// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. // A lightweight X64 Assembler. #ifndef V8_X64_ASSEMBLER_X64_H_ #define V8_X64_ASSEMBLER_X64_H_ #include <deque> #include "src/assembler.h" namespace v8 { namespace internal { // Utility functions #define GENERAL_REGISTERS(V) \ V(rax) \ V(rcx) \ V(rdx) \ V(rbx) \ V(rsp) \ V(rbp) \ V(rsi) \ V(rdi) \ V(r8) \ V(r9) \ V(r10) \ V(r11) \ V(r12) \ V(r13) \ V(r14) \ V(r15) #define ALLOCATABLE_GENERAL_REGISTERS(V) \ V(rax) \ V(rbx) \ V(rdx) \ V(rcx) \ V(rsi) \ V(rdi) \ V(r8) \ V(r9) \ V(r11) \ V(r12) \ V(r14) \ V(r15) // CPU Registers. // // 1) We would prefer to use an enum, but enum values are assignment- // compatible with int, which has caused code-generation bugs. // // 2) We would prefer to use a class instead of a struct but we don't like // the register initialization to depend on the particular initialization // order (which appears to be different on OS X, Linux, and Windows for the // installed versions of C++ we tried). Using a struct permits C-style // "initialization". Also, the Register objects cannot be const as this // forces initialization stubs in MSVC, making us dependent on initialization // order. // // 3) By not using an enum, we are possibly preventing the compiler from // doing certain constant folds, which may significantly reduce the // code generated for some assembly instructions (because they boil down // to a few constants). If this is a problem, we could change the code // such that we use an enum in optimized mode, and the struct in debug // mode. This way we get the compile-time error checking in debug mode // and best performance in optimized code. // struct Register { enum Code { #define REGISTER_CODE(R) kCode_##R, GENERAL_REGISTERS(REGISTER_CODE) #undef REGISTER_CODE kAfterLast, kCode_no_reg = -1 }; static const int kNumRegisters = Code::kAfterLast; static Register from_code(int code) { DCHECK(code >= 0); DCHECK(code < kNumRegisters); Register r = {code}; return r; } bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } bool is(Register reg) const { return reg_code == reg.reg_code; } int code() const { DCHECK(is_valid()); return reg_code; } int bit() const { DCHECK(is_valid()); return 1 << reg_code; } bool is_byte_register() const { return reg_code <= 3; } // Return the high bit of the register code as a 0 or 1. Used often // when constructing the REX prefix byte. int high_bit() const { return reg_code >> 3; } // Return the 3 low bits of the register code. Used when encoding registers // in modR/M, SIB, and opcode bytes. int low_bits() const { return reg_code & 0x7; } // Unfortunately we can't make this private in a struct when initializing // by assignment. int reg_code; }; #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; GENERAL_REGISTERS(DECLARE_REGISTER) #undef DECLARE_REGISTER const Register no_reg = {Register::kCode_no_reg}; #ifdef _WIN64 // Windows calling convention const Register arg_reg_1 = {Register::kCode_rcx}; const Register arg_reg_2 = {Register::kCode_rdx}; const Register arg_reg_3 = {Register::kCode_r8}; const Register arg_reg_4 = {Register::kCode_r9}; #else // AMD64 calling convention const Register arg_reg_1 = {Register::kCode_rdi}; const Register arg_reg_2 = {Register::kCode_rsi}; const Register arg_reg_3 = {Register::kCode_rdx}; const Register arg_reg_4 = {Register::kCode_rcx}; #endif // _WIN64 #define DOUBLE_REGISTERS(V) \ V(xmm0) \ V(xmm1) \ V(xmm2) \ V(xmm3) \ V(xmm4) \ V(xmm5) \ V(xmm6) \ V(xmm7) \ V(xmm8) \ V(xmm9) \ V(xmm10) \ V(xmm11) \ V(xmm12) \ V(xmm13) \ V(xmm14) \ V(xmm15) #define FLOAT_REGISTERS DOUBLE_REGISTERS #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ V(xmm0) \ V(xmm1) \ V(xmm2) \ V(xmm3) \ V(xmm4) \ V(xmm5) \ V(xmm6) \ V(xmm7) \ V(xmm8) \ V(xmm9) \ V(xmm10) \ V(xmm11) \ V(xmm12) \ V(xmm13) \ V(xmm14) static const bool kSimpleFPAliasing = true; struct XMMRegister { enum Code { #define REGISTER_CODE(R) kCode_##R, DOUBLE_REGISTERS(REGISTER_CODE) #undef REGISTER_CODE kAfterLast, kCode_no_reg = -1 }; static const int kMaxNumRegisters = Code::kAfterLast; static XMMRegister from_code(int code) { XMMRegister result = {code}; return result; } bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; } bool is(XMMRegister reg) const { return reg_code == reg.reg_code; } int code() const { DCHECK(is_valid()); return reg_code; } // Return the high bit of the register code as a 0 or 1. Used often // when constructing the REX prefix byte. int high_bit() const { return reg_code >> 3; } // Return the 3 low bits of the register code. Used when encoding registers // in modR/M, SIB, and opcode bytes. int low_bits() const { return reg_code & 0x7; } // Unfortunately we can't make this private in a struct when initializing // by assignment. int reg_code; }; typedef XMMRegister FloatRegister; typedef XMMRegister DoubleRegister; typedef XMMRegister Simd128Register; #define DECLARE_REGISTER(R) \ const DoubleRegister R = {DoubleRegister::kCode_##R}; DOUBLE_REGISTERS(DECLARE_REGISTER) #undef DECLARE_REGISTER const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg}; enum Condition { // any value < 0 is considered no_condition no_condition = -1, overflow = 0, no_overflow = 1, below = 2, above_equal = 3, equal = 4, not_equal = 5, below_equal = 6, above = 7, negative = 8, positive = 9, parity_even = 10, parity_odd = 11, less = 12, greater_equal = 13, less_equal = 14, greater = 15, // Fake conditions that are handled by the // opcodes using them. always = 16, never = 17, // aliases carry = below, not_carry = above_equal, zero = equal, not_zero = not_equal, sign = negative, not_sign = positive, last_condition = greater }; // Returns the equivalent of !cc. // Negation of the default no_condition (-1) results in a non-default // no_condition value (-2). As long as tests for no_condition check // for condition < 0, this will work as expected. inline Condition NegateCondition(Condition cc) { return static_cast<Condition>(cc ^ 1); } // Commute a condition such that {a cond b == b cond' a}. inline Condition CommuteCondition(Condition cc) { switch (cc) { case below: return above; case above: return below; case above_equal: return below_equal; case below_equal: return above_equal; case less: return greater; case greater: return less; case greater_equal: return less_equal; case less_equal: return greater_equal; default: return cc; } } enum RoundingMode { kRoundToNearest = 0x0, kRoundDown = 0x1, kRoundUp = 0x2, kRoundToZero = 0x3 }; // ----------------------------------------------------------------------------- // Machine instruction Immediates class Immediate BASE_EMBEDDED { public: explicit Immediate(int32_t value) : value_(value) {} explicit Immediate(int32_t value, RelocInfo::Mode rmode) : value_(value), rmode_(rmode) {} explicit Immediate(Smi* value) { DCHECK(SmiValuesAre31Bits()); // Only available for 31-bit SMI. value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value)); } private: int32_t value_; RelocInfo::Mode rmode_ = RelocInfo::NONE32; friend class Assembler; }; // ----------------------------------------------------------------------------- // Machine instruction Operands enum ScaleFactor { times_1 = 0, times_2 = 1, times_4 = 2, times_8 = 3, times_int_size = times_4, times_pointer_size = (kPointerSize == 8) ? times_8 : times_4 }; class Operand BASE_EMBEDDED { public: // [base + disp/r] Operand(Register base, int32_t disp); // [base + index*scale + disp/r] Operand(Register base, Register index, ScaleFactor scale, int32_t disp); // [index*scale + disp/r] Operand(Register index, ScaleFactor scale, int32_t disp); // Offset from existing memory operand. // Offset is added to existing displacement as 32-bit signed values and // this must not overflow. Operand(const Operand& base, int32_t offset); // [rip + disp/r] explicit Operand(Label* label); // Checks whether either base or index register is the given register. // Does not check the "reg" part of the Operand. bool AddressUsesRegister(Register reg) const; // Queries related to the size of the generated instruction. // Whether the generated instruction will have a REX prefix. bool requires_rex() const { return rex_ != 0; } // Size of the ModR/M, SIB and displacement parts of the generated // instruction. int operand_size() const { return len_; } private: byte rex_; byte buf_[9]; // The number of bytes of buf_ in use. byte len_; // Set the ModR/M byte without an encoded 'reg' register. The // register is encoded later as part of the emit_operand operation. // set_modrm can be called before or after set_sib and set_disp*. inline void set_modrm(int mod, Register rm); // Set the SIB byte if one is needed. Sets the length to 2 rather than 1. inline void set_sib(ScaleFactor scale, Register index, Register base); // Adds operand displacement fields (offsets added to the memory address). // Needs to be called after set_sib, not before it. inline void set_disp8(int disp); inline void set_disp32(int disp); inline void set_disp64(int64_t disp); // for labels. friend class Assembler; }; #define ASSEMBLER_INSTRUCTION_LIST(V) \ V(add) \ V(and) \ V(cmp) \ V(cmpxchg) \ V(dec) \ V(idiv) \ V(div) \ V(imul) \ V(inc) \ V(lea) \ V(mov) \ V(movzxb) \ V(movzxw) \ V(neg) \ V(not) \ V(or) \ V(repmovs) \ V(sbb) \ V(sub) \ V(test) \ V(xchg) \ V(xor) // Shift instructions on operands/registers with kPointerSize, kInt32Size and // kInt64Size. #define SHIFT_INSTRUCTION_LIST(V) \ V(rol, 0x0) \ V(ror, 0x1) \ V(rcl, 0x2) \ V(rcr, 0x3) \ V(shl, 0x4) \ V(shr, 0x5) \ V(sar, 0x7) \ class Assembler : public AssemblerBase { private: // We check before assembling an instruction that there is sufficient // space to write an instruction and its relocation information. // The relocation writer's position must be kGap bytes above the end of // the generated instructions. This leaves enough space for the // longest possible x64 instruction, 15 bytes, and the longest possible // relocation information encoding, RelocInfoWriter::kMaxLength == 16. // (There is a 15 byte limit on x64 instruction length that rules out some // otherwise valid instructions.) // This allows for a single, fast space check per instruction. static const int kGap = 32; public: // Create an assembler. Instructions and relocation information are emitted // into a buffer, with the instructions starting from the beginning and the // relocation information starting from the end of the buffer. See CodeDesc // for a detailed comment on the layout (globals.h). // // If the provided buffer is NULL, the assembler allocates and grows its own // buffer, and buffer_size determines the initial buffer size. The buffer is // owned by the assembler and deallocated upon destruction of the assembler. // // If the provided buffer is not NULL, the assembler uses the provided buffer // for code generation and assumes its size to be buffer_size. If the buffer // is too small, a fatal error occurs. No deallocation of the buffer is done // upon destruction of the assembler. Assembler(Isolate* isolate, void* buffer, int buffer_size); virtual ~Assembler() { } // GetCode emits any pending (non-emitted) code and fills the descriptor // desc. GetCode() is idempotent; it returns the same result if no other // Assembler functions are invoked in between GetCode() calls. void GetCode(CodeDesc* desc); // Read/Modify the code target in the relative branch/call instruction at pc. // On the x64 architecture, we use relative jumps with a 32-bit displacement // to jump to other Code objects in the Code space in the heap. // Jumps to C functions are done indirectly through a 64-bit register holding // the absolute address of the target. // These functions convert between absolute Addresses of Code objects and // the relative displacements stored in the code. static inline Address target_address_at(Address pc, Address constant_pool); static inline void set_target_address_at( Isolate* isolate, Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); static inline Address target_address_at(Address pc, Code* code) { Address constant_pool = code ? code->constant_pool() : NULL; return target_address_at(pc, constant_pool); } static inline void set_target_address_at( Isolate* isolate, Address pc, Code* code, Address target, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) { Address constant_pool = code ? code->constant_pool() : NULL; set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode); } // Return the code target address at a call site from the return address // of that call in the instruction stream. static inline Address target_address_from_return_address(Address pc); // This sets the branch destination (which is in the instruction on x64). // This is for calls and branches within generated code. inline static void deserialization_set_special_target_at( Isolate* isolate, Address instruction_payload, Code* code, Address target) { set_target_address_at(isolate, instruction_payload, code, target); } // This sets the internal reference at the pc. inline static void deserialization_set_target_internal_reference_at( Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); static inline RelocInfo::Mode RelocInfoNone() { if (kPointerSize == kInt64Size) { return RelocInfo::NONE64; } else { DCHECK(kPointerSize == kInt32Size); return RelocInfo::NONE32; } } inline Handle<Object> code_target_object_handle_at(Address pc); inline Address runtime_entry_at(Address pc); // Number of bytes taken up by the branch target in the code. static const int kSpecialTargetSize = 4; // Use 32-bit displacement. // Distance between the address of the code target in the call instruction // and the return address pushed on the stack. static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement. // The length of call(kScratchRegister). static const int kCallScratchRegisterInstructionLength = 3; // The length of call(Immediate32). static const int kShortCallInstructionLength = 5; // The length of movq(kScratchRegister, address). static const int kMoveAddressIntoScratchRegisterInstructionLength = 2 + kPointerSize; // The length of movq(kScratchRegister, address) and call(kScratchRegister). static const int kCallSequenceLength = kMoveAddressIntoScratchRegisterInstructionLength + kCallScratchRegisterInstructionLength; // The debug break slot must be able to contain an indirect call sequence. static const int kDebugBreakSlotLength = kCallSequenceLength; // Distance between start of patched debug break slot and the emitted address // to jump to. static const int kPatchDebugBreakSlotAddressOffset = kMoveAddressIntoScratchRegisterInstructionLength - kPointerSize; // One byte opcode for test eax,0xXXXXXXXX. static const byte kTestEaxByte = 0xA9; // One byte opcode for test al, 0xXX. static const byte kTestAlByte = 0xA8; // One byte opcode for nop. static const byte kNopByte = 0x90; // One byte prefix for a short conditional jump. static const byte kJccShortPrefix = 0x70; static const byte kJncShortOpcode = kJccShortPrefix | not_carry; static const byte kJcShortOpcode = kJccShortPrefix | carry; static const byte kJnzShortOpcode = kJccShortPrefix | not_zero; static const byte kJzShortOpcode = kJccShortPrefix | zero; // VEX prefix encodings. enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 }; enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 }; enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 }; enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 }; // --------------------------------------------------------------------------- // Code generation // // Function names correspond one-to-one to x64 instruction mnemonics. // Unless specified otherwise, instructions operate on 64-bit operands. // // If we need versions of an assembly instruction that operate on different // width arguments, we add a single-letter suffix specifying the width. // This is done for the following instructions: mov, cmp, inc, dec, // add, sub, and test. // There are no versions of these instructions without the suffix. // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'. // - Instructions on 16-bit (word) operands/registers have a trailing 'w'. // - Instructions on 32-bit (doubleword) operands/registers use 'l'. // - Instructions on 64-bit (quadword) operands/registers use 'q'. // - Instructions on operands/registers with pointer size use 'p'. STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size); #define DECLARE_INSTRUCTION(instruction) \ template<class P1> \ void instruction##p(P1 p1) { \ emit_##instruction(p1, kPointerSize); \ } \ \ template<class P1> \ void instruction##l(P1 p1) { \ emit_##instruction(p1, kInt32Size); \ } \ \ template<class P1> \ void instruction##q(P1 p1) { \ emit_##instruction(p1, kInt64Size); \ } \ \ template<class P1, class P2> \ void instruction##p(P1 p1, P2 p2) { \ emit_##instruction(p1, p2, kPointerSize); \ } \ \ template<class P1, class P2> \ void instruction##l(P1 p1, P2 p2) { \ emit_##instruction(p1, p2, kInt32Size); \ } \ \ template<class P1, class P2> \ void instruction##q(P1 p1, P2 p2) { \ emit_##instruction(p1, p2, kInt64Size); \ } \ \ template<class P1, class P2, class P3> \ void instruction##p(P1 p1, P2 p2, P3 p3) { \ emit_##instruction(p1, p2, p3, kPointerSize); \ } \ \ template<class P1, class P2, class P3> \ void instruction##l(P1 p1, P2 p2, P3 p3) { \ emit_##instruction(p1, p2, p3, kInt32Size); \ } \ \ template<class P1, class P2, class P3> \ void instruction##q(P1 p1, P2 p2, P3 p3) { \ emit_##instruction(p1, p2, p3, kInt64Size); \ } ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION) #undef DECLARE_INSTRUCTION // Insert the smallest number of nop instructions // possible to align the pc offset to a multiple // of m, where m must be a power of 2. void Align(int m); // Insert the smallest number of zero bytes possible to align the pc offset // to a mulitple of m. m must be a power of 2 (>= 2). void DataAlign(int m); void Nop(int bytes = 1); // Aligns code to something that's optimal for a jump target for the platform. void CodeTargetAlign(); // Stack void pushfq(); void popfq(); void pushq(Immediate value); // Push a 32 bit integer, and guarantee that it is actually pushed as a // 32 bit value, the normal push will optimize the 8 bit case. void pushq_imm32(int32_t imm32); void pushq(Register src); void pushq(const Operand& src); void popq(Register dst); void popq(const Operand& dst); void enter(Immediate size); void leave(); // Moves void movb(Register dst, const Operand& src); void movb(Register dst, Immediate imm); void movb(const Operand& dst, Register src); void movb(const Operand& dst, Immediate imm); // Move the low 16 bits of a 64-bit register value to a 16-bit // memory location. void movw(Register dst, const Operand& src); void movw(const Operand& dst, Register src); void movw(const Operand& dst, Immediate imm); // Move the offset of the label location relative to the current // position (after the move) to the destination. void movl(const Operand& dst, Label* src); // Loads a pointer into a register with a relocation mode. void movp(Register dst, void* ptr, RelocInfo::Mode rmode); // Loads a 64-bit immediate into a register. void movq(Register dst, int64_t value, RelocInfo::Mode rmode = RelocInfo::NONE64); void movq(Register dst, uint64_t value, RelocInfo::Mode rmode = RelocInfo::NONE64); void movsxbl(Register dst, Register src); void movsxbl(Register dst, const Operand& src); void movsxbq(Register dst, const Operand& src); void movsxwl(Register dst, Register src); void movsxwl(Register dst, const Operand& src); void movsxwq(Register dst, const Operand& src); void movsxlq(Register dst, Register src); void movsxlq(Register dst, const Operand& src); // Repeated moves. void repmovsb(); void repmovsw(); void repmovsp() { emit_repmovs(kPointerSize); } void repmovsl() { emit_repmovs(kInt32Size); } void repmovsq() { emit_repmovs(kInt64Size); } // Instruction to load from an immediate 64-bit pointer into RAX. void load_rax(void* ptr, RelocInfo::Mode rmode); void load_rax(ExternalReference ext); // Conditional moves. void cmovq(Condition cc, Register dst, Register src); void cmovq(Condition cc, Register dst, const Operand& src); void cmovl(Condition cc, Register dst, Register src); void cmovl(Condition cc, Register dst, const Operand& src); void cmpb(Register dst, Immediate src) { immediate_arithmetic_op_8(0x7, dst, src); } void cmpb_al(Immediate src); void cmpb(Register dst, Register src) { arithmetic_op_8(0x3A, dst, src); } void cmpb(Register dst, const Operand& src) { arithmetic_op_8(0x3A, dst, src); } void cmpb(const Operand& dst, Register src) { arithmetic_op_8(0x38, src, dst); } void cmpb(const Operand& dst, Immediate src) { immediate_arithmetic_op_8(0x7, dst, src); } void cmpw(const Operand& dst, Immediate src) { immediate_arithmetic_op_16(0x7, dst, src); } void cmpw(Register dst, Immediate src) { immediate_arithmetic_op_16(0x7, dst, src); } void cmpw(Register dst, const Operand& src) { arithmetic_op_16(0x3B, dst, src); } void cmpw(Register dst, Register src) { arithmetic_op_16(0x3B, dst, src); } void cmpw(const Operand& dst, Register src) { arithmetic_op_16(0x39, src, dst); } void testb(Register reg, const Operand& op) { testb(op, reg); } void testw(Register reg, const Operand& op) { testw(op, reg); } void andb(Register dst, Immediate src) { immediate_arithmetic_op_8(0x4, dst, src); } void decb(Register dst); void decb(const Operand& dst); // Lock prefix. void lock(); void xchgb(Register reg, const Operand& op); void xchgw(Register reg, const Operand& op); void cmpxchgb(const Operand& dst, Register src); void cmpxchgw(const Operand& dst, Register src); // Sign-extends rax into rdx:rax. void cqo(); // Sign-extends eax into edx:eax. void cdq(); // Multiply eax by src, put the result in edx:eax. void mull(Register src); void mull(const Operand& src); // Multiply rax by src, put the result in rdx:rax. void mulq(Register src); #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode) \ void instruction##p(Register dst, Immediate imm8) { \ shift(dst, imm8, subcode, kPointerSize); \ } \ \ void instruction##l(Register dst, Immediate imm8) { \ shift(dst, imm8, subcode, kInt32Size); \ } \ \ void instruction##q(Register dst, Immediate imm8) { \ shift(dst, imm8, subcode, kInt64Size); \ } \ \ void instruction##p(Operand dst, Immediate imm8) { \ shift(dst, imm8, subcode, kPointerSize); \ } \ \ void instruction##l(Operand dst, Immediate imm8) { \ shift(dst, imm8, subcode, kInt32Size); \ } \ \ void instruction##q(Operand dst, Immediate imm8) { \ shift(dst, imm8, subcode, kInt64Size); \ } \ \ void instruction##p_cl(Register dst) { shift(dst, subcode, kPointerSize); } \ \ void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); } \ \ void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); } \ \ void instruction##p_cl(Operand dst) { shift(dst, subcode, kPointerSize); } \ \ void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); } \ \ void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); } SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION) #undef DECLARE_SHIFT_INSTRUCTION // Shifts dst:src left by cl bits, affecting only dst. void shld(Register dst, Register src); // Shifts src:dst right by cl bits, affecting only dst. void shrd(Register dst, Register src); void store_rax(void* dst, RelocInfo::Mode mode); void store_rax(ExternalReference ref); void subb(Register dst, Immediate src) { immediate_arithmetic_op_8(0x5, dst, src); } void testb(Register dst, Register src); void testb(Register reg, Immediate mask); void testb(const Operand& op, Immediate mask); void testb(const Operand& op, Register reg); void testw(Register dst, Register src); void testw(Register reg, Immediate mask); void testw(const Operand& op, Immediate mask); void testw(const Operand& op, Register reg); // Bit operations. void bt(const Operand& dst, Register src); void bts(const Operand& dst, Register src); void bsrq(Register dst, Register src); void bsrq(Register dst, const Operand& src); void bsrl(Register dst, Register src); void bsrl(Register dst, const Operand& src); void bsfq(Register dst, Register src); void bsfq(Register dst, const Operand& src); void bsfl(Register dst, Register src); void bsfl(Register dst, const Operand& src); // Miscellaneous void clc(); void cld(); void cpuid(); void hlt(); void int3(); void nop(); void ret(int imm16); void ud2(); void setcc(Condition cc, Register reg); // Label operations & relative jumps (PPUM Appendix D) // // Takes a branch opcode (cc) and a label (L) and generates // either a backward branch or a forward branch and links it // to the label fixup chain. Usage: // // Label L; // unbound label // j(cc, &L); // forward branch to unbound label // bind(&L); // bind label to the current pc // j(cc, &L); // backward branch to bound label // bind(&L); // illegal: a label may be bound only once // // Note: The same Label can be used for forward and backward branches // but it may be bound only once. void bind(Label* L); // binds an unbound label L to the current code position // Calls // Call near relative 32-bit displacement, relative to next instruction. void call(Label* L); void call(Address entry, RelocInfo::Mode rmode); void call(Handle<Code> target, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, TypeFeedbackId ast_id = TypeFeedbackId::None()); // Calls directly to the given address using a relative offset. // Should only ever be used in Code objects for calls within the // same Code object. Should not be used when generating new code (use labels), // but only when patching existing code. void call(Address target); // Call near absolute indirect, address in register void call(Register adr); // Jumps // Jump short or near relative. // Use a 32-bit signed displacement. // Unconditional jump to L void jmp(Label* L, Label::Distance distance = Label::kFar); void jmp(Address entry, RelocInfo::Mode rmode); void jmp(Handle<Code> target, RelocInfo::Mode rmode); // Jump near absolute indirect (r64) void jmp(Register adr); void jmp(const Operand& src); // Conditional jumps void j(Condition cc, Label* L, Label::Distance distance = Label::kFar); void j(Condition cc, Address entry, RelocInfo::Mode rmode); void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode); // Floating-point operations void fld(int i); void fld1(); void fldz(); void fldpi(); void fldln2(); void fld_s(const Operand& adr); void fld_d(const Operand& adr); void fstp_s(const Operand& adr); void fstp_d(const Operand& adr); void fstp(int index); void fild_s(const Operand& adr); void fild_d(const Operand& adr); void fist_s(const Operand& adr); void fistp_s(const Operand& adr); void fistp_d(const Operand& adr); void fisttp_s(const Operand& adr); void fisttp_d(const Operand& adr); void fabs(); void fchs(); void fadd(int i); void fsub(int i); void fmul(int i); void fdiv(int i); void fisub_s(const Operand& adr); void faddp(int i = 1); void fsubp(int i = 1); void fsubrp(int i = 1); void fmulp(int i = 1); void fdivp(int i = 1); void fprem(); void fprem1(); void fxch(int i = 1); void fincstp(); void ffree(int i = 0); void ftst(); void fucomp(int i); void fucompp(); void fucomi(int i); void fucomip(); void fcompp(); void fnstsw_ax(); void fwait(); void fnclex(); void fsin(); void fcos(); void fptan(); void fyl2x(); void f2xm1(); void fscale(); void fninit(); void frndint(); void sahf(); // SSE instructions void addss(XMMRegister dst, XMMRegister src); void addss(XMMRegister dst, const Operand& src); void subss(XMMRegister dst, XMMRegister src); void subss(XMMRegister dst, const Operand& src); void mulss(XMMRegister dst, XMMRegister src); void mulss(XMMRegister dst, const Operand& src); void divss(XMMRegister dst, XMMRegister src); void divss(XMMRegister dst, const Operand& src); void maxss(XMMRegister dst, XMMRegister src); void maxss(XMMRegister dst, const Operand& src); void minss(XMMRegister dst, XMMRegister src); void minss(XMMRegister dst, const Operand& src); void sqrtss(XMMRegister dst, XMMRegister src); void sqrtss(XMMRegister dst, const Operand& src); void ucomiss(XMMRegister dst, XMMRegister src); void ucomiss(XMMRegister dst, const Operand& src); void movaps(XMMRegister dst, XMMRegister src); // Don't use this unless it's important to keep the // top half of the destination register unchanged. // Use movaps when moving float values and movd for integer // values in xmm registers. void movss(XMMRegister dst, XMMRegister src); void movss(XMMRegister dst, const Operand& src); void movss(const Operand& dst, XMMRegister src); void shufps(XMMRegister dst, XMMRegister src, byte imm8); void cvttss2si(Register dst, const Operand& src); void cvttss2si(Register dst, XMMRegister src); void cvtlsi2ss(XMMRegister dst, const Operand& src); void cvtlsi2ss(XMMRegister dst, Register src); void andps(XMMRegister dst, XMMRegister src); void andps(XMMRegister dst, const Operand& src); void orps(XMMRegister dst, XMMRegister src); void orps(XMMRegister dst, const Operand& src); void xorps(XMMRegister dst, XMMRegister src); void xorps(XMMRegister dst, const Operand& src); void addps(XMMRegister dst, XMMRegister src); void addps(XMMRegister dst, const Operand& src); void subps(XMMRegister dst, XMMRegister src); void subps(XMMRegister dst, const Operand& src); void mulps(XMMRegister dst, XMMRegister src); void mulps(XMMRegister dst, const Operand& src); void divps(XMMRegister dst, XMMRegister src); void divps(XMMRegister dst, const Operand& src); void movmskps(Register dst, XMMRegister src); // SSE2 instructions void movd(XMMRegister dst, Register src); void movd(XMMRegister dst, const Operand& src); void movd(Register dst, XMMRegister src); void movq(XMMRegister dst, Register src); void movq(Register dst, XMMRegister src); void movq(XMMRegister dst, XMMRegister src); // Don't use this unless it's important to keep the // top half of the destination register unchanged. // Use movapd when moving double values and movq for integer // values in xmm registers. void movsd(XMMRegister dst, XMMRegister src); void movsd(const Operand& dst, XMMRegister src); void movsd(XMMRegister dst, const Operand& src); void movdqa(const Operand& dst, XMMRegister src); void movdqa(XMMRegister dst, const Operand& src); void movdqu(const Operand& dst, XMMRegister src); void movdqu(XMMRegister dst, const Operand& src); void movapd(XMMRegister dst, XMMRegister src); void psllq(XMMRegister reg, byte imm8); void psrlq(XMMRegister reg, byte imm8); void pslld(XMMRegister reg, byte imm8); void psrld(XMMRegister reg, byte imm8); void cvttsd2si(Register dst, const Operand& src); void cvttsd2si(Register dst, XMMRegister src); void cvttss2siq(Register dst, XMMRegister src); void cvttss2siq(Register dst, const Operand& src); void cvttsd2siq(Register dst, XMMRegister src); void cvttsd2siq(Register dst, const Operand& src); void cvtlsi2sd(XMMRegister dst, const Operand& src); void cvtlsi2sd(XMMRegister dst, Register src); void cvtqsi2ss(XMMRegister dst, const Operand& src); void cvtqsi2ss(XMMRegister dst, Register src); void cvtqsi2sd(XMMRegister dst, const Operand& src); void cvtqsi2sd(XMMRegister dst, Register src); void cvtss2sd(XMMRegister dst, XMMRegister src); void cvtss2sd(XMMRegister dst, const Operand& src); void cvtsd2ss(XMMRegister dst, XMMRegister src); void cvtsd2ss(XMMRegister dst, const Operand& src); void cvtsd2si(Register dst, XMMRegister src); void cvtsd2siq(Register dst, XMMRegister src); void addsd(XMMRegister dst, XMMRegister src); void addsd(XMMRegister dst, const Operand& src); void subsd(XMMRegister dst, XMMRegister src); void subsd(XMMRegister dst, const Operand& src); void mulsd(XMMRegister dst, XMMRegister src); void mulsd(XMMRegister dst, const Operand& src); void divsd(XMMRegister dst, XMMRegister src); void divsd(XMMRegister dst, const Operand& src); void maxsd(XMMRegister dst, XMMRegister src); void maxsd(XMMRegister dst, const Operand& src); void minsd(XMMRegister dst, XMMRegister src); void minsd(XMMRegister dst, const Operand& src); void andpd(XMMRegister dst, XMMRegister src); void orpd(XMMRegister dst, XMMRegister src); void xorpd(XMMRegister dst, XMMRegister src); void sqrtsd(XMMRegister dst, XMMRegister src); void sqrtsd(XMMRegister dst, const Operand& src); void ucomisd(XMMRegister dst, XMMRegister src); void ucomisd(XMMRegister dst, const Operand& src); void cmpltsd(XMMRegister dst, XMMRegister src); void pcmpeqd(XMMRegister dst, XMMRegister src); void movmskpd(Register dst, XMMRegister src); void punpckldq(XMMRegister dst, XMMRegister src); void punpckldq(XMMRegister dst, const Operand& src); void punpckhdq(XMMRegister dst, XMMRegister src); // SSE 4.1 instruction void insertps(XMMRegister dst, XMMRegister src, byte imm8); void extractps(Register dst, XMMRegister src, byte imm8); void pextrd(Register dst, XMMRegister src, int8_t imm8); void pinsrd(XMMRegister dst, Register src, int8_t imm8); void pinsrd(XMMRegister dst, const Operand& src, int8_t imm8); void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode); void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode); void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp); void cmpeqps(XMMRegister dst, XMMRegister src); void cmpltps(XMMRegister dst, XMMRegister src); void cmpleps(XMMRegister dst, XMMRegister src); void cmpneqps(XMMRegister dst, XMMRegister src); void cmpnltps(XMMRegister dst, XMMRegister src); void cmpnleps(XMMRegister dst, XMMRegister src); void minps(XMMRegister dst, XMMRegister src); void minps(XMMRegister dst, const Operand& src); void maxps(XMMRegister dst, XMMRegister src); void maxps(XMMRegister dst, const Operand& src); void rcpps(XMMRegister dst, XMMRegister src); void rcpps(XMMRegister dst, const Operand& src); void rsqrtps(XMMRegister dst, XMMRegister src); void rsqrtps(XMMRegister dst, const Operand& src); void sqrtps(XMMRegister dst, XMMRegister src); void sqrtps(XMMRegister dst, const Operand& src); void movups(XMMRegister dst, XMMRegister src); void movups(XMMRegister dst, const Operand& src); void movups(const Operand& dst, XMMRegister src); void paddd(XMMRegister dst, XMMRegister src); void paddd(XMMRegister dst, const Operand& src); void psubd(XMMRegister dst, XMMRegister src); void psubd(XMMRegister dst, const Operand& src); void pmulld(XMMRegister dst, XMMRegister src); void pmulld(XMMRegister dst, const Operand& src); void pmuludq(XMMRegister dst, XMMRegister src); void pmuludq(XMMRegister dst, const Operand& src); void psrldq(XMMRegister dst, uint8_t shift); void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle); void cvtps2dq(XMMRegister dst, XMMRegister src); void cvtps2dq(XMMRegister dst, const Operand& src); void cvtdq2ps(XMMRegister dst, XMMRegister src); void cvtdq2ps(XMMRegister dst, const Operand& src); // AVX instruction void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0x99, dst, src1, src2); } void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xa9, dst, src1, src2); } void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xb9, dst, src1, src2); } void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0x99, dst, src1, src2); } void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xa9, dst, src1, src2); } void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xb9, dst, src1, src2); } void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0x9b, dst, src1, src2); } void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xab, dst, src1, src2); } void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xbb, dst, src1, src2); } void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0x9b, dst, src1, src2); } void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xab, dst, src1, src2); } void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xbb, dst, src1, src2); } void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0x9d, dst, src1, src2); } void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xad, dst, src1, src2); } void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xbd, dst, src1, src2); } void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0x9d, dst, src1, src2); } void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xad, dst, src1, src2); } void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xbd, dst, src1, src2); } void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0x9f, dst, src1, src2); } void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xaf, dst, src1, src2); } void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmasd(0xbf, dst, src1, src2); } void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0x9f, dst, src1, src2); } void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xaf, dst, src1, src2); } void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmasd(0xbf, dst, src1, src2); } void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2); void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2); void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0x99, dst, src1, src2); } void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xa9, dst, src1, src2); } void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xb9, dst, src1, src2); } void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0x99, dst, src1, src2); } void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xa9, dst, src1, src2); } void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xb9, dst, src1, src2); } void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0x9b, dst, src1, src2); } void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xab, dst, src1, src2); } void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xbb, dst, src1, src2); } void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0x9b, dst, src1, src2); } void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xab, dst, src1, src2); } void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xbb, dst, src1, src2); } void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0x9d, dst, src1, src2); } void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xad, dst, src1, src2); } void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xbd, dst, src1, src2); } void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0x9d, dst, src1, src2); } void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xad, dst, src1, src2); } void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xbd, dst, src1, src2); } void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0x9f, dst, src1, src2); } void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xaf, dst, src1, src2); } void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vfmass(0xbf, dst, src1, src2); } void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0x9f, dst, src1, src2); } void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xaf, dst, src1, src2); } void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vfmass(0xbf, dst, src1, src2); } void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2); void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2); void vmovd(XMMRegister dst, Register src); void vmovd(XMMRegister dst, const Operand& src); void vmovd(Register dst, XMMRegister src); void vmovq(XMMRegister dst, Register src); void vmovq(XMMRegister dst, const Operand& src); void vmovq(Register dst, XMMRegister src); void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vsd(0x10, dst, src1, src2); } void vmovsd(XMMRegister dst, const Operand& src) { vsd(0x10, dst, xmm0, src); } void vmovsd(const Operand& dst, XMMRegister src) { vsd(0x11, src, xmm0, dst); } #define AVX_SP_3(instr, opcode) \ AVX_S_3(instr, opcode) \ AVX_P_3(instr, opcode) #define AVX_S_3(instr, opcode) \ AVX_3(instr##ss, opcode, vss) \ AVX_3(instr##sd, opcode, vsd) #define AVX_P_3(instr, opcode) \ AVX_3(instr##ps, opcode, vps) \ AVX_3(instr##pd, opcode, vpd) #define AVX_3(instr, opcode, impl) \ void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \ impl(opcode, dst, src1, src2); \ } \ void instr(XMMRegister dst, XMMRegister src1, const Operand& src2) { \ impl(opcode, dst, src1, src2); \ } AVX_SP_3(vsqrt, 0x51); AVX_SP_3(vadd, 0x58); AVX_SP_3(vsub, 0x5c); AVX_SP_3(vmul, 0x59); AVX_SP_3(vdiv, 0x5e); AVX_SP_3(vmin, 0x5d); AVX_SP_3(vmax, 0x5f); AVX_P_3(vand, 0x54); AVX_P_3(vor, 0x56); AVX_P_3(vxor, 0x57); AVX_3(vpcmpeqd, 0x76, vpd); AVX_3(vcvtsd2ss, 0x5a, vsd); #undef AVX_3 #undef AVX_S_3 #undef AVX_P_3 #undef AVX_SP_3 void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) { XMMRegister iop = {2}; vpd(0x73, iop, dst, src); emit(imm8); } void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) { XMMRegister iop = {6}; vpd(0x73, iop, dst, src); emit(imm8); } void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vsd(0x5a, dst, src1, src2, kF3, k0F, kWIG); } void vcvtss2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vsd(0x5a, dst, src1, src2, kF3, k0F, kWIG); } void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) { XMMRegister isrc2 = {src2.code()}; vsd(0x2a, dst, src1, isrc2, kF2, k0F, kW0); } void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vsd(0x2a, dst, src1, src2, kF2, k0F, kW0); } void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) { XMMRegister isrc2 = {src2.code()}; vsd(0x2a, dst, src1, isrc2, kF3, k0F, kW0); } void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vsd(0x2a, dst, src1, src2, kF3, k0F, kW0); } void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) { XMMRegister isrc2 = {src2.code()}; vsd(0x2a, dst, src1, isrc2, kF3, k0F, kW1); } void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) { vsd(0x2a, dst, src1, src2, kF3, k0F, kW1); } void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) { XMMRegister isrc2 = {src2.code()}; vsd(0x2a, dst, src1, isrc2, kF2, k0F, kW1); } void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) { vsd(0x2a, dst, src1, src2, kF2, k0F, kW1); } void vcvttss2si(Register dst, XMMRegister src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF3, k0F, kW0); } void vcvttss2si(Register dst, const Operand& src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF3, k0F, kW0); } void vcvttsd2si(Register dst, XMMRegister src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF2, k0F, kW0); } void vcvttsd2si(Register dst, const Operand& src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF2, k0F, kW0); } void vcvttss2siq(Register dst, XMMRegister src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF3, k0F, kW1); } void vcvttss2siq(Register dst, const Operand& src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF3, k0F, kW1); } void vcvttsd2siq(Register dst, XMMRegister src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF2, k0F, kW1); } void vcvttsd2siq(Register dst, const Operand& src) { XMMRegister idst = {dst.code()}; vsd(0x2c, idst, xmm0, src, kF2, k0F, kW1); } void vcvtsd2si(Register dst, XMMRegister src) { XMMRegister idst = {dst.code()}; vsd(0x2d, idst, xmm0, src, kF2, k0F, kW0); } void vucomisd(XMMRegister dst, XMMRegister src) { vsd(0x2e, dst, xmm0, src, k66, k0F, kWIG); } void vucomisd(XMMRegister dst, const Operand& src) { vsd(0x2e, dst, xmm0, src, k66, k0F, kWIG); } void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2, RoundingMode mode) { vsd(0x0a, dst, src1, src2, k66, k0F3A, kWIG); emit(static_cast<byte>(mode) | 0x8); // Mask precision exception. } void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2, RoundingMode mode) { vsd(0x0b, dst, src1, src2, k66, k0F3A, kWIG); emit(static_cast<byte>(mode) | 0x8); // Mask precision exception. } void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) { vsd(op, dst, src1, src2, kF2, k0F, kWIG); } void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2) { vsd(op, dst, src1, src2, kF2, k0F, kWIG); } void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2, SIMDPrefix pp, LeadingOpcode m, VexW w); void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2, SIMDPrefix pp, LeadingOpcode m, VexW w); void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) { vss(0x10, dst, src1, src2); } void vmovss(XMMRegister dst, const Operand& src) { vss(0x10, dst, xmm0, src); } void vmovss(const Operand& dst, XMMRegister src) { vss(0x11, src, xmm0, dst); } void vucomiss(XMMRegister dst, XMMRegister src); void vucomiss(XMMRegister dst, const Operand& src); void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2); void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2); void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); } void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); } void vmovmskpd(Register dst, XMMRegister src) { XMMRegister idst = {dst.code()}; vpd(0x50, idst, xmm0, src); } void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2); void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2); void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2); void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2); // BMI instruction void andnq(Register dst, Register src1, Register src2) { bmi1q(0xf2, dst, src1, src2); } void andnq(Register dst, Register src1, const Operand& src2) { bmi1q(0xf2, dst, src1, src2); } void andnl(Register dst, Register src1, Register src2) { bmi1l(0xf2, dst, src1, src2); } void andnl(Register dst, Register src1, const Operand& src2) { bmi1l(0xf2, dst, src1, src2); } void bextrq(Register dst, Register src1, Register src2) { bmi1q(0xf7, dst, src2, src1); } void bextrq(Register dst, const Operand& src1, Register src2) { bmi1q(0xf7, dst, src2, src1); } void bextrl(Register dst, Register src1, Register src2) { bmi1l(0xf7, dst, src2, src1); } void bextrl(Register dst, const Operand& src1, Register src2) { bmi1l(0xf7, dst, src2, src1); } void blsiq(Register dst, Register src) { Register ireg = {3}; bmi1q(0xf3, ireg, dst, src); } void blsiq(Register dst, const Operand& src) { Register ireg = {3}; bmi1q(0xf3, ireg, dst, src); } void blsil(Register dst, Register src) { Register ireg = {3}; bmi1l(0xf3, ireg, dst, src); } void blsil(Register dst, const Operand& src) { Register ireg = {3}; bmi1l(0xf3, ireg, dst, src); } void blsmskq(Register dst, Register src) { Register ireg = {2}; bmi1q(0xf3, ireg, dst, src); } void blsmskq(Register dst, const Operand& src) { Register ireg = {2}; bmi1q(0xf3, ireg, dst, src); } void blsmskl(Register dst, Register src) { Register ireg = {2}; bmi1l(0xf3, ireg, dst, src); } void blsmskl(Register dst, const Operand& src) { Register ireg = {2}; bmi1l(0xf3, ireg, dst, src); } void blsrq(Register dst, Register src) { Register ireg = {1}; bmi1q(0xf3, ireg, dst, src); } void blsrq(Register dst, const Operand& src) { Register ireg = {1}; bmi1q(0xf3, ireg, dst, src); } void blsrl(Register dst, Register src) { Register ireg = {1}; bmi1l(0xf3, ireg, dst, src); } void blsrl(Register dst, const Operand& src) { Register ireg = {1}; bmi1l(0xf3, ireg, dst, src); } void tzcntq(Register dst, Register src); void tzcntq(Register dst, const Operand& src); void tzcntl(Register dst, Register src); void tzcntl(Register dst, const Operand& src); void lzcntq(Register dst, Register src); void lzcntq(Register dst, const Operand& src); void lzcntl(Register dst, Register src); void lzcntl(Register dst, const Operand& src); void popcntq(Register dst, Register src); void popcntq(Register dst, const Operand& src); void popcntl(Register dst, Register src); void popcntl(Register dst, const Operand& src); void bzhiq(Register dst, Register src1, Register src2) { bmi2q(kNone, 0xf5, dst, src2, src1); } void bzhiq(Register dst, const Operand& src1, Register src2) { bmi2q(kNone, 0xf5, dst, src2, src1); } void bzhil(Register dst, Register src1, Register src2) { bmi2l(kNone, 0xf5, dst, src2, src1); } void bzhil(Register dst, const Operand& src1, Register src2) { bmi2l(kNone, 0xf5, dst, src2, src1); } void mulxq(Register dst1, Register dst2, Register src) { bmi2q(kF2, 0xf6, dst1, dst2, src); } void mulxq(Register dst1, Register dst2, const Operand& src) { bmi2q(kF2, 0xf6, dst1, dst2, src); } void mulxl(Register dst1, Register dst2, Register src) { bmi2l(kF2, 0xf6, dst1, dst2, src); } void mulxl(Register dst1, Register dst2, const Operand& src) { bmi2l(kF2, 0xf6, dst1, dst2, src); } void pdepq(Register dst, Register src1, Register src2) { bmi2q(kF2, 0xf5, dst, src1, src2); } void pdepq(Register dst, Register src1, const Operand& src2) { bmi2q(kF2, 0xf5, dst, src1, src2); } void pdepl(Register dst, Register src1, Register src2) { bmi2l(kF2, 0xf5, dst, src1, src2); } void pdepl(Register dst, Register src1, const Operand& src2) { bmi2l(kF2, 0xf5, dst, src1, src2); } void pextq(Register dst, Register src1, Register src2) { bmi2q(kF3, 0xf5, dst, src1, src2); } void pextq(Register dst, Register src1, const Operand& src2) { bmi2q(kF3, 0xf5, dst, src1, src2); } void pextl(Register dst, Register src1, Register src2) { bmi2l(kF3, 0xf5, dst, src1, src2); } void pextl(Register dst, Register src1, const Operand& src2) { bmi2l(kF3, 0xf5, dst, src1, src2); } void sarxq(Register dst, Register src1, Register src2) { bmi2q(kF3, 0xf7, dst, src2, src1); } void sarxq(Register dst, const Operand& src1, Register src2) { bmi2q(kF3, 0xf7, dst, src2, src1); } void sarxl(Register dst, Register src1, Register src2) { bmi2l(kF3, 0xf7, dst, src2, src1); } void sarxl(Register dst, const Operand& src1, Register src2) { bmi2l(kF3, 0xf7, dst, src2, src1); } void shlxq(Register dst, Register src1, Register src2) { bmi2q(k66, 0xf7, dst, src2, src1); } void shlxq(Register dst, const Operand& src1, Register src2) { bmi2q(k66, 0xf7, dst, src2, src1); } void shlxl(Register dst, Register src1, Register src2) { bmi2l(k66, 0xf7, dst, src2, src1); } void shlxl(Register dst, const Operand& src1, Register src2) { bmi2l(k66, 0xf7, dst, src2, src1); } void shrxq(Register dst, Register src1, Register src2) { bmi2q(kF2, 0xf7, dst, src2, src1); } void shrxq(Register dst, const Operand& src1, Register src2) { bmi2q(kF2, 0xf7, dst, src2, src1); } void shrxl(Register dst, Register src1, Register src2) { bmi2l(kF2, 0xf7, dst, src2, src1); } void shrxl(Register dst, const Operand& src1, Register src2) { bmi2l(kF2, 0xf7, dst, src2, src1); } void rorxq(Register dst, Register src, byte imm8); void rorxq(Register dst, const Operand& src, byte imm8); void rorxl(Register dst, Register src, byte imm8); void rorxl(Register dst, const Operand& src, byte imm8); // Check the code size generated from label to here. int SizeOfCodeGeneratedSince(Label* label) { return pc_offset() - label->pos(); } // Mark generator continuation. void RecordGeneratorContinuation(); // Mark address of a debug break slot. void RecordDebugBreakSlot(RelocInfo::Mode mode); // Record a comment relocation entry that can be used by a disassembler. // Use --code-comments to enable. void RecordComment(const char* msg); // Record a deoptimization reason that can be used by a log or cpu profiler. // Use --trace-deopt to enable. void RecordDeoptReason(const int reason, int raw_position, int id); void PatchConstantPoolAccessInstruction(int pc_offset, int offset, ConstantPoolEntry::Access access, ConstantPoolEntry::Type type) { // No embedded constant pool support. UNREACHABLE(); } // Writes a single word of data in the code stream. // Used for inline tables, e.g., jump-tables. void db(uint8_t data); void dd(uint32_t data); void dq(uint64_t data); void dp(uintptr_t data) { dq(data); } void dq(Label* label); AssemblerPositionsRecorder* positions_recorder() { return &positions_recorder_; } // Check if there is less than kGap bytes available in the buffer. // If this is the case, we need to grow the buffer before emitting // an instruction or relocation information. inline bool buffer_overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } // Get the number of bytes available in the buffer. inline int available_space() const { return static_cast<int>(reloc_info_writer.pos() - pc_); } static bool IsNop(Address addr); // Avoid overflows for displacements etc. static const int kMaximalBufferSize = 512*MB; byte byte_at(int pos) { return buffer_[pos]; } void set_byte_at(int pos, byte value) { buffer_[pos] = value; } protected: // Call near indirect void call(const Operand& operand); private: byte* addr_at(int pos) { return buffer_ + pos; } uint32_t long_at(int pos) { return *reinterpret_cast<uint32_t*>(addr_at(pos)); } void long_at_put(int pos, uint32_t x) { *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; } // code emission void GrowBuffer(); void emit(byte x) { *pc_++ = x; } inline void emitl(uint32_t x); inline void emitp(void* x, RelocInfo::Mode rmode); inline void emitq(uint64_t x); inline void emitw(uint16_t x); inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode, TypeFeedbackId ast_id = TypeFeedbackId::None()); inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode); void emit(Immediate x) { if (!RelocInfo::IsNone(x.rmode_)) { RecordRelocInfo(x.rmode_); } emitl(x.value_); } // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of both register codes. // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is set. inline void emit_rex_64(XMMRegister reg, Register rm_reg); inline void emit_rex_64(Register reg, XMMRegister rm_reg); inline void emit_rex_64(Register reg, Register rm_reg); // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of the destination, index, and base register codes. // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is set. inline void emit_rex_64(Register reg, const Operand& op); inline void emit_rex_64(XMMRegister reg, const Operand& op); // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of the register code. // The high bit of register is used for REX.B. // REX.W is set and REX.R and REX.X are clear. inline void emit_rex_64(Register rm_reg); // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of the index and base register codes. // The high bit of op's base register is used for REX.B, and the high // bit of op's index register is used for REX.X. // REX.W is set and REX.R clear. inline void emit_rex_64(const Operand& op); // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size. void emit_rex_64() { emit(0x48); } // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is clear. inline void emit_rex_32(Register reg, Register rm_reg); // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is cleared. inline void emit_rex_32(Register reg, const Operand& op); // High bit of rm_reg goes to REX.B. // REX.W, REX.R and REX.X are clear. inline void emit_rex_32(Register rm_reg); // High bit of base goes to REX.B and high bit of index to REX.X. // REX.W and REX.R are clear. inline void emit_rex_32(const Operand& op); // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is cleared. If no REX bits are set, no byte is emitted. inline void emit_optional_rex_32(Register reg, Register rm_reg); // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing // is emitted. inline void emit_optional_rex_32(Register reg, const Operand& op); // As for emit_optional_rex_32(Register, Register), except that // the registers are XMM registers. inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base); // As for emit_optional_rex_32(Register, Register), except that // one of the registers is an XMM registers. inline void emit_optional_rex_32(XMMRegister reg, Register base); // As for emit_optional_rex_32(Register, Register), except that // one of the registers is an XMM registers. inline void emit_optional_rex_32(Register reg, XMMRegister base); // As for emit_optional_rex_32(Register, const Operand&), except that // the register is an XMM register. inline void emit_optional_rex_32(XMMRegister reg, const Operand& op); // Optionally do as emit_rex_32(Register) if the register number has // the high bit set. inline void emit_optional_rex_32(Register rm_reg); inline void emit_optional_rex_32(XMMRegister rm_reg); // Optionally do as emit_rex_32(const Operand&) if the operand register // numbers have a high bit set. inline void emit_optional_rex_32(const Operand& op); void emit_rex(int size) { if (size == kInt64Size) { emit_rex_64(); } else { DCHECK(size == kInt32Size); } } template<class P1> void emit_rex(P1 p1, int size) { if (size == kInt64Size) { emit_rex_64(p1); } else { DCHECK(size == kInt32Size); emit_optional_rex_32(p1); } } template<class P1, class P2> void emit_rex(P1 p1, P2 p2, int size) { if (size == kInt64Size) { emit_rex_64(p1, p2); } else { DCHECK(size == kInt32Size); emit_optional_rex_32(p1, p2); } } // Emit vex prefix void emit_vex2_byte0() { emit(0xc5); } inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l, SIMDPrefix pp); void emit_vex3_byte0() { emit(0xc4); } inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m); inline void emit_vex3_byte1(XMMRegister reg, const Operand& rm, LeadingOpcode m); inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l, SIMDPrefix pp); inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm, VectorLength l, SIMDPrefix pp, LeadingOpcode m, VexW w); inline void emit_vex_prefix(Register reg, Register v, Register rm, VectorLength l, SIMDPrefix pp, LeadingOpcode m, VexW w); inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, const Operand& rm, VectorLength l, SIMDPrefix pp, LeadingOpcode m, VexW w); inline void emit_vex_prefix(Register reg, Register v, const Operand& rm, VectorLength l, SIMDPrefix pp, LeadingOpcode m, VexW w); // Emit the ModR/M byte, and optionally the SIB byte and // 1- or 4-byte offset for a memory operand. Also encodes // the second operand of the operation, a register or operation // subcode, into the reg field of the ModR/M byte. void emit_operand(Register reg, const Operand& adr) { emit_operand(reg.low_bits(), adr); } // Emit the ModR/M byte, and optionally the SIB byte and // 1- or 4-byte offset for a memory operand. Also used to encode // a three-bit opcode extension into the ModR/M byte. void emit_operand(int rm, const Operand& adr); // Emit a ModR/M byte with registers coded in the reg and rm_reg fields. void emit_modrm(Register reg, Register rm_reg) { emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits()); } // Emit a ModR/M byte with an operation subcode in the reg field and // a register in the rm_reg field. void emit_modrm(int code, Register rm_reg) { DCHECK(is_uint3(code)); emit(0xC0 | code << 3 | rm_reg.low_bits()); } // Emit the code-object-relative offset of the label's position inline void emit_code_relative_offset(Label* label); // The first argument is the reg field, the second argument is the r/m field. void emit_sse_operand(XMMRegister dst, XMMRegister src); void emit_sse_operand(XMMRegister reg, const Operand& adr); void emit_sse_operand(Register reg, const Operand& adr); void emit_sse_operand(XMMRegister dst, Register src); void emit_sse_operand(Register dst, XMMRegister src); void emit_sse_operand(XMMRegister dst); // Emit machine code for one of the operations ADD, ADC, SUB, SBC, // AND, OR, XOR, or CMP. The encodings of these operations are all // similar, differing just in the opcode or in the reg field of the // ModR/M byte. void arithmetic_op_8(byte opcode, Register reg, Register rm_reg); void arithmetic_op_8(byte opcode, Register reg, const Operand& rm_reg); void arithmetic_op_16(byte opcode, Register reg, Register rm_reg); void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg); // Operate on operands/registers with pointer size, 32-bit or 64-bit size. void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size); void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg, int size); // Operate on a byte in memory or register. void immediate_arithmetic_op_8(byte subcode, Register dst, Immediate src); void immediate_arithmetic_op_8(byte subcode, const Operand& dst, Immediate src); // Operate on a word in memory or register. void immediate_arithmetic_op_16(byte subcode, Register dst, Immediate src); void immediate_arithmetic_op_16(byte subcode, const Operand& dst, Immediate src); // Operate on operands/registers with pointer size, 32-bit or 64-bit size. void immediate_arithmetic_op(byte subcode, Register dst, Immediate src, int size); void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src, int size); // Emit machine code for a shift operation. void shift(Operand dst, Immediate shift_amount, int subcode, int size); void shift(Register dst, Immediate shift_amount, int subcode, int size); // Shift dst by cl % 64 bits. void shift(Register dst, int subcode, int size); void shift(Operand dst, int subcode, int size); void emit_farith(int b1, int b2, int i); // labels // void print(Label* L); void bind_to(Label* L, int pos); // record reloc info for current pc_ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); // Arithmetics void emit_add(Register dst, Register src, int size) { arithmetic_op(0x03, dst, src, size); } void emit_add(Register dst, Immediate src, int size) { immediate_arithmetic_op(0x0, dst, src, size); } void emit_add(Register dst, const Operand& src, int size) { arithmetic_op(0x03, dst, src, size); } void emit_add(const Operand& dst, Register src, int size) { arithmetic_op(0x1, src, dst, size); } void emit_add(const Operand& dst, Immediate src, int size) { immediate_arithmetic_op(0x0, dst, src, size); } void emit_and(Register dst, Register src, int size) { arithmetic_op(0x23, dst, src, size); } void emit_and(Register dst, const Operand& src, int size) { arithmetic_op(0x23, dst, src, size); } void emit_and(const Operand& dst, Register src, int size) { arithmetic_op(0x21, src, dst, size); } void emit_and(Register dst, Immediate src, int size) { immediate_arithmetic_op(0x4, dst, src, size); } void emit_and(const Operand& dst, Immediate src, int size) { immediate_arithmetic_op(0x4, dst, src, size); } void emit_cmp(Register dst, Register src, int size) { arithmetic_op(0x3B, dst, src, size); } void emit_cmp(Register dst, const Operand& src, int size) { arithmetic_op(0x3B, dst, src, size); } void emit_cmp(const Operand& dst, Register src, int size) { arithmetic_op(0x39, src, dst, size); } void emit_cmp(Register dst, Immediate src, int size) { immediate_arithmetic_op(0x7, dst, src, size); } void emit_cmp(const Operand& dst, Immediate src, int size) { immediate_arithmetic_op(0x7, dst, src, size); } // Compare {al,ax,eax,rax} with src. If equal, set ZF and write dst into // src. Otherwise clear ZF and write src into {al,ax,eax,rax}. This // operation is only atomic if prefixed by the lock instruction. void emit_cmpxchg(const Operand& dst, Register src, int size); void emit_dec(Register dst, int size); void emit_dec(const Operand& dst, int size); // Divide rdx:rax by src. Quotient in rax, remainder in rdx when size is 64. // Divide edx:eax by lower 32 bits of src. Quotient in eax, remainder in edx // when size is 32. void emit_idiv(Register src, int size); void emit_div(Register src, int size); // Signed multiply instructions. // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32. void emit_imul(Register src, int size); void emit_imul(const Operand& src, int size); void emit_imul(Register dst, Register src, int size); void emit_imul(Register dst, const Operand& src, int size); void emit_imul(Register dst, Register src, Immediate imm, int size); void emit_imul(Register dst, const Operand& src, Immediate imm, int size); void emit_inc(Register dst, int size); void emit_inc(const Operand& dst, int size); void emit_lea(Register dst, const Operand& src, int size); void emit_mov(Register dst, const Operand& src, int size); void emit_mov(Register dst, Register src, int size); void emit_mov(const Operand& dst, Register src, int size); void emit_mov(Register dst, Immediate value, int size); void emit_mov(const Operand& dst, Immediate value, int size); void emit_movzxb(Register dst, const Operand& src, int size); void emit_movzxb(Register dst, Register src, int size); void emit_movzxw(Register dst, const Operand& src, int size); void emit_movzxw(Register dst, Register src, int size); void emit_neg(Register dst, int size); void emit_neg(const Operand& dst, int size); void emit_not(Register dst, int size); void emit_not(const Operand& dst, int size); void emit_or(Register dst, Register src, int size) { arithmetic_op(0x0B, dst, src, size); } void emit_or(Register dst, const Operand& src, int size) { arithmetic_op(0x0B, dst, src, size); } void emit_or(const Operand& dst, Register src, int size) { arithmetic_op(0x9, src, dst, size); } void emit_or(Register dst, Immediate src, int size) { immediate_arithmetic_op(0x1, dst, src, size); } void emit_or(const Operand& dst, Immediate src, int size) { immediate_arithmetic_op(0x1, dst, src, size); } void emit_repmovs(int size); void emit_sbb(Register dst, Register src, int size) { arithmetic_op(0x1b, dst, src, size); } void emit_sub(Register dst, Register src, int size) { arithmetic_op(0x2B, dst, src, size); } void emit_sub(Register dst, Immediate src, int size) { immediate_arithmetic_op(0x5, dst, src, size); } void emit_sub(Register dst, const Operand& src, int size) { arithmetic_op(0x2B, dst, src, size); } void emit_sub(const Operand& dst, Register src, int size) { arithmetic_op(0x29, src, dst, size); } void emit_sub(const Operand& dst, Immediate src, int size) { immediate_arithmetic_op(0x5, dst, src, size); } void emit_test(Register dst, Register src, int size); void emit_test(Register reg, Immediate mask, int size); void emit_test(const Operand& op, Register reg, int size); void emit_test(const Operand& op, Immediate mask, int size); void emit_test(Register reg, const Operand& op, int size) { return emit_test(op, reg, size); } void emit_xchg(Register dst, Register src, int size); void emit_xchg(Register dst, const Operand& src, int size); void emit_xor(Register dst, Register src, int size) { if (size == kInt64Size && dst.code() == src.code()) { // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore // there is no need to make this a 64 bit operation. arithmetic_op(0x33, dst, src, kInt32Size); } else { arithmetic_op(0x33, dst, src, size); } } void emit_xor(Register dst, const Operand& src, int size) { arithmetic_op(0x33, dst, src, size); } void emit_xor(Register dst, Immediate src, int size) { immediate_arithmetic_op(0x6, dst, src, size); } void emit_xor(const Operand& dst, Immediate src, int size) { immediate_arithmetic_op(0x6, dst, src, size); } void emit_xor(const Operand& dst, Register src, int size) { arithmetic_op(0x31, src, dst, size); } // Most BMI instructions are similiar. void bmi1q(byte op, Register reg, Register vreg, Register rm); void bmi1q(byte op, Register reg, Register vreg, const Operand& rm); void bmi1l(byte op, Register reg, Register vreg, Register rm); void bmi1l(byte op, Register reg, Register vreg, const Operand& rm); void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm); void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, const Operand& rm); void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm); void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, const Operand& rm); friend class CodePatcher; friend class EnsureSpace; friend class RegExpMacroAssemblerX64; // code generation RelocInfoWriter reloc_info_writer; // Internal reference positions, required for (potential) patching in // GrowBuffer(); contains only those internal references whose labels // are already bound. std::deque<int> internal_reference_positions_; List< Handle<Code> > code_targets_; AssemblerPositionsRecorder positions_recorder_; friend class AssemblerPositionsRecorder; }; // Helper class that ensures that there is enough space for generating // instructions and relocation information. The constructor makes // sure that there is enough space and (in debug mode) the destructor // checks that we did not generate too much. class EnsureSpace BASE_EMBEDDED { public: explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { if (assembler_->buffer_overflow()) assembler_->GrowBuffer(); #ifdef DEBUG space_before_ = assembler_->available_space(); #endif } #ifdef DEBUG ~EnsureSpace() { int bytes_generated = space_before_ - assembler_->available_space(); DCHECK(bytes_generated < assembler_->kGap); } #endif private: Assembler* assembler_; #ifdef DEBUG int space_before_; #endif }; } // namespace internal } // namespace v8 #endif // V8_X64_ASSEMBLER_X64_H_