScopeForBreakable final : public BytecodeGenerator::ControlScope { public: ControlScopeForBreakable(BytecodeGenerator* generator, BreakableStatement* statement, BreakableControlFlowBuilder* control_builder) : ControlScope(generator), statement_(statement), control_builder_(control_builder) {} protected: bool Execute(Command command, Statement* statement) override { if (statement != statement_) return false; switch (command) { case CMD_BREAK: control_builder_->Break(); return true; case CMD_CONTINUE: case CMD_RETURN: case CMD_RETHROW: break; } return false; } private: Statement* statement_; BreakableControlFlowBuilder* control_builder_; }; // Scoped class for enabling 'break' and 'continue' in iteration // constructs, e.g. do...while, while..., for... class BytecodeGenerator::ControlScopeForIteration final : public BytecodeGenerator::ControlScope { public: ControlScopeForIteration(BytecodeGenerator* generator, IterationStatement* statement, LoopBuilder* loop_builder) : ControlScope(generator), statement_(statement), loop_builder_(loop_builder) {} protected: bool Execute(Command command, Statement* statement) override { if (statement != statement_) return false; switch (command) { case CMD_BREAK: loop_builder_->Break(); return true; case CMD_CONTINUE: loop_builder_->Continue(); return true; case CMD_RETURN: case CMD_RETHROW: break; } return false; } private: Statement* statement_; LoopBuilder* loop_builder_; }; // Scoped class for enabling 'throw' in try-catch constructs. class BytecodeGenerator::ControlScopeForTryCatch final : public BytecodeGenerator::ControlScope { public: ControlScopeForTryCatch(BytecodeGenerator* generator, TryCatchBuilder* try_catch_builder) : ControlScope(generator) { generator->try_catch_nesting_level_++; } virtual ~ControlScopeForTryCatch() { generator()->try_catch_nesting_level_--; } protected: bool Execute(Command command, Statement* statement) override { switch (command) { case CMD_BREAK: case CMD_CONTINUE: case CMD_RETURN: break; case CMD_RETHROW: generator()->builder()->ReThrow(); return true; } return false; } }; // Scoped class for enabling control flow through try-finally constructs. class BytecodeGenerator::ControlScopeForTryFinally final : public BytecodeGenerator::ControlScope { public: ControlScopeForTryFinally(BytecodeGenerator* generator, TryFinallyBuilder* try_finally_builder, DeferredCommands* commands) : ControlScope(generator), try_finally_builder_(try_finally_builder), commands_(commands) { generator->try_finally_nesting_level_++; } virtual ~ControlScopeForTryFinally() { generator()->try_finally_nesting_level_--; } protected: bool Execute(Command command, Statement* statement) override { switch (command) { case CMD_BREAK: case CMD_CONTINUE: case CMD_RETURN: case CMD_RETHROW: commands_->RecordCommand(command, statement); try_finally_builder_->LeaveTry(); return true; } return false; } private: TryFinallyBuilder* try_finally_builder_; DeferredCommands* commands_; }; void BytecodeGenerator::ControlScope::PerformCommand(Command command, Statement* statement) { ControlScope* current = this; ContextScope* context = generator()->execution_context(); // Pop context to the expected depth but do not pop the outermost context. if (context != current->context() && context->ShouldPopContext()) { generator()->builder()->PopContext(current->context()->reg()); } do { if (current->Execute(command, statement)) { return; } current = current->outer(); if (current->context() != context) { // Pop context to the expected depth. // TODO(rmcilroy): Only emit a single context pop. generator()->builder()->PopContext(current->context()->reg()); } } while (current != nullptr); UNREACHABLE(); } class BytecodeGenerator::RegisterAllocationScope { public: explicit RegisterAllocationScope(BytecodeGenerator* generator) : generator_(generator), outer_(generator->register_allocator()), allocator_(builder()->zone(), builder()->temporary_register_allocator()) { generator_->set_register_allocator(this); } virtual ~RegisterAllocationScope() { generator_->set_register_allocator(outer_); } Register NewRegister() { RegisterAllocationScope* current_scope = generator()->register_allocator(); if ((current_scope == this) || (current_scope->outer() == this && !current_scope->allocator_.HasConsecutiveAllocations())) { // Regular case - Allocating registers in current or outer context. // VisitForRegisterValue allocates register in outer context. return allocator_.NewRegister(); } else { // If it is required to allocate a register other than current or outer // scopes, allocate a new temporary register. It might be expensive to // walk the full context chain and compute the list of consecutive // reservations in the innerscopes. UNIMPLEMENTED(); return Register::invalid_value(); } } void PrepareForConsecutiveAllocations(int count) { allocator_.PrepareForConsecutiveAllocations(count); } Register NextConsecutiveRegister() { return allocator_.NextConsecutiveRegister(); } bool RegisterIsAllocatedInThisScope(Register reg) const { return allocator_.RegisterIsAllocatedInThisScope(reg); } RegisterAllocationScope* outer() const { return outer_; } private: BytecodeGenerator* generator() const { return generator_; } BytecodeArrayBuilder* builder() const { return generator_->builder(); } BytecodeGenerator* generator_; RegisterAllocationScope* outer_; BytecodeRegisterAllocator allocator_; DISALLOW_COPY_AND_ASSIGN(RegisterAllocationScope); }; // Scoped base class for determining where the result of an expression // is stored. class BytecodeGenerator::ExpressionResultScope { public: ExpressionResultScope(BytecodeGenerator* generator, Expression::Context kind) : generator_(generator), kind_(kind), outer_(generator->execution_result()), allocator_(generator), result_identified_(false) { generator_->set_execution_result(this); } virtual ~ExpressionResultScope() { generator_->set_execution_result(outer_); DCHECK(result_identified() || generator_->HasStackOverflow()); } bool IsEffect() const { return kind_ == Expression::kEffect; } bool IsValue() const { return kind_ == Expression::kValue; } virtual void SetResultInAccumulator() = 0; virtual void SetResultInRegister(Register reg) = 0; protected: ExpressionResultScope* outer() const { return outer_; } BytecodeArrayBuilder* builder() const { return generator_->builder(); } BytecodeGenerator* generator() const { return generator_; } const RegisterAllocationScope* allocator() const { return &allocator_; } void set_result_identified() { DCHECK(!result_identified()); result_identified_ = true; } bool result_identified() const { return result_identified_; } private: BytecodeGenerator* generator_; Expression::Context kind_; ExpressionResultScope* outer_; RegisterAllocationScope allocator_; bool result_identified_; DISALLOW_COPY_AND_ASSIGN(ExpressionResultScope); }; // Scoped class used when the result of the current expression is not // expected to produce a result. class BytecodeGenerator::EffectResultScope final : public ExpressionResultScope { public: explicit EffectResultScope(BytecodeGenerator* generator) : ExpressionResultScope(generator, Expression::kEffect) { set_result_identified(); } virtual void SetResultInAccumulator() {} virtual void SetResultInRegister(Register reg) {} }; // Scoped class used when the result of the current expression to be // evaluated should go into the interpreter's accumulator register. class BytecodeGenerator::AccumulatorResultScope final : public ExpressionResultScope { public: explicit AccumulatorResultScope(BytecodeGenerator* generator) : ExpressionResultScope(generator, Expression::kValue) {} virtual void SetResultInAccumulator() { set_result_identified(); } virtual void SetResultInRegister(Register reg) { builder()->LoadAccumulatorWithRegister(reg); set_result_identified(); } }; // Scoped class used when the result of the current expression to be // evaluated should go into an interpreter register. class BytecodeGenerator::RegisterResultScope final : public ExpressionResultScope { public: explicit RegisterResultScope(BytecodeGenerator* generator) : ExpressionResultScope(generator, Expression::kValue) {} virtual void SetResultInAccumulator() { result_register_ = allocator()->outer()->NewRegister(); builder()->StoreAccumulatorInRegister(result_register_); set_result_identified(); } virtual void SetResultInRegister(Register reg) { DCHECK(builder()->RegisterIsParameterOrLocal(reg) || (builder()->TemporaryRegisterIsLive(reg) && !allocator()->RegisterIsAllocatedInThisScope(reg))); result_register_ = reg; set_result_identified(); } Register ResultRegister() { if (generator()->HasStackOverflow() && !result_identified()) { SetResultInAccumulator(); } return result_register_; } private: Register result_register_; }; BytecodeGenerator::BytecodeGenerator(CompilationInfo* info) : isolate_(info->isolate()), zone_(info->zone()), builder_(new (zone()) BytecodeArrayBuilder( info->isolate(), info->zone(), info->num_parameters_including_this(), info->scope()->MaxNestedContextChainLength(), info->scope()->num_stack_slots(), info->literal())), info_(info), scope_(info->scope()), globals_(0, info->zone()), execution_control_(nullptr), execution_context_(nullptr), execution_result_(nullptr), register_allocator_(nullptr), generator_resume_points_(info->literal()->yield_count(), info->zone()), generator_state_(), try_catch_nesting_level_(0), try_finally_nesting_level_(0) { InitializeAstVisitor(isolate()); } Handle<BytecodeArray> BytecodeGenerator::MakeBytecode() { // Initialize the incoming context. ContextScope incoming_context(this, scope(), false); // Initialize control scope. ControlScopeForTopLevel control(this); RegisterAllocationScope register_scope(this); if (IsResumableFunction(info()->literal()->kind())) { generator_state_ = register_allocator()->NewRegister(); VisitGeneratorPrologue(); } // Build function context only if there are context allocated variables. if (scope()->NeedsContext()) { // Push a new inner context scope for the function. VisitNewLocalFunctionContext(); ContextScope local_function_context(this, scope(), false); VisitBuildLocalActivationContext(); MakeBytecodeBody(); } else { MakeBytecodeBody(); } // In generator functions, we may not have visited every yield in the AST // since we skip some obviously dead code. Hence the generated bytecode may // contain jumps to unbound labels (resume points that will never be used). // We bind these now. for (auto& label : generator_resume_points_) { if (!label.is_bound()) builder()->Bind(&label); } builder()->EnsureReturn(); return builder()->ToBytecodeArray(); } void BytecodeGenerator::MakeBytecodeBody() { // Build the arguments object if it is used. VisitArgumentsObject(scope()->arguments()); // Build rest arguments array if it is used. int rest_index; Variable* rest_parameter = scope()->rest_parameter(&rest_index); VisitRestArgumentsArray(rest_parameter); // Build assignment to {.this_function} variable if it is used. VisitThisFunctionVariable(scope()->this_function_var()); // Build assignment to {new.target} variable if it is used. VisitNewTargetVariable(scope()->new_target_var()); // TODO(rmcilroy): Emit tracing call if requested to do so. if (FLAG_trace) { UNIMPLEMENTED(); } // Visit declarations within the function scope. VisitDeclarations(scope()->declarations()); // Perform a stack-check before the body. builder()->StackCheck(info()->literal()->start_position()); // Visit statements in the function body. VisitStatements(info()->literal()->body()); } void BytecodeGenerator::BuildIndexedJump(Register index, size_t start_index, size_t size, ZoneVector<BytecodeLabel>& targets) { // TODO(neis): Optimize this by using a proper jump table. for (size_t i = start_index; i < start_index + size; i++) { DCHECK(0 <= i && i < targets.size()); builder() ->LoadLiteral(Smi::FromInt(static_cast<int>(i))) .CompareOperation(Token::Value::EQ_STRICT, index) .JumpIfTrue(&(targets[i])); } BuildAbort(BailoutReason::kInvalidJumpTableIndex); } void BytecodeGenerator::VisitIterationHeader(IterationStatement* stmt, LoopBuilder* loop_builder) { // Recall that stmt->yield_count() is always zero inside ordinary // (i.e. non-generator) functions. // Collect all labels for generator resume points within the loop (if any) so // that they can be bound to the loop header below. Also create fresh labels // for these resume points, to be used inside the loop. ZoneVector<BytecodeLabel> resume_points_in_loop(zone()); size_t first_yield = stmt->first_yield_id(); for (size_t id = first_yield; id < first_yield + stmt->yield_count(); id++) { DCHECK(0 <= id && id < generator_resume_points_.size()); auto& label = generator_resume_points_[id]; resume_points_in_loop.push_back(label); generator_resume_points_[id] = BytecodeLabel(); } loop_builder->LoopHeader(&resume_points_in_loop); if (stmt->yield_count() > 0) { // If we are not resuming, fall through to loop body. // If we are resuming, perform state dispatch. BytecodeLabel not_resuming; builder() ->LoadLiteral(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)) .CompareOperation(Token::Value::EQ, generator_state_) .JumpIfTrue(¬_resuming); BuildIndexedJump(generator_state_, first_yield, stmt->yield_count(), generator_resume_points_); builder()->Bind(¬_resuming); } } void BytecodeGenerator::VisitGeneratorPrologue() { // The generator resume trampoline abuses the new.target register both to // indicate that this is a resume call and to pass in the generator object. // In ordinary calls, new.target is always undefined because generator // functions are non-constructable. Register generator_object = Register::new_target(); BytecodeLabel regular_call; builder() ->LoadAccumulatorWithRegister(generator_object) .JumpIfUndefined(®ular_call); // This is a resume call. Restore registers and perform state dispatch. // (The current context has already been restored by the trampoline.) builder() ->ResumeGenerator(generator_object) .StoreAccumulatorInRegister(generator_state_); BuildIndexedJump(generator_state_, 0, generator_resume_points_.size(), generator_resume_points_); builder() ->Bind(®ular_call) .LoadLiteral(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)) .StoreAccumulatorInRegister(generator_state_); // This is a regular call. Fall through to the ordinary function prologue, // after which we will run into the generator object creation and other extra // code inserted by the parser. } void BytecodeGenerator::VisitBlock(Block* stmt) { // Visit declarations and statements. if (stmt->scope() != nullptr && stmt->scope()->NeedsContext()) { VisitNewLocalBlockContext(stmt->scope()); ContextScope scope(this, stmt->scope()); VisitBlockDeclarationsAndStatements(stmt); } else { VisitBlockDeclarationsAndStatements(stmt); } } void BytecodeGenerator::VisitBlockDeclarationsAndStatements(Block* stmt) { BlockBuilder block_builder(builder()); ControlScopeForBreakable execution_control(this, stmt, &block_builder); if (stmt->scope() != nullptr) { VisitDeclarations(stmt->scope()->declarations()); } VisitStatements(stmt->statements()); if (stmt->labels() != nullptr) block_builder.EndBlock(); } void BytecodeGenerator::VisitVariableDeclaration(VariableDeclaration* decl) { Variable* variable = decl->proxy()->var(); VariableMode mode = decl->mode(); // Const and let variables are initialized with the hole so that we can // check that they are only assigned once. bool hole_init = mode == CONST || mode == LET; switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: DCHECK(!variable->binding_needs_init()); globals()->push_back(variable->name()); globals()->push_back(isolate()->factory()->undefined_value()); break; case VariableLocation::LOCAL: if (hole_init) { Register destination(variable->index()); builder()->LoadTheHole().StoreAccumulatorInRegister(destination); } break; case VariableLocation::PARAMETER: if (hole_init) { // The parameter indices are shifted by 1 (receiver is variable // index -1 but is parameter index 0 in BytecodeArrayBuilder). Register destination(builder()->Parameter(variable->index() + 1)); builder()->LoadTheHole().StoreAccumulatorInRegister(destination); } break; case VariableLocation::CONTEXT: if (hole_init) { builder()->LoadTheHole().StoreContextSlot(execution_context()->reg(), variable->index()); } break; case VariableLocation::LOOKUP: { DCHECK_EQ(VAR, mode); DCHECK(!hole_init); Register name = register_allocator()->NewRegister(); builder() ->LoadLiteral(variable->name()) .StoreAccumulatorInRegister(name) .CallRuntime(Runtime::kDeclareEvalVar, name, 1); break; } } } void BytecodeGenerator::VisitFunctionDeclaration(FunctionDeclaration* decl) { Variable* variable = decl->proxy()->var(); switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo( decl->fun(), info()->script(), info()); // Check for stack-overflow exception. if (function.is_null()) return SetStackOverflow(); globals()->push_back(variable->name()); globals()->push_back(function); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: { VisitForAccumulatorValue(decl->fun()); DCHECK(variable->mode() == LET || variable->mode() == VAR || variable->mode() == CONST); VisitVariableAssignment(variable, Token::INIT, FeedbackVectorSlot::Invalid()); break; } case VariableLocation::CONTEXT: { DCHECK_EQ(0, execution_context()->ContextChainDepth(variable->scope())); VisitForAccumulatorValue(decl->fun()); builder()->StoreContextSlot(execution_context()->reg(), variable->index()); break; } case VariableLocation::LOOKUP: { register_allocator()->PrepareForConsecutiveAllocations(2); Register name = register_allocator()->NextConsecutiveRegister(); Register literal = register_allocator()->NextConsecutiveRegister(); builder()->LoadLiteral(variable->name()).StoreAccumulatorInRegister(name); VisitForAccumulatorValue(decl->fun()); builder()->StoreAccumulatorInRegister(literal).CallRuntime( Runtime::kDeclareEvalFunction, name, 2); } } } void BytecodeGenerator::VisitImportDeclaration(ImportDeclaration* decl) { UNIMPLEMENTED(); } void BytecodeGenerator::VisitExportDeclaration(ExportDeclaration* decl) { UNIMPLEMENTED(); } void BytecodeGenerator::VisitDeclarations( ZoneList<Declaration*>* declarations) { RegisterAllocationScope register_scope(this); DCHECK(globals()->empty()); for (int i = 0; i < declarations->length(); i++) { RegisterAllocationScope register_scope(this); Visit(declarations->at(i)); } if (globals()->empty()) return; int array_index = 0; Handle<FixedArray> data = isolate()->factory()->NewFixedArray( static_cast<int>(globals()->size()), TENURED); for (Handle<Object> obj : *globals()) data->set(array_index++, *obj); int encoded_flags = info()->GetDeclareGlobalsFlags(); Register pairs = register_allocator()->NewRegister(); builder()->LoadLiteral(data); builder()->StoreAccumulatorInRegister(pairs); Register flags = register_allocator()->NewRegister(); builder()->LoadLiteral(Smi::FromInt(encoded_flags)); builder()->StoreAccumulatorInRegister(flags); DCHECK(flags.index() == pairs.index() + 1); builder()->CallRuntime(Runtime::kDeclareGlobals, pairs, 2); globals()->clear(); } void BytecodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { for (int i = 0; i < statements->length(); i++) { // Allocate an outer register allocations scope for the statement. RegisterAllocationScope allocation_scope(this); Statement* stmt = statements->at(i); Visit(stmt); if (stmt->IsJump()) break; } } void BytecodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) { builder()->SetStatementPosition(stmt); VisitForEffect(stmt->expression()); } void BytecodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) { } void BytecodeGenerator::VisitIfStatement(IfStatement* stmt) { builder()->SetStatementPosition(stmt); BytecodeLabel else_label, end_label; if (stmt->condition()->ToBooleanIsTrue()) { // Generate then block unconditionally as always true. Visit(stmt->then_statement()); } else if (stmt->condition()->ToBooleanIsFalse()) { // Generate else block unconditionally if it exists. if (stmt->HasElseStatement()) { Visit(stmt->else_statement()); } } else { // TODO(oth): If then statement is BreakStatement or // ContinueStatement we can reduce number of generated // jump/jump_ifs here. See BasicLoops test. VisitForAccumulatorValue(stmt->condition()); builder()->JumpIfFalse(&else_label); Visit(stmt->then_statement()); if (stmt->HasElseStatement()) { builder()->Jump(&end_label); builder()->Bind(&else_label); Visit(stmt->else_statement()); } else { builder()->Bind(&else_label); } builder()->Bind(&end_label); } } void BytecodeGenerator::VisitSloppyBlockFunctionStatement( SloppyBlockFunctionStatement* stmt) { Visit(stmt->statement()); } void BytecodeGenerator::VisitContinueStatement(ContinueStatement* stmt) { builder()->SetStatementPosition(stmt); execution_control()->Continue(stmt->target()); } void BytecodeGenerator::VisitBreakStatement(BreakStatement* stmt) { builder()->SetStatementPosition(stmt); execution_control()->Break(stmt->target()); } void BytecodeGenerator::VisitReturnStatement(ReturnStatement* stmt) { builder()->SetStatementPosition(stmt); VisitForAccumulatorValue(stmt->expression()); execution_control()->ReturnAccumulator(); } void BytecodeGenerator::VisitWithStatement(WithStatement* stmt) { builder()->SetStatementPosition(stmt); VisitForAccumulatorValue(stmt->expression()); builder()->CastAccumulatorToJSObject(); VisitNewLocalWithContext(); VisitInScope(stmt->statement(), stmt->scope()); } void BytecodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { // We need this scope because we visit for register values. We have to // maintain a execution result scope where registers can be allocated. ZoneList<CaseClause*>* clauses = stmt->cases(); SwitchBuilder switch_builder(builder(), clauses->length()); ControlScopeForBreakable scope(this, stmt, &switch_builder); int default_index = -1; builder()->SetStatementPosition(stmt); // Keep the switch value in a register until a case matches. Register tag = VisitForRegisterValue(stmt->tag()); // Iterate over all cases and create nodes for label comparison. BytecodeLabel done_label; for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); // The default is not a test, remember index. if (clause->is_default()) { default_index = i; continue; } // Perform label comparison as if via '===' with tag. VisitForAccumulatorValue(clause->label()); builder()->CompareOperation(Token::Value::EQ_STRICT, tag); switch_builder.Case(i); } if (default_index >= 0) { // Emit default jump if there is a default case. switch_builder.DefaultAt(default_index); } else { // Otherwise if we have reached here none of the cases matched, so jump to // done. builder()->Jump(&done_label); } // Iterate over all cases and create the case bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); switch_builder.SetCaseTarget(i); VisitStatements(clause->statements()); } builder()->Bind(&done_label); switch_builder.SetBreakTarget(done_label); } void BytecodeGenerator::VisitCaseClause(CaseClause* clause) { // Handled entirely in VisitSwitchStatement. UNREACHABLE(); } void BytecodeGenerator::VisitIterationBody(IterationStatement* stmt, LoopBuilder* loop_builder) { ControlScopeForIteration execution_control(this, stmt, loop_builder); builder()->StackCheck(stmt->position()); Visit(stmt->body()); loop_builder->SetContinueTarget(); } void BytecodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) { LoopBuilder loop_builder(builder()); VisitIterationHeader(stmt, &loop_builder); if (stmt->cond()->ToBooleanIsFalse()) { VisitIterationBody(stmt, &loop_builder); } else if (stmt->cond()->ToBooleanIsTrue()) { VisitIterationBody(stmt, &loop_builder); loop_builder.JumpToHeader(); } else { VisitIterationBody(stmt, &loop_builder); builder()->SetExpressionAsStatementPosition(stmt->cond()); VisitForAccumulatorValue(stmt->cond()); loop_builder.JumpToHeaderIfTrue(); } loop_builder.EndLoop(); } void BytecodeGenerator::VisitWhileStatement(WhileStatement* stmt) { if (stmt->cond()->ToBooleanIsFalse()) { // If the condition is false there is no need to generate the loop. return; } LoopBuilder loop_builder(builder()); VisitIterationHeader(stmt, &loop_builder); if (!stmt->cond()->ToBooleanIsTrue()) { builder()->SetExpressionAsStatementPosition(stmt->cond()); VisitForAccumulatorValue(stmt->cond()); loop_builder.BreakIfFalse(); } VisitIterationBody(stmt, &loop_builder); loop_builder.JumpToHeader(); loop_builder.EndLoop(); } void BytecodeGenerator::VisitForStatement(ForStatement* stmt) { if (stmt->init() != nullptr) { Visit(stmt->init()); } if (stmt->cond() && stmt->cond()->ToBooleanIsFalse()) { // If the condition is known to be false there is no need to generate // body, next or condition blocks. Init block should be generated. return; } LoopBuilder loop_builder(builder()); VisitIterationHeader(stmt, &loop_builder); if (stmt->cond() && !stmt->cond()->ToBooleanIsTrue()) { builder()->SetExpressionAsStatementPosition(stmt->cond()); VisitForAccumulatorValue(stmt->cond()); loop_builder.BreakIfFalse(); } VisitIterationBody(stmt, &loop_builder); if (stmt->next() != nullptr) { builder()->SetStatementPosition(stmt->next()); Visit(stmt->next()); } loop_builder.JumpToHeader(); loop_builder.EndLoop(); } void BytecodeGenerator::VisitForInAssignment(Expression* expr, FeedbackVectorSlot slot) { DCHECK(expr->IsValidReferenceExpression()); // Evaluate assignment starting with the value to be stored in the // accumulator. Property* property = expr->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); switch (assign_type) { case VARIABLE: { Variable* variable = expr->AsVariableProxy()->var(); VisitVariableAssignment(variable, Token::ASSIGN, slot); break; } case NAMED_PROPERTY: { RegisterAllocationScope register_scope(this); Register value = register_allocator()->NewRegister(); builder()->StoreAccumulatorInRegister(value); Register object = VisitForRegisterValue(property->obj()); Handle<String> name = property->key()->AsLiteral()->AsPropertyName(); builder()->LoadAccumulatorWithRegister(value); builder()->StoreNamedProperty(object, name, feedback_index(slot), language_mode()); break; } case KEYED_PROPERTY: { RegisterAllocationScope register_scope(this); Register value = register_allocator()->NewRegister(); builder()->StoreAccumulatorInRegister(value); Register object = VisitForRegisterValue(property->obj()); Register key = VisitForRegisterValue(property->key()); builder()->LoadAccumulatorWithRegister(value); builder()->StoreKeyedProperty(object, key, feedback_index(slot), language_mode()); break; } case NAMED_SUPER_PROPERTY: { RegisterAllocationScope register_scope(this); register_allocator()->PrepareForConsecutiveAllocations(4); Register receiver = register_allocator()->NextConsecutiveRegister(); Register home_object = register_allocator()->NextConsecutiveRegister(); Register name = register_allocator()->NextConsecutiveRegister(); Register value = register_allocator()->NextConsecutiveRegister(); builder()->StoreAccumulatorInRegister(value); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), receiver); VisitForRegisterValue(super_property->home_object(), home_object); builder() ->LoadLiteral(property->key()->AsLiteral()->AsPropertyName()) .StoreAccumulatorInRegister(name); BuildNamedSuperPropertyStore(receiver, home_object, name, value); break; } case KEYED_SUPER_PROPERTY: { RegisterAllocationScope register_scope(this); register_allocator()->PrepareForConsecutiveAllocations(4); Register receiver = register_allocator()->NextConsecutiveRegister(); Register home_object = register_allocator()->NextConsecutiveRegister(); Register key = register_allocator()->NextConsecutiveRegister(); Register value = register_allocator()->NextConsecutiveRegister(); builder()->StoreAccumulatorInRegister(value); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), receiver); VisitForRegisterValue(super_property->home_object(), home_object); VisitForRegisterValue(property->key(), key); BuildKeyedSuperPropertyStore(receiver, home_object, key, value); break; } } } void BytecodeGenerator::VisitForInStatement(ForInStatement* stmt) { if (stmt->subject()->IsNullLiteral() || stmt->subject()->IsUndefinedLiteral()) { // ForIn generates lots of code, skip if it wouldn't produce any effects. return; } LoopBuilder loop_builder(builder()); BytecodeLabel subject_null_label, subject_undefined_label; // Prepare the state for executing ForIn. builder()->SetExpressionAsStatementPosition(stmt->subject()); VisitForAccumulatorValue(stmt->subject()); builder()->JumpIfUndefined(&subject_undefined_label); builder()->JumpIfNull(&subject_null_label); Register receiver = register_allocator()->NewRegister(); builder()->CastAccumulatorToJSObject(); builder()->StoreAccumulatorInRegister(receiver); register_allocator()->PrepareForConsecutiveAllocations(3); Register cache_type = register_allocator()->NextConsecutiveRegister(); Register cache_array = register_allocator()->NextConsecutiveRegister(); Register cache_length = register_allocator()->NextConsecutiveRegister(); // Used as kRegTriple and kRegPair in ForInPrepare and ForInNext. USE(cache_array); builder()->ForInPrepare(cache_type); // Set up loop counter Register index = register_allocator()->NewRegister(); builder()->LoadLiteral(Smi::FromInt(0)); builder()->StoreAccumulatorInRegister(index); // The loop VisitIterationHeader(stmt, &loop_builder); builder()->SetExpressionAsStatementPosition(stmt->each()); builder()->ForInDone(index, cache_length); loop_builder.BreakIfTrue(); DCHECK(Register::AreContiguous(cache_type, cache_array)); FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); builder()->ForInNext(receiver, index, cache_type, feedback_index(slot)); loop_builder.ContinueIfUndefined(); VisitForInAssignment(stmt->each(), stmt->EachFeedbackSlot()); VisitIterationBody(stmt, &loop_builder); builder()->ForInStep(index); builder()->StoreAccumulatorInRegister(index); loop_builder.JumpToHeader(); loop_builder.EndLoop(); builder()->Bind(&subject_null_label); builder()->Bind(&subject_undefined_label); } void BytecodeGenerator::VisitForOfStatement(ForOfStatement* stmt) { LoopBuilder loop_builder(builder()); ControlScopeForIteration control_scope(this, stmt, &loop_builder); builder()->SetExpressionAsStatementPosition(stmt->assign_iterator()); VisitForEffect(stmt->assign_iterator()); VisitIterationHeader(stmt, &loop_builder); builder()->SetExpressionAsStatementPosition(stmt->next_result()); VisitForEffect(stmt->next_result()); VisitForAccumulatorValue(stmt->result_done()); loop_builder.BreakIfTrue(); VisitForEffect(stmt->assign_each()); VisitIterationBody(stmt, &loop_builder); loop_builder.JumpToHeader(); loop_builder.EndLoop(); } void BytecodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) { TryCatchBuilder try_control_builder(builder()); Register no_reg; // Preserve the context in a dedicated register, so that it can be restored // when the handler is entered by the stack-unwinding machinery. // TODO(mstarzinger): Be smarter about register allocation. Register context = register_allocator()->NewRegister(); builder()->MoveRegister(Register::current_context(), context); // Evaluate the try-block inside a control scope. This simulates a handler // that is intercepting 'throw' control commands. try_control_builder.BeginTry(context); { ControlScopeForTryCatch scope(this, &try_control_builder); Visit(stmt->try_block()); } try_control_builder.EndTry(); // Create a catch scope that binds the exception. VisitNewLocalCatchContext(stmt->variable()); builder()->StoreAccumulatorInRegister(context); // If requested, clear message object as we enter the catch block. if (stmt->clear_pending_message()) { builder()->CallRuntime(Runtime::kInterpreterClearPendingMessage, no_reg, 0); } // Load the catch context into the accumulator. builder()->LoadAccumulatorWithRegister(context); // Evaluate the catch-block. VisitInScope(stmt->catch_block(), stmt->scope()); try_control_builder.EndCatch(); } void BytecodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) { TryFinallyBuilder try_control_builder(builder(), IsInsideTryCatch()); Register no_reg; // We keep a record of all paths that enter the finally-block to be able to // dispatch to the correct continuation point after the statements in the // finally-block have been evaluated. // // The try-finally construct can enter the finally-block in three ways: // 1. By exiting the try-block normally, falling through at the end. // 2. By exiting the try-block with a function-local control flow transfer // (i.e. through break/continue/return statements). // 3. By exiting the try-block with a thrown exception. // // The result register semantics depend on how the block was entered: // - ReturnStatement: It represents the return value being returned. // - ThrowStatement: It represents the exception being thrown. // - BreakStatement/ContinueStatement: Undefined and not used. // - Falling through into finally-block: Undefined and not used. Register token = register_allocator()->NewRegister(); Register result = register_allocator()->NewRegister(); ControlScope::DeferredCommands commands(this, token, result); // Preserve the context in a dedicated register, so that it can be restored // when the handler is entered by the stack-unwinding machinery. // TODO(mstarzinger): Be smarter about register allocation. Register context = register_allocator()->NewRegister(); builder()->MoveRegister(Register::current_context(), context); // Evaluate the try-block inside a control scope. This simulates a handler // that is intercepting all control commands. try_control_builder.BeginTry(context); { ControlScopeForTryFinally scope(this, &try_control_builder, &commands); Visit(stmt->try_block()); } try_control_builder.EndTry(); // Record fall-through and exception cases. commands.RecordFallThroughPath(); try_control_builder.LeaveTry(); try_control_builder.BeginHandler(); commands.RecordHandlerReThrowPath(); // Pending message object is saved on entry. try_control_builder.BeginFinally(); Register message = context; // Reuse register. // Clear message object as we enter the finally block. builder() ->CallRuntime(Runtime::kInterpreterClearPendingMessage, no_reg, 0) .StoreAccumulatorInRegister(message); // Evaluate the finally-block. Visit(stmt->finally_block()); try_control_builder.EndFinally(); // Pending message object is restored on exit. builder()->CallRuntime(Runtime::kInterpreterSetPendingMessage, message, 1); // Dynamic dispatch after the finally-block. commands.ApplyDeferredCommands(); } void BytecodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) { builder()->SetStatementPosition(stmt); builder()->Debugger(); } void BytecodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { // Find or build a shared function info. Handle<SharedFunctionInfo> shared_info = Compiler::GetSharedFunctionInfo(expr, info()->script(), info()); if (shared_info.is_null()) { return SetStackOverflow(); } builder()->CreateClosure(shared_info, expr->pretenure() ? TENURED : NOT_TENURED); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitClassLiteral(ClassLiteral* expr) { if (expr->scope()->ContextLocalCount() > 0) { VisitNewLocalBlockContext(expr->scope()); ContextScope scope(this, expr->scope()); VisitDeclarations(expr->scope()->declarations()); VisitClassLiteralContents(expr); } else { VisitDeclarations(expr->scope()->declarations()); VisitClassLiteralContents(expr); } } void BytecodeGenerator::VisitClassLiteralContents(ClassLiteral* expr) { VisitClassLiteralForRuntimeDefinition(expr); // Load the "prototype" from the constructor. register_allocator()->PrepareForConsecutiveAllocations(2); Register literal = register_allocator()->NextConsecutiveRegister(); Register prototype = register_allocator()->NextConsecutiveRegister(); Handle<String> name = isolate()->factory()->prototype_string(); FeedbackVectorSlot slot = expr->PrototypeSlot(); builder() ->StoreAccumulatorInRegister(literal) .LoadNamedProperty(literal, name, feedback_index(slot)) .StoreAccumulatorInRegister(prototype); VisitClassLiteralProperties(expr, literal, prototype); builder()->CallRuntime(Runtime::kToFastProperties, literal, 1); // Assign to class variable. if (expr->class_variable_proxy() != nullptr) { Variable* var = expr->class_variable_proxy()->var(); FeedbackVectorSlot slot = expr->NeedsProxySlot() ? expr->ProxySlot() : FeedbackVectorSlot::Invalid(); VisitVariableAssignment(var, Token::INIT, slot); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitClassLiteralForRuntimeDefinition( ClassLiteral* expr) { AccumulatorResultScope result_scope(this); register_allocator()->PrepareForConsecutiveAllocations(4); Register extends = register_allocator()->NextConsecutiveRegister(); Register constructor = register_allocator()->NextConsecutiveRegister(); Register start_position = register_allocator()->NextConsecutiveRegister(); Register end_position = register_allocator()->NextConsecutiveRegister(); VisitForAccumulatorValueOrTheHole(expr->extends()); builder()->StoreAccumulatorInRegister(extends); VisitForAccumulatorValue(expr->constructor()); builder() ->StoreAccumulatorInRegister(constructor) .LoadLiteral(Smi::FromInt(expr->start_position())) .StoreAccumulatorInRegister(start_position) .LoadLiteral(Smi::FromInt(expr->end_position())) .StoreAccumulatorInRegister(end_position) .CallRuntime(Runtime::kDefineClass, extends, 4); result_scope.SetResultInAccumulator(); } void BytecodeGenerator::VisitClassLiteralProperties(ClassLiteral* expr, Register literal, Register prototype) { RegisterAllocationScope register_scope(this); register_allocator()->PrepareForConsecutiveAllocations(5); Register receiver = register_allocator()->NextConsecutiveRegister(); Register key = register_allocator()->NextConsecutiveRegister(); Register value = register_allocator()->NextConsecutiveRegister(); Register attr = register_allocator()->NextConsecutiveRegister(); Register set_function_name = register_allocator()->NextConsecutiveRegister(); bool attr_assigned = false; Register old_receiver = Register::invalid_value(); // Create nodes to store method values into the literal. for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); // Set-up receiver. Register new_receiver = property->is_static() ? literal : prototype; if (new_receiver != old_receiver) { builder()->MoveRegister(new_receiver, receiver); old_receiver = new_receiver; } VisitForAccumulatorValue(property->key()); builder()->CastAccumulatorToName().StoreAccumulatorInRegister(key); // The static prototype property is read only. We handle the non computed // property name case in the parser. Since this is the only case where we // need to check for an own read only property we special case this so we do // not need to do this for every property. if (property->is_static() && property->is_computed_name()) { VisitClassLiteralStaticPrototypeWithComputedName(key); } VisitForAccumulatorValue(property->value()); builder()->StoreAccumulatorInRegister(value); VisitSetHomeObject(value, receiver, property); if (!attr_assigned) { builder() ->LoadLiteral(Smi::FromInt(DONT_ENUM)) .StoreAccumulatorInRegister(attr); attr_assigned = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::PROTOTYPE: // Invalid properties for ES6 classes. UNREACHABLE(); break; case ObjectLiteral::Property::COMPUTED: { builder() ->LoadLiteral(Smi::FromInt(property->NeedsSetFunctionName())) .StoreAccumulatorInRegister(set_function_name); builder()->CallRuntime(Runtime::kDefineDataPropertyInLiteral, receiver, 5); break; } case ObjectLiteral::Property::GETTER: { builder()->CallRuntime(Runtime::kDefineGetterPropertyUnchecked, receiver, 4); break; } case ObjectLiteral::Property::SETTER: { builder()->CallRuntime(Runtime::kDefineSetterPropertyUnchecked, receiver, 4); break; } } } } void BytecodeGenerator::VisitClassLiteralStaticPrototypeWithComputedName( Register key) { BytecodeLabel done; builder() ->LoadLiteral(isolate()->factory()->prototype_string()) .CompareOperation(Token::Value::EQ_STRICT, key) .JumpIfFalse(&done) .CallRuntime(Runtime::kThrowStaticPrototypeError, Register(0), 0) .Bind(&done); } void BytecodeGenerator::VisitNativeFunctionLiteral( NativeFunctionLiteral* expr) { // Find or build a shared function info for the native function template. Handle<SharedFunctionInfo> shared_info = Compiler::GetSharedFunctionInfoForNative(expr->extension(), expr->name()); builder()->CreateClosure(shared_info, NOT_TENURED); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitDoExpression(DoExpression* expr) { VisitBlock(expr->block()); VisitVariableProxy(expr->result()); } void BytecodeGenerator::VisitConditional(Conditional* expr) { // TODO(rmcilroy): Spot easy cases where there code would not need to // emit the then block or the else block, e.g. condition is // obviously true/1/false/0. BytecodeLabel else_label, end_label; VisitForAccumulatorValue(expr->condition()); builder()->JumpIfFalse(&else_label); VisitForAccumulatorValue(expr->then_expression()); builder()->Jump(&end_label); builder()->Bind(&else_label); VisitForAccumulatorValue(expr->else_expression()); builder()->Bind(&end_label); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitLiteral(Literal* expr) { if (!execution_result()->IsEffect()) { Handle<Object> value = expr->value(); if (value->IsSmi()) { builder()->LoadLiteral(Smi::cast(*value)); } else if (value->IsUndefined(isolate())) { builder()->LoadUndefined(); } else if (value->IsTrue(isolate())) { builder()->LoadTrue(); } else if (value->IsFalse(isolate())) { builder()->LoadFalse(); } else if (value->IsNull(isolate())) { builder()->LoadNull(); } else if (value->IsTheHole(isolate())) { builder()->LoadTheHole(); } else { builder()->LoadLiteral(value); } execution_result()->SetResultInAccumulator(); } } void BytecodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { // Materialize a regular expression literal. builder()->CreateRegExpLiteral(expr->pattern(), expr->literal_index(), expr->flags()); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { // Copy the literal boilerplate. int fast_clone_properties_count = 0; if (FastCloneShallowObjectStub::IsSupported(expr)) { STATIC_ASSERT( FastCloneShallowObjectStub::kMaximumClonedProperties <= 1 << CreateObjectLiteralFlags::FastClonePropertiesCountBits::kShift); fast_clone_properties_count = FastCloneShallowObjectStub::PropertiesCount(expr->properties_count()); } uint8_t flags = CreateObjectLiteralFlags::FlagsBits::encode(expr->ComputeFlags()) | CreateObjectLiteralFlags::FastClonePropertiesCountBits::encode( fast_clone_properties_count); builder()->CreateObjectLiteral(expr->constant_properties(), expr->literal_index(), flags); // Allocate in the outer scope since this register is used to return the // expression's results to the caller. Register literal = register_allocator()->outer()->NewRegister(); builder()->StoreAccumulatorInRegister(literal); // Store computed values into the literal. int property_index = 0; AccessorTable accessor_table(zone()); for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); if (property->is_computed_name()) break; if (property->IsCompileTimeValue()) continue; RegisterAllocationScope inner_register_scope(this); Literal* literal_key = property->key()->AsLiteral(); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: { // It is safe to use [[Put]] here because the boilerplate already // contains computed properties with an uninitialized value. if (literal_key->value()->IsInternalizedString()) { if (property->emit_store()) { VisitForAccumulatorValue(property->value()); if (FunctionLiteral::NeedsHomeObject(property->value())) { RegisterAllocationScope register_scope(this); Register value = register_allocator()->NewRegister(); builder()->StoreAccumulatorInRegister(value); builder()->StoreNamedProperty( literal, literal_key->AsPropertyName(), feedback_index(property->GetSlot(0)), language_mode()); VisitSetHomeObject(value, literal, property, 1); } else { builder()->StoreNamedProperty( literal, literal_key->AsPropertyName(), feedback_index(property->GetSlot(0)), language_mode()); } } else { VisitForEffect(property->value()); } } else { register_allocator()->PrepareForConsecutiveAllocations(4); Register literal_argument = register_allocator()->NextConsecutiveRegister(); Register key = register_allocator()->NextConsecutiveRegister(); Register value = register_allocator()->NextConsecutiveRegister(); Register language = register_allocator()->NextConsecutiveRegister(); builder()->MoveRegister(literal, literal_argument); VisitForAccumulatorValue(property->key()); builder()->StoreAccumulatorInRegister(key); VisitForAccumulatorValue(property->value()); builder()->StoreAccumulatorInRegister(value); if (property->emit_store()) { builder() ->LoadLiteral(Smi::FromInt(SLOPPY)) .StoreAccumulatorInRegister(language) .CallRuntime(Runtime::kSetProperty, literal_argument, 4); VisitSetHomeObject(value, literal, property); } } break; } case ObjectLiteral::Property::PROTOTYPE: { DCHECK(property->emit_store()); register_allocator()->PrepareForConsecutiveAllocations(2); Register literal_argument = register_allocator()->NextConsecutiveRegister(); Register value = register_allocator()->NextConsecutiveRegister(); builder()->MoveRegister(literal, literal_argument); VisitForAccumulatorValue(property->value()); builder()->StoreAccumulatorInRegister(value).CallRuntime( Runtime::kInternalSetPrototype, literal_argument, 2); break; } case ObjectLiteral::Property::GETTER: if (property->emit_store()) { accessor_table.lookup(literal_key)->second->getter = property; } break; case ObjectLiteral::Property::SETTER: if (property->emit_store()) { accessor_table.lookup(literal_key)->second->setter = property; } break; } } // Define accessors, using only a single call to the runtime for each pair of // corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { RegisterAllocationScope inner_register_scope(this); register_allocator()->PrepareForConsecutiveAllocations(5); Register literal_argument = register_allocator()->NextConsecutiveRegister(); Register name = register_allocator()->NextConsecutiveRegister(); Register getter = register_allocator()->NextConsecutiveRegister(); Register setter = register_allocator()->NextConsecutiveRegister(); Register attr = register_allocator()->NextConsecutiveRegister(); builder()->MoveRegister(literal, literal_argument); VisitForAccumulatorValue(it->first); builder()->StoreAccumulatorInRegister(name); VisitObjectLiteralAccessor(literal, it->second->getter, getter); VisitObjectLiteralAccessor(literal, it->second->setter, setter); builder() ->LoadLiteral(Smi::FromInt(NONE)) .StoreAccumulatorInRegister(attr) .CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, literal_argument, 5); } // Object literals have two parts. The "static" part on the left contains no // computed property names, and so we can compute its map ahead of time; see // Runtime_CreateObjectLiteralBoilerplate. The second "dynamic" part starts // with the first computed property name and continues with all properties to // its right. All the code from above initializes the static component of the // object literal, and arranges for the map of the result to reflect the // static order in which the keys appear. For the dynamic properties, we // compile them into a series of "SetOwnProperty" runtime calls. This will // preserve insertion order. for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); RegisterAllocationScope inner_register_scope(this); if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { DCHECK(property->emit_store()); register_allocator()->PrepareForConsecutiveAllocations(2); Register literal_argument = register_allocator()->NextConsecutiveRegister(); Register value = register_allocator()->NextConsecutiveRegister(); builder()->MoveRegister(literal, literal_argument); VisitForAccumulatorValue(property->value()); builder()->StoreAccumulatorInRegister(value).CallRuntime( Runtime::kInternalSetPrototype, literal_argument, 2); continue; } register_allocator()->PrepareForConsecutiveAllocations(5); Register literal_argument = register_allocator()->NextConsecutiveRegister(); Register key = register_allocator()->NextConsecutiveRegister(); Register value = register_allocator()->NextConsecutiveRegister(); Register attr = register_allocator()->NextConsecutiveRegister(); DCHECK(Register::AreContiguous(literal_argument, key, value, attr)); Register set_function_name = register_allocator()->NextConsecutiveRegister(); builder()->MoveRegister(literal, literal_argument); VisitForAccumulatorValue(property->key()); builder()->CastAccumulatorToName().StoreAccumulatorInRegister(key); VisitForAccumulatorValue(property->value()); builder()->StoreAccumulatorInRegister(value); VisitSetHomeObject(value, literal, property); builder()->LoadLiteral(Smi::FromInt(NONE)).StoreAccumulatorInRegister(attr); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::COMPUTED: case ObjectLiteral::Property::MATERIALIZED_LITERAL: builder() ->LoadLiteral(Smi::FromInt(property->NeedsSetFunctionName())) .StoreAccumulatorInRegister(set_function_name); builder()->CallRuntime(Runtime::kDefineDataPropertyInLiteral, literal_argument, 5); break; case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); // Handled specially above. break; case ObjectLiteral::Property::GETTER: builder()->CallRuntime(Runtime::kDefineGetterPropertyUnchecked, literal_argument, 4); break; case ObjectLiteral::Property::SETTER: builder()->CallRuntime(Runtime::kDefineSetterPropertyUnchecked, literal_argument, 4); break; } } execution_result()->SetResultInRegister(literal); } void BytecodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { // Deep-copy the literal boilerplate. builder()->CreateArrayLiteral(expr->constant_elements(), expr->literal_index(), expr->ComputeFlags(true)); Register index, literal; // Evaluate all the non-constant subexpressions and store them into the // newly cloned array. bool literal_in_accumulator = true; for (int array_index = 0; array_index < expr->values()->length(); array_index++) { Expression* subexpr = expr->values()->at(array_index); if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; DCHECK(!subexpr->IsSpread()); if (literal_in_accumulator) { index = register_allocator()->NewRegister(); literal = register_allocator()->NewRegister(); builder()->StoreAccumulatorInRegister(literal); literal_in_accumulator = false; } FeedbackVectorSlot slot = expr->LiteralFeedbackSlot(); builder() ->LoadLiteral(Smi::FromInt(array_index)) .StoreAccumulatorInRegister(index); VisitForAccumulatorValue(subexpr); builder()->StoreKeyedProperty(literal, index, feedback_index(slot), language_mode()); } if (!literal_in_accumulator) { // Restore literal array into accumulator. builder()->LoadAccumulatorWithRegister(literal); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitVariableProxy(VariableProxy* proxy) { builder()->SetExpressionPosition(proxy); VisitVariableLoad(proxy->var(), proxy->VariableFeedbackSlot()); } void BytecodeGenerator::BuildHoleCheckForVariableLoad(VariableMode mode, Handle<String> name) { if (mode == LET || mode == CONST) { BuildThrowIfHole(name); } } void BytecodeGenerator::VisitVariableLoad(Variable* variable, FeedbackVectorSlot slot, TypeofMode typeof_mode) { VariableMode mode = variable->mode(); switch (variable->location()) { case VariableLocation::LOCAL: { Register source(Register(variable->index())); builder()->LoadAccumulatorWithRegister(source); BuildHoleCheckForVariableLoad(mode, variable->name()); execution_result()->SetResultInAccumulator(); break; } case VariableLocation::PARAMETER: { // The parameter indices are shifted by 1 (receiver is variable // index -1 but is parameter index 0 in BytecodeArrayBuilder). Register source = builder()->Parameter(variable->index() + 1); builder()->LoadAccumulatorWithRegister(source); BuildHoleCheckForVariableLoad(mode, variable->name()); execution_result()->SetResultInAccumulator(); break; } case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { builder()->LoadGlobal(feedback_index(slot), typeof_mode); execution_result()->SetResultInAccumulator(); break; } case VariableLocation::CONTEXT: { int depth = execution_context()->ContextChainDepth(variable->scope()); ContextScope* context = execution_context()->Previous(depth); Register context_reg; if (context) { context_reg = context->reg(); } else { context_reg = register_allocator()->NewRegister(); // Walk the context chain to find the context at the given depth. // TODO(rmcilroy): Perform this work in a bytecode handler once we have // a generic mechanism for performing jumps in interpreter.cc. // TODO(mythria): Also update bytecode graph builder with correct depth // when this changes. builder() ->LoadAccumulatorWithRegister(execution_context()->reg()) .StoreAccumulatorInRegister(context_reg); for (int i = 0; i < depth; ++i) { builder() ->LoadContextSlot(context_reg, Context::PREVIOUS_INDEX) .StoreAccumulatorInRegister(context_reg); } } builder()->LoadContextSlot(context_reg, variable->index()); BuildHoleCheckForVariableLoad(mode, variable->name()); execution_result()->SetResultInAccumulator(); break; } case VariableLocation::LOOKUP: { builder()->LoadLookupSlot(variable->name(), typeof_mode); execution_result()->SetResultInAccumulator(); break; } } } void BytecodeGenerator::VisitVariableLoadForAccumulatorValue( Variable* variable, FeedbackVectorSlot slot, TypeofMode typeof_mode) { AccumulatorResultScope accumulator_result(this); VisitVariableLoad(variable, slot, typeof_mode); } Register BytecodeGenerator::VisitVariableLoadForRegisterValue( Variable* variable, FeedbackVectorSlot slot, TypeofMode typeof_mode) { RegisterResultScope register_scope(this); VisitVariableLoad(variable, slot, typeof_mode); return register_scope.ResultRegister(); } void BytecodeGenerator::BuildNamedSuperPropertyLoad(Register receiver, Register home_object, Register name) { DCHECK(Register::AreContiguous(receiver, home_object, name)); builder()->CallRuntime(Runtime::kLoadFromSuper, receiver, 3); } void BytecodeGenerator::BuildKeyedSuperPropertyLoad(Register receiver, Register home_object, Register key) { DCHECK(Register::AreContiguous(receiver, home_object, key)); builder()->CallRuntime(Runtime::kLoadKeyedFromSuper, receiver, 3); } void BytecodeGenerator::BuildNamedSuperPropertyStore(Register receiver, Register home_object, Register name, Register value) { DCHECK(Register::AreContiguous(receiver, home_object, name, value)); Runtime::FunctionId function_id = is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict : Runtime::kStoreToSuper_Sloppy; builder()->CallRuntime(function_id, receiver, 4); } void BytecodeGenerator::BuildKeyedSuperPropertyStore(Register receiver, Register home_object, Register key, Register value) { DCHECK(Register::AreContiguous(receiver, home_object, key, value)); Runtime::FunctionId function_id = is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict : Runtime::kStoreKeyedToSuper_Sloppy; builder()->CallRuntime(function_id, receiver, 4); } void BytecodeGenerator::BuildAbort(BailoutReason bailout_reason) { RegisterAllocationScope register_scope(this); Register reason = register_allocator()->NewRegister(); builder() ->LoadLiteral(Smi::FromInt(static_cast<int>(bailout_reason))) .StoreAccumulatorInRegister(reason) .CallRuntime(Runtime::kAbort, reason, 1); } void BytecodeGenerator::BuildThrowReferenceError(Handle<String> name) { RegisterAllocationScope register_scope(this); Register name_reg = register_allocator()->NewRegister(); builder()->LoadLiteral(name).StoreAccumulatorInRegister(name_reg).CallRuntime( Runtime::kThrowReferenceError, name_reg, 1); } void BytecodeGenerator::BuildThrowIfHole(Handle<String> name) { // TODO(interpreter): Can the parser reduce the number of checks // performed? Or should there be a ThrowIfHole bytecode. BytecodeLabel no_reference_error; builder()->JumpIfNotHole(&no_reference_error); BuildThrowReferenceError(name); builder()->Bind(&no_reference_error); } void BytecodeGenerator::BuildThrowIfNotHole(Handle<String> name) { // TODO(interpreter): Can the parser reduce the number of checks // performed? Or should there be a ThrowIfNotHole bytecode. BytecodeLabel no_reference_error, reference_error; builder() ->JumpIfNotHole(&reference_error) .Jump(&no_reference_error) .Bind(&reference_error); BuildThrowReferenceError(name); builder()->Bind(&no_reference_error); } void BytecodeGenerator::BuildThrowReassignConstant(Handle<String> name) { // TODO(mythria): This will be replaced by a new bytecode that throws an // appropriate error depending on the whether the value is a hole or not. BytecodeLabel const_assign_error; builder()->JumpIfNotHole(&const_assign_error); BuildThrowReferenceError(name); builder() ->Bind(&const_assign_error) .CallRuntime(Runtime::kThrowConstAssignError, Register(), 0); } void BytecodeGenerator::BuildHoleCheckForVariableAssignment(Variable* variable, Token::Value op) { VariableMode mode = variable->mode(); DCHECK(mode != CONST_LEGACY); if (mode == CONST && op != Token::INIT) { // Non-intializing assignments to constant is not allowed. BuildThrowReassignConstant(variable->name()); } else if (mode == LET && op != Token::INIT) { // Perform an initialization check for let declared variables. // E.g. let x = (x = 20); is not allowed. BuildThrowIfHole(variable->name()); } else { DCHECK(variable->is_this() && mode == CONST && op == Token::INIT); // Perform an initialization check for 'this'. 'this' variable is the // only variable able to trigger bind operations outside the TDZ // via 'super' calls. BuildThrowIfNotHole(variable->name()); } } void BytecodeGenerator::VisitVariableAssignment(Variable* variable, Token::Value op, FeedbackVectorSlot slot) { VariableMode mode = variable->mode(); RegisterAllocationScope assignment_register_scope(this); BytecodeLabel end_label; bool hole_check_required = (mode == LET && op != Token::INIT) || (mode == CONST && op != Token::INIT) || (mode == CONST && op == Token::INIT && variable->is_this()); switch (variable->location()) { case VariableLocation::PARAMETER: case VariableLocation::LOCAL: { Register destination; if (VariableLocation::PARAMETER == variable->location()) { destination = Register(builder()->Parameter(variable->index() + 1)); } else { destination = Register(variable->index()); } if (mode == CONST_LEGACY && op != Token::INIT) { if (is_strict(language_mode())) { builder()->CallRuntime(Runtime::kThrowConstAssignError, Register(), 0); } // Non-initializing assignments to legacy constants are ignored // in sloppy mode. Break here to avoid storing into variable. break; } if (hole_check_required) { // Load destination to check for hole. Register value_temp = register_allocator()->NewRegister(); builder() ->StoreAccumulatorInRegister(value_temp) .LoadAccumulatorWithRegister(destination); BuildHoleCheckForVariableAssignment(variable, op); builder()->LoadAccumulatorWithRegister(value_temp); } builder()->StoreAccumulatorInRegister(destination); break; } case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { builder()->StoreGlobal(variable->name(), feedback_index(slot), language_mode()); break; } case VariableLocation::CONTEXT: { int depth = execution_context()->ContextChainDepth(variable->scope()); ContextScope* context = execution_context()->Previous(depth); Register context_reg; if (context) { context_reg = context->reg(); } else { Register value_temp = register_allocator()->NewRegister(); context_reg = register_allocator()->NewRegister(); // Walk the context chain to find the context at the given depth. // TODO(rmcilroy): Perform this work in a bytecode handler once we have // a generic mechanism for performing jumps in interpreter.cc. // TODO(mythria): Also update bytecode graph builder with correct depth // when this changes. builder() ->StoreAccumulatorInRegister(value_temp) .LoadAccumulatorWithRegister(execution_context()->reg()) .StoreAccumulatorInRegister(context_reg); for (int i = 0; i < depth; ++i) { builder() ->LoadContextSlot(context_reg, Context::PREVIOUS_INDEX) .StoreAccumulatorInRegister(context_reg); } builder()->LoadAccumulatorWithRegister(value_temp); } if (mode == CONST_LEGACY && op != Token::INIT) { if (is_strict(language_mode())) { builder()->CallRuntime(Runtime::kThrowConstAssignError, Register(), 0); } // Non-initializing assignments to legacy constants are ignored // in sloppy mode. Break here to avoid storing into variable. break; } if (hole_check_required) { // Load destination to check for hole. Register value_temp = register_allocator()->NewRegister(); builder() ->StoreAccumulatorInRegister(value_temp) .LoadContextSlot(context_reg, variable->index()); BuildHoleCheckForVariableAssignment(variable, op); builder()->LoadAccumulatorWithRegister(value_temp); } builder()->StoreContextSlot(context_reg, variable->index()); break; } case VariableLocation::LOOKUP: { DCHECK_NE(CONST_LEGACY, variable->mode()); builder()->StoreLookupSlot(variable->name(), language_mode()); break; } } } void BytecodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpressionOrThis()); Register object, key, home_object, value; Handle<String> name; // Left-hand side can only be a property, a global or a variable slot. Property* property = expr->target()->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do to evaluate variable assignment LHS. break; case NAMED_PROPERTY: { object = VisitForRegisterValue(property->obj()); name = property->key()->AsLiteral()->AsPropertyName(); break; } case KEYED_PROPERTY: { object = VisitForRegisterValue(property->obj()); if (expr->is_compound()) { // Use VisitForAccumulator and store to register so that the key is // still in the accumulator for loading the old value below. key = register_allocator()->NewRegister(); VisitForAccumulatorValue(property->key()); builder()->StoreAccumulatorInRegister(key); } else { key = VisitForRegisterValue(property->key()); } break; } case NAMED_SUPER_PROPERTY: { register_allocator()->PrepareForConsecutiveAllocations(4); object = register_allocator()->NextConsecutiveRegister(); home_object = register_allocator()->NextConsecutiveRegister(); key = register_allocator()->NextConsecutiveRegister(); value = register_allocator()->NextConsecutiveRegister(); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), object); VisitForRegisterValue(super_property->home_object(), home_object); builder() ->LoadLiteral(property->key()->AsLiteral()->AsPropertyName()) .StoreAccumulatorInRegister(key); break; } case KEYED_SUPER_PROPERTY: { register_allocator()->PrepareForConsecutiveAllocations(4); object = register_allocator()->NextConsecutiveRegister(); home_object = register_allocator()->NextConsecutiveRegister(); key = register_allocator()->NextConsecutiveRegister(); value = register_allocator()->NextConsecutiveRegister(); builder()->StoreAccumulatorInRegister(value); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), object); VisitForRegisterValue(super_property->home_object(), home_object); VisitForRegisterValue(property->key(), key); break; } } // Evaluate the value and potentially handle compound assignments by loading // the left-hand side value and performing a binary operation. if (expr->is_compound()) { Register old_value; switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->target()->AsVariableProxy(); old_value = VisitVariableLoadForRegisterValue( proxy->var(), proxy->VariableFeedbackSlot()); break; } case NAMED_PROPERTY: { FeedbackVectorSlot slot = property->PropertyFeedbackSlot(); old_value = register_allocator()->NewRegister(); builder() ->LoadNamedProperty(object, name, feedback_index(slot)) .StoreAccumulatorInRegister(old_value); break; } case KEYED_PROPERTY: { // Key is already in accumulator at this point due to evaluating the // LHS above. FeedbackVectorSlot slot = property->PropertyFeedbackSlot(); old_value = register_allocator()->NewRegister(); builder() ->LoadKeyedProperty(object, feedback_index(slot)) .StoreAccumulatorInRegister(old_value); break; } case NAMED_SUPER_PROPERTY: { old_value = register_allocator()->NewRegister(); BuildNamedSuperPropertyLoad(object, home_object, key); builder()->StoreAccumulatorInRegister(old_value); break; } case KEYED_SUPER_PROPERTY: { old_value = register_allocator()->NewRegister(); BuildKeyedSuperPropertyLoad(object, home_object, key); builder()->StoreAccumulatorInRegister(old_value); break; } } VisitForAccumulatorValue(expr->value()); builder()->BinaryOperation(expr->binary_op(), old_value); } else { VisitForAccumulatorValue(expr->value()); } // Store the value. builder()->SetExpressionPosition(expr); FeedbackVectorSlot slot = expr->AssignmentSlot(); switch (assign_type) { case VARIABLE: { // TODO(oth): The VisitVariableAssignment() call is hard to reason about. // Is the value in the accumulator safe? Yes, but scary. Variable* variable = expr->target()->AsVariableProxy()->var(); VisitVariableAssignment(variable, expr->op(), slot); break; } case NAMED_PROPERTY: builder()->StoreNamedProperty(object, name, feedback_index(slot), language_mode()); break; case KEYED_PROPERTY: builder()->StoreKeyedProperty(object, key, feedback_index(slot), language_mode()); break; case NAMED_SUPER_PROPERTY: { builder()->StoreAccumulatorInRegister(value); BuildNamedSuperPropertyStore(object, home_object, key, value); break; } case KEYED_SUPER_PROPERTY: { builder()->StoreAccumulatorInRegister(value); BuildKeyedSuperPropertyStore(object, home_object, key, value); break; } } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitYield(Yield* expr) { builder()->SetExpressionPosition(expr); Register value = VisitForRegisterValue(expr->expression()); Register generator = VisitForRegisterValue(expr->generator_object()); // Save context, registers, and state. Then return. builder() ->LoadLiteral(Smi::FromInt(expr->yield_id())) .SuspendGenerator(generator) .LoadAccumulatorWithRegister(value) .Return(); // Hard return (ignore any finally blocks). builder()->Bind(&(generator_resume_points_[expr->yield_id()])); // Upon resume, we continue here. { RegisterAllocationScope register_scope(this); // Update state to indicate that we have finished resuming. Loop headers // rely on this. builder() ->LoadLiteral(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)) .StoreAccumulatorInRegister(generator_state_); Register input = register_allocator()->NewRegister(); builder() ->CallRuntime(Runtime::kInlineGeneratorGetInputOrDebugPos, generator, 1) .StoreAccumulatorInRegister(input); Register resume_mode = register_allocator()->NewRegister(); builder() ->CallRuntime(Runtime::kInlineGeneratorGetResumeMode, generator, 1) .StoreAccumulatorInRegister(resume_mode); // Now dispatch on resume mode. BytecodeLabel resume_with_next; BytecodeLabel resume_with_return; BytecodeLabel resume_with_throw; builder() ->LoadLiteral(Smi::FromInt(JSGeneratorObject::kNext)) .CompareOperation(Token::EQ_STRICT, resume_mode) .JumpIfTrue(&resume_with_next) .LoadLiteral(Smi::FromInt(JSGeneratorObject::kThrow)) .CompareOperation(Token::EQ_STRICT, resume_mode) .JumpIfTrue(&resume_with_throw) .Jump(&resume_with_return); builder()->Bind(&resume_with_return); { register_allocator()->PrepareForConsecutiveAllocations(2); Register value = register_allocator()->NextConsecutiveRegister(); Register done = register_allocator()->NextConsecutiveRegister(); builder() ->MoveRegister(input, value) .LoadTrue() .StoreAccumulatorInRegister(done) .CallRuntime(Runtime::kInlineCreateIterResultObject, value, 2); execution_control()->ReturnAccumulator(); } builder()->Bind(&resume_with_throw); builder()->SetExpressionPosition(expr); builder()->LoadAccumulatorWithRegister(input).Throw(); builder()->Bind(&resume_with_next); builder()->LoadAccumulatorWithRegister(input); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitThrow(Throw* expr) { VisitForAccumulatorValue(expr->exception()); builder()->SetExpressionPosition(expr); builder()->Throw(); // Throw statements are modeled as expressions instead of statements. These // are converted from assignment statements in Rewriter::ReWrite pass. An // assignment statement expects a value in the accumulator. This is a hack to // avoid DCHECK fails assert accumulator has been set. execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitPropertyLoad(Register obj, Property* expr) { LhsKind property_kind = Property::GetAssignType(expr); FeedbackVectorSlot slot = expr->PropertyFeedbackSlot(); builder()->SetExpressionPosition(expr); switch (property_kind) { case VARIABLE: UNREACHABLE(); case NAMED_PROPERTY: { builder()->LoadNamedProperty(obj, expr->key()->AsLiteral()->AsPropertyName(), feedback_index(slot)); break; } case KEYED_PROPERTY: { VisitForAccumulatorValue(expr->key()); builder()->LoadKeyedProperty(obj, feedback_index(slot)); break; } case NAMED_SUPER_PROPERTY: VisitNamedSuperPropertyLoad(expr, Register::invalid_value()); break; case KEYED_SUPER_PROPERTY: VisitKeyedSuperPropertyLoad(expr, Register::invalid_value()); break; } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitPropertyLoadForAccumulator(Register obj, Property* expr) { AccumulatorResultScope result_scope(this); VisitPropertyLoad(obj, expr); } void BytecodeGenerator::VisitNamedSuperPropertyLoad(Property* property, Register opt_receiver_out) { RegisterAllocationScope register_scope(this); register_allocator()->PrepareForConsecutiveAllocations(3); Register receiver, home_object, name; receiver = register_allocator()->NextConsecutiveRegister(); home_object = register_allocator()->NextConsecutiveRegister(); name = register_allocator()->NextConsecutiveRegister(); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), receiver); VisitForRegisterValue(super_property->home_object(), home_object); builder() ->LoadLiteral(property->key()->AsLiteral()->AsPropertyName()) .StoreAccumulatorInRegister(name); BuildNamedSuperPropertyLoad(receiver, home_object, name); if (opt_receiver_out.is_valid()) { builder()->MoveRegister(receiver, opt_receiver_out); } } void BytecodeGenerator::VisitKeyedSuperPropertyLoad(Property* property, Register opt_receiver_out) { RegisterAllocationScope register_scope(this); register_allocator()->PrepareForConsecutiveAllocations(3); Register receiver, home_object, key; receiver = register_allocator()->NextConsecutiveRegister(); home_object = register_allocator()->NextConsecutiveRegister(); key = register_allocator()->NextConsecutiveRegister(); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), receiver); VisitForRegisterValue(super_property->home_object(), home_object); VisitForRegisterValue(property->key(), key); BuildKeyedSuperPropertyLoad(receiver, home_object, key); if (opt_receiver_out.is_valid()) { builder()->MoveRegister(receiver, opt_receiver_out); } } void BytecodeGenerator::VisitProperty(Property* expr) { LhsKind property_kind = Property::GetAssignType(expr); if (property_kind != NAMED_SUPER_PROPERTY && property_kind != KEYED_SUPER_PROPERTY) { Register obj = VisitForRegisterValue(expr->obj()); VisitPropertyLoad(obj, expr); } else { VisitPropertyLoad(Register::invalid_value(), expr); } } Register BytecodeGenerator::VisitArguments(ZoneList<Expression*>* args) { if (args->length() == 0) { return Register(); } // Visit arguments and place in a contiguous block of temporary // registers. Return the first temporary register corresponding to // the first argument. // // NB the caller may have already called // PrepareForConsecutiveAllocations() with args->length() + N. The // second call here will be a no-op provided there have been N or // less calls to NextConsecutiveRegister(). Otherwise, the arguments // here will be consecutive, but they will not be consecutive with // earlier consecutive allocations made by the caller. register_allocator()->PrepareForConsecutiveAllocations(args->length()); // Visit for first argument that goes into returned register Register first_arg = register_allocator()->NextConsecutiveRegister(); VisitForAccumulatorValue(args->at(0)); builder()->StoreAccumulatorInRegister(first_arg); // Visit remaining arguments for (int i = 1; i < static_cast<int>(args->length()); i++) { Register ith_arg = register_allocator()->NextConsecutiveRegister(); VisitForAccumulatorValue(args->at(i)); builder()->StoreAccumulatorInRegister(ith_arg); DCHECK(ith_arg.index() - i == first_arg.index()); } return first_arg; } void BytecodeGenerator::VisitCall(Call* expr) { Expression* callee_expr = expr->expression(); Call::CallType call_type = expr->GetCallType(isolate()); if (call_type == Call::SUPER_CALL) { return VisitCallSuper(expr); } // Prepare the callee and the receiver to the function call. This depends on // the semantics of the underlying call type. // The receiver and arguments need to be allocated consecutively for // Call(). We allocate the callee and receiver consecutively for calls to // %LoadLookupSlotForCall. Future optimizations could avoid this there are // no arguments or the receiver and arguments are already consecutive. ZoneList<Expression*>* args = expr->arguments(); register_allocator()->PrepareForConsecutiveAllocations(args->length() + 2); Register callee = register_allocator()->NextConsecutiveRegister(); Register receiver = register_allocator()->NextConsecutiveRegister(); switch (call_type) { case Call::NAMED_PROPERTY_CALL: case Call::KEYED_PROPERTY_CALL: { Property* property = callee_expr->AsProperty(); VisitForAccumulatorValue(property->obj()); builder()->StoreAccumulatorInRegister(receiver); VisitPropertyLoadForAccumulator(receiver, property); builder()->StoreAccumulatorInRegister(callee); break; } case Call::GLOBAL_CALL: { // Receiver is undefined for global calls. builder()->LoadUndefined().StoreAccumulatorInRegister(receiver); // Load callee as a global variable. VariableProxy* proxy = callee_expr->AsVariableProxy(); VisitVariableLoadForAccumulatorValue(proxy->var(), proxy->VariableFeedbackSlot()); builder()->StoreAccumulatorInRegister(callee); break; } case Call::LOOKUP_SLOT_CALL: case Call::POSSIBLY_EVAL_CALL: { if (callee_expr->AsVariableProxy()->var()->IsLookupSlot()) { RegisterAllocationScope inner_register_scope(this); Register name = register_allocator()->NewRegister(); // Call %LoadLookupSlotForCall to get the callee and receiver. DCHECK(Register::AreContiguous(callee, receiver)); Variable* variable = callee_expr->AsVariableProxy()->var(); builder() ->LoadLiteral(variable->name()) .StoreAccumulatorInRegister(name) .CallRuntimeForPair(Runtime::kLoadLookupSlotForCall, name, 1, callee); break; } // Fall through. DCHECK_EQ(call_type, Call::POSSIBLY_EVAL_CALL); } case Call::OTHER_CALL: { builder()->LoadUndefined().StoreAccumulatorInRegister(receiver); VisitForAccumulatorValue(callee_expr); builder()->StoreAccumulatorInRegister(callee); break; } case Call::NAMED_SUPER_PROPERTY_CALL: { Property* property = callee_expr->AsProperty(); VisitNamedSuperPropertyLoad(property, receiver); builder()->StoreAccumulatorInRegister(callee); break; } case Call::KEYED_SUPER_PROPERTY_CALL: { Property* property = callee_expr->AsProperty(); VisitKeyedSuperPropertyLoad(property, receiver); builder()->StoreAccumulatorInRegister(callee); break; } case Call::SUPER_CALL: UNREACHABLE(); break; } // Evaluate all arguments to the function call and store in sequential // registers. Register arg = VisitArguments(args); CHECK(args->length() == 0 || arg.index() == receiver.index() + 1); // Resolve callee for a potential direct eval call. This block will mutate the // callee value. if (call_type == Call::POSSIBLY_EVAL_CALL && args->length() > 0) { RegisterAllocationScope inner_register_scope(this); register_allocator()->PrepareForConsecutiveAllocations(6); Register callee_for_eval = register_allocator()->NextConsecutiveRegister(); Register source = register_allocator()->NextConsecutiveRegister(); Register function = register_allocator()->NextConsecutiveRegister(); Register language = register_allocator()->NextConsecutiveRegister(); Register eval_scope_position = register_allocator()->NextConsecutiveRegister(); Register eval_position = register_allocator()->NextConsecutiveRegister(); // Set up arguments for ResolvePossiblyDirectEval by copying callee, source // strings and function closure, and loading language and // position. builder() ->MoveRegister(callee, callee_for_eval) .MoveRegister(arg, source) .MoveRegister(Register::function_closure(), function) .LoadLiteral(Smi::FromInt(language_mode())) .StoreAccumulatorInRegister(language) .LoadLiteral( Smi::FromInt(execution_context()->scope()->start_position())) .StoreAccumulatorInRegister(eval_scope_position) .LoadLiteral(Smi::FromInt(expr->position())) .StoreAccumulatorInRegister(eval_position); // Call ResolvePossiblyDirectEval and modify the callee. builder() ->CallRuntime(Runtime::kResolvePossiblyDirectEval, callee_for_eval, 6) .StoreAccumulatorInRegister(callee); } builder()->SetExpressionPosition(expr); builder()->Call(callee, receiver, 1 + args->length(), feedback_index(expr->CallFeedbackICSlot()), expr->tail_call_mode()); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitCallSuper(Call* expr) { RegisterAllocationScope register_scope(this); SuperCallReference* super = expr->expression()->AsSuperCallReference(); // Prepare the constructor to the super call. Register this_function = register_allocator()->NewRegister(); VisitForAccumulatorValue(super->this_function_var()); builder() ->StoreAccumulatorInRegister(this_function) .CallRuntime(Runtime::kInlineGetSuperConstructor, this_function, 1); Register constructor = this_function; // Re-use dead this_function register. builder()->StoreAccumulatorInRegister(constructor); ZoneList<Expression*>* args = expr->arguments(); Register first_arg = VisitArguments(args); // The new target is loaded into the accumulator from the // {new.target} variable. VisitForAccumulatorValue(super->new_target_var()); // Call construct. builder()->SetExpressionPosition(expr); builder()->New(constructor, first_arg, args->length()); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitCallNew(CallNew* expr) { Register constructor = register_allocator()->NewRegister(); VisitForAccumulatorValue(expr->expression()); builder()->StoreAccumulatorInRegister(constructor); ZoneList<Expression*>* args = expr->arguments(); Register first_arg = VisitArguments(args); builder()->SetExpressionPosition(expr); // The accumulator holds new target which is the same as the // constructor for CallNew. builder() ->LoadAccumulatorWithRegister(constructor) .New(constructor, first_arg, args->length()); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitCallRuntime(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); if (expr->is_jsruntime()) { // Allocate a register for the receiver and load it with undefined. register_allocator()->PrepareForConsecutiveAllocations(1 + args->length()); Register receiver = register_allocator()->NextConsecutiveRegister(); builder()->LoadUndefined().StoreAccumulatorInRegister(receiver); Register first_arg = VisitArguments(args); CHECK(args->length() == 0 || first_arg.index() == receiver.index() + 1); builder()->CallJSRuntime(expr->context_index(), receiver, 1 + args->length()); } else { // Evaluate all arguments to the runtime call. Register first_arg = VisitArguments(args); Runtime::FunctionId function_id = expr->function()->function_id; builder()->CallRuntime(function_id, first_arg, args->length()); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitVoid(UnaryOperation* expr) { VisitForEffect(expr->expression()); builder()->LoadUndefined(); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitTypeOf(UnaryOperation* expr) { if (expr->expression()->IsVariableProxy()) { // Typeof does not throw a reference error on global variables, hence we // perform a non-contextual load in case the operand is a variable proxy. VariableProxy* proxy = expr->expression()->AsVariableProxy(); VisitVariableLoadForAccumulatorValue( proxy->var(), proxy->VariableFeedbackSlot(), INSIDE_TYPEOF); } else { VisitForAccumulatorValue(expr->expression()); } builder()->TypeOf(); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitNot(UnaryOperation* expr) { VisitForAccumulatorValue(expr->expression()); builder()->LogicalNot(); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::Value::NOT: VisitNot(expr); break; case Token::Value::TYPEOF: VisitTypeOf(expr); break; case Token::Value::VOID: VisitVoid(expr); break; case Token::Value::DELETE: VisitDelete(expr); break; case Token::Value::BIT_NOT: case Token::Value::ADD: case Token::Value::SUB: // These operators are converted to an equivalent binary operators in // the parser. These operators are not expected to be visited here. UNREACHABLE(); default: UNREACHABLE(); } } void BytecodeGenerator::VisitDelete(UnaryOperation* expr) { if (expr->expression()->IsProperty()) { // Delete of an object property is allowed both in sloppy // and strict modes. Property* property = expr->expression()->AsProperty(); Register object = VisitForRegisterValue(property->obj()); VisitForAccumulatorValue(property->key()); builder()->Delete(object, language_mode()); } else if (expr->expression()->IsVariableProxy()) { // Delete of an unqualified identifier is allowed in sloppy mode but is // not allowed in strict mode. Deleting 'this' is allowed in both modes. VariableProxy* proxy = expr->expression()->AsVariableProxy(); Variable* variable = proxy->var(); DCHECK(is_sloppy(language_mode()) || variable->HasThisName(isolate())); switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { // Global var, let, const or variables not explicitly declared. Register native_context = register_allocator()->NewRegister(); Register global_object = register_allocator()->NewRegister(); builder() ->LoadContextSlot(execution_context()->reg(), Context::NATIVE_CONTEXT_INDEX) .StoreAccumulatorInRegister(native_context) .LoadContextSlot(native_context, Context::EXTENSION_INDEX) .StoreAccumulatorInRegister(global_object) .LoadLiteral(variable->name()) .Delete(global_object, language_mode()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: case VariableLocation::CONTEXT: { // Deleting local var/let/const, context variables, and arguments // does not have any effect. if (variable->HasThisName(isolate())) { builder()->LoadTrue(); } else { builder()->LoadFalse(); } break; } case VariableLocation::LOOKUP: { Register name_reg = register_allocator()->NewRegister(); builder() ->LoadLiteral(variable->name()) .StoreAccumulatorInRegister(name_reg) .CallRuntime(Runtime::kDeleteLookupSlot, name_reg, 1); break; } default: UNREACHABLE(); } } else { // Delete of an unresolvable reference returns true. VisitForEffect(expr->expression()); builder()->LoadTrue(); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpressionOrThis()); // Left-hand side can only be a property, a global or a variable slot. Property* property = expr->expression()->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); // TODO(rmcilroy): Set is_postfix to false if visiting for effect. bool is_postfix = expr->is_postfix(); // Evaluate LHS expression and get old value. Register object, home_object, key, old_value, value; Handle<String> name; switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->expression()->AsVariableProxy(); VisitVariableLoadForAccumulatorValue(proxy->var(), proxy->VariableFeedbackSlot()); break; } case NAMED_PROPERTY: { FeedbackVectorSlot slot = property->PropertyFeedbackSlot(); object = VisitForRegisterValue(property->obj()); name = property->key()->AsLiteral()->AsPropertyName(); builder()->LoadNamedProperty(object, name, feedback_index(slot)); break; } case KEYED_PROPERTY: { FeedbackVectorSlot slot = property->PropertyFeedbackSlot(); object = VisitForRegisterValue(property->obj()); // Use visit for accumulator here since we need the key in the accumulator // for the LoadKeyedProperty. key = register_allocator()->NewRegister(); VisitForAccumulatorValue(property->key()); builder()->StoreAccumulatorInRegister(key).LoadKeyedProperty( object, feedback_index(slot)); break; } case NAMED_SUPER_PROPERTY: { register_allocator()->PrepareForConsecutiveAllocations(4); object = register_allocator()->NextConsecutiveRegister(); home_object = register_allocator()->NextConsecutiveRegister(); key = register_allocator()->NextConsecutiveRegister(); value = register_allocator()->NextConsecutiveRegister(); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), object); VisitForRegisterValue(super_property->home_object(), home_object); builder() ->LoadLiteral(property->key()->AsLiteral()->AsPropertyName()) .StoreAccumulatorInRegister(key); BuildNamedSuperPropertyLoad(object, home_object, key); break; } case KEYED_SUPER_PROPERTY: { register_allocator()->PrepareForConsecutiveAllocations(4); object = register_allocator()->NextConsecutiveRegister(); home_object = register_allocator()->NextConsecutiveRegister(); key = register_allocator()->NextConsecutiveRegister(); value = register_allocator()->NextConsecutiveRegister(); builder()->StoreAccumulatorInRegister(value); SuperPropertyReference* super_property = property->obj()->AsSuperPropertyReference(); VisitForRegisterValue(super_property->this_var(), object); VisitForRegisterValue(super_property->home_object(), home_object); VisitForRegisterValue(property->key(), key); BuildKeyedSuperPropertyLoad(object, home_object, key); break; } } // Save result for postfix expressions. if (is_postfix) { old_value = register_allocator()->outer()->NewRegister(); // Convert old value into a number before saving it. builder()->CastAccumulatorToNumber().StoreAccumulatorInRegister(old_value); } // Perform +1/-1 operation. builder()->CountOperation(expr->binary_op()); // Store the value. builder()->SetExpressionPosition(expr); FeedbackVectorSlot feedback_slot = expr->CountSlot(); switch (assign_type) { case VARIABLE: { Variable* variable = expr->expression()->AsVariableProxy()->var(); VisitVariableAssignment(variable, expr->op(), feedback_slot); break; } case NAMED_PROPERTY: { builder()->StoreNamedProperty(object, name, feedback_index(feedback_slot), language_mode()); break; } case KEYED_PROPERTY: { builder()->StoreKeyedProperty(object, key, feedback_index(feedback_slot), language_mode()); break; } case NAMED_SUPER_PROPERTY: { builder()->StoreAccumulatorInRegister(value); BuildNamedSuperPropertyStore(object, home_object, key, value); break; } case KEYED_SUPER_PROPERTY: { builder()->StoreAccumulatorInRegister(value); BuildKeyedSuperPropertyStore(object, home_object, key, value); break; } } // Restore old value for postfix expressions. if (is_postfix) { execution_result()->SetResultInRegister(old_value); } else { execution_result()->SetResultInAccumulator(); } } void BytecodeGenerator::VisitBinaryOperation(BinaryOperation* binop) { switch (binop->op()) { case Token::COMMA: VisitCommaExpression(binop); break; case Token::OR: VisitLogicalOrExpression(binop); break; case Token::AND: VisitLogicalAndExpression(binop); break; default: VisitArithmeticExpression(binop); break; } } void BytecodeGenerator::VisitCompareOperation(CompareOperation* expr) { Register lhs = VisitForRegisterValue(expr->left()); VisitForAccumulatorValue(expr->right()); builder()->SetExpressionPosition(expr); builder()->CompareOperation(expr->op(), lhs); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) { Register lhs = VisitForRegisterValue(expr->left()); VisitForAccumulatorValue(expr->right()); builder()->BinaryOperation(expr->op(), lhs); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitSpread(Spread* expr) { UNREACHABLE(); } void BytecodeGenerator::VisitEmptyParentheses(EmptyParentheses* expr) { UNREACHABLE(); } void BytecodeGenerator::VisitThisFunction(ThisFunction* expr) { execution_result()->SetResultInRegister(Register::function_closure()); } void BytecodeGenerator::VisitSuperCallReference(SuperCallReference* expr) { // Handled by VisitCall(). UNREACHABLE(); } void BytecodeGenerator::VisitSuperPropertyReference( SuperPropertyReference* expr) { builder()->CallRuntime(Runtime::kThrowUnsupportedSuperError, Register(0), 0); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitCommaExpression(BinaryOperation* binop) { VisitForEffect(binop->left()); Visit(binop->right()); } void BytecodeGenerator::VisitLogicalOrExpression(BinaryOperation* binop) { Expression* left = binop->left(); Expression* right = binop->right(); // Short-circuit evaluation- If it is known that left is always true, // no need to visit right if (left->ToBooleanIsTrue()) { VisitForAccumulatorValue(left); } else { BytecodeLabel end_label; VisitForAccumulatorValue(left); builder()->JumpIfTrue(&end_label); VisitForAccumulatorValue(right); builder()->Bind(&end_label); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitLogicalAndExpression(BinaryOperation* binop) { Expression* left = binop->left(); Expression* right = binop->right(); // Short-circuit evaluation- If it is known that left is always false, // no need to visit right if (left->ToBooleanIsFalse()) { VisitForAccumulatorValue(left); } else { BytecodeLabel end_label; VisitForAccumulatorValue(left); builder()->JumpIfFalse(&end_label); VisitForAccumulatorValue(right); builder()->Bind(&end_label); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitRewritableExpression(RewritableExpression* expr) { Visit(expr->expression()); } void BytecodeGenerator::VisitNewLocalFunctionContext() { AccumulatorResultScope accumulator_execution_result(this); Scope* scope = this->scope(); // Allocate a new local context. if (scope->is_script_scope()) { RegisterAllocationScope register_scope(this); Register closure = register_allocator()->NewRegister(); Register scope_info = register_allocator()->NewRegister(); DCHECK(Register::AreContiguous(closure, scope_info)); builder() ->LoadAccumulatorWithRegister(Register::function_closure()) .StoreAccumulatorInRegister(closure) .LoadLiteral(scope->GetScopeInfo(isolate())) .StoreAccumulatorInRegister(scope_info) .CallRuntime(Runtime::kNewScriptContext, closure, 2); } else { builder()->CallRuntime(Runtime::kNewFunctionContext, Register::function_closure(), 1); } execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitBuildLocalActivationContext() { Scope* scope = this->scope(); if (scope->has_this_declaration() && scope->receiver()->IsContextSlot()) { Variable* variable = scope->receiver(); Register receiver(builder()->Parameter(0)); // Context variable (at bottom of the context chain). DCHECK_EQ(0, scope->ContextChainLength(variable->scope())); builder()->LoadAccumulatorWithRegister(receiver).StoreContextSlot( execution_context()->reg(), variable->index()); } // Copy parameters into context if necessary. int num_parameters = scope->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* variable = scope->parameter(i); if (!variable->IsContextSlot()) continue; // The parameter indices are shifted by 1 (receiver is variable // index -1 but is parameter index 0 in BytecodeArrayBuilder). Register parameter(builder()->Parameter(i + 1)); // Context variable (at bottom of the context chain). DCHECK_EQ(0, scope->ContextChainLength(variable->scope())); builder()->LoadAccumulatorWithRegister(parameter) .StoreContextSlot(execution_context()->reg(), variable->index()); } } void BytecodeGenerator::VisitNewLocalBlockContext(Scope* scope) { AccumulatorResultScope accumulator_execution_result(this); DCHECK(scope->is_block_scope()); // Allocate a new local block context. register_allocator()->PrepareForConsecutiveAllocations(2); Register scope_info = register_allocator()->NextConsecutiveRegister(); Register closure = register_allocator()->NextConsecutiveRegister(); builder() ->LoadLiteral(scope->GetScopeInfo(isolate())) .StoreAccumulatorInRegister(scope_info); VisitFunctionClosureForContext(); builder() ->StoreAccumulatorInRegister(closure) .CallRuntime(Runtime::kPushBlockContext, scope_info, 2); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitNewLocalWithContext() { AccumulatorResultScope accumulator_execution_result(this); register_allocator()->PrepareForConsecutiveAllocations(2); Register extension_object = register_allocator()->NextConsecutiveRegister(); Register closure = register_allocator()->NextConsecutiveRegister(); builder()->StoreAccumulatorInRegister(extension_object); VisitFunctionClosureForContext(); builder()->StoreAccumulatorInRegister(closure).CallRuntime( Runtime::kPushWithContext, extension_object, 2); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitNewLocalCatchContext(Variable* variable) { AccumulatorResultScope accumulator_execution_result(this); DCHECK(variable->IsContextSlot()); // Allocate a new local block context. register_allocator()->PrepareForConsecutiveAllocations(3); Register name = register_allocator()->NextConsecutiveRegister(); Register exception = register_allocator()->NextConsecutiveRegister(); Register closure = register_allocator()->NextConsecutiveRegister(); builder() ->StoreAccumulatorInRegister(exception) .LoadLiteral(variable->name()) .StoreAccumulatorInRegister(name); VisitFunctionClosureForContext(); builder()->StoreAccumulatorInRegister(closure).CallRuntime( Runtime::kPushCatchContext, name, 3); execution_result()->SetResultInAccumulator(); } void BytecodeGenerator::VisitObjectLiteralAccessor( Register home_object, ObjectLiteralProperty* property, Register value_out) { // TODO(rmcilroy): Replace value_out with VisitForRegister(); if (property == nullptr) { builder()->LoadNull().StoreAccumulatorInRegister(value_out); } else { VisitForAccumulatorValue(property->value()); builder()->StoreAccumulatorInRegister(value_out); VisitSetHomeObject(value_out, home_object, property); } } void BytecodeGenerator::VisitSetHomeObject(Register value, Register home_object, ObjectLiteralProperty* property, int slot_number) { Expression* expr = property->value(); if (FunctionLiteral::NeedsHomeObject(expr)) { Handle<Name> name = isolate()->factory()->home_object_symbol(); FeedbackVectorSlot slot = property->GetSlot(slot_number); builder() ->LoadAccumulatorWithRegister(home_object) .StoreNamedProperty(value, name, feedback_index(slot), language_mode()); } } void BytecodeGenerator::VisitArgumentsObject(Variable* variable) { if (variable == nullptr) return; DCHECK(variable->IsContextSlot() || variable->IsStackAllocated()); // Allocate and initialize a new arguments object and assign to the // {arguments} variable. CreateArgumentsType type = is_strict(language_mode()) || !info()->has_simple_parameters() ? CreateArgumentsType::kUnmappedArguments : CreateArgumentsType::kMappedArguments; builder()->CreateArguments(type); VisitVariableAssignment(variable, Token::ASSIGN, FeedbackVectorSlot::Invalid()); } void BytecodeGenerator::VisitRestArgumentsArray(Variable* rest) { if (rest == nullptr) return; // Allocate and initialize a new rest parameter and assign to the {rest} // variable. builder()->CreateArguments(CreateArgumentsType::kRestParameter); DCHECK(rest->IsContextSlot() || rest->IsStackAllocated()); VisitVariableAssignment(rest, Token::ASSIGN, FeedbackVectorSlot::Invalid()); } void BytecodeGenerator::VisitThisFunctionVariable(Variable* variable) { if (variable == nullptr) return; // Store the closure we were called with in the given variable. builder()->LoadAccumulatorWithRegister(Register::function_closure()); VisitVariableAssignment(variable, Token::INIT, FeedbackVectorSlot::Invalid()); } void BytecodeGenerator::VisitNewTargetVariable(Variable* variable) { if (variable == nullptr) return; // Store the new target we were called with in the given variable. builder()->LoadAccumulatorWithRegister(Register::new_target()); VisitVariableAssignment(variable, Token::INIT, FeedbackVectorSlot::Invalid()); } void BytecodeGenerator::VisitFunctionClosureForContext() { AccumulatorResultScope accumulator_execution_result(this); Scope* closure_scope = execution_context()->scope()->ClosureScope(); if (closure_scope->is_script_scope() || closure_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function as // their closure, not the anonymous closure containing the global code. Register native_context = register_allocator()->NewRegister(); builder() ->LoadContextSlot(execution_context()->reg(), Context::NATIVE_CONTEXT_INDEX) .StoreAccumulatorInRegister(native_context) .LoadContextSlot(native_context, Context::CLOSURE_INDEX); } else if (closure_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. builder()->LoadContextSlot(execution_context()->reg(), Context::CLOSURE_INDEX); } else { DCHECK(closure_scope->is_function_scope()); builder()->LoadAccumulatorWithRegister(Register::function_closure()); } execution_result()->SetResultInAccumulator(); } // Visits the expression |expr| and places the result in the accumulator. void BytecodeGenerator::VisitForAccumulatorValue(Expression* expr) { AccumulatorResultScope accumulator_scope(this); Visit(expr); } void BytecodeGenerator::VisitForAccumulatorValueOrTheHole(Expression* expr) { if (expr == nullptr) { builder()->LoadTheHole(); } else { VisitForAccumulatorValue(expr); } } // Visits the expression |expr| and discards the result. void BytecodeGenerator::VisitForEffect(Expression* expr) { EffectResultScope effect_scope(this); Visit(expr); } // Visits the expression |expr| and returns the register containing // the expression result. Register BytecodeGenerator::VisitForRegisterValue(Expression* expr) { RegisterResultScope register_scope(this); Visit(expr); return register_scope.ResultRegister(); } // Visits the expression |expr| and stores the expression result in // |destination|. void BytecodeGenerator::VisitForRegisterValue(Expression* expr, Register destination) { AccumulatorResultScope register_scope(this); Visit(expr); builder()->StoreAccumulatorInRegister(destination); } void BytecodeGenerator::VisitInScope(Statement* stmt, Scope* scope) { ContextScope context_scope(this, scope); DCHECK(scope->declarations()->is_empty()); Visit(stmt); } LanguageMode BytecodeGenerator::language_mode() const { return execution_context()->scope()->language_mode(); } int BytecodeGenerator::feedback_index(FeedbackVectorSlot slot) const { return TypeFeedbackVector::GetIndex(slot); } } // namespace interpreter } // namespace internal } // namespace v8