/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtc_random /// @file glm/gtc/random.inl /// @date 2011-09-19 / 2012-04-07 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include "../geometric.hpp" #include "../exponential.hpp" #include <cstdlib> #include <ctime> #include <cassert> namespace glm{ namespace detail { struct compute_linearRand { template <typename T> GLM_FUNC_QUALIFIER T operator() (T const & Min, T const & Max) const; /* { GLM_STATIC_ASSERT(0, "'linearRand' invalid template parameter type. GLM_GTC_random only supports floating-point template types."); return Min; } */ }; template <> GLM_FUNC_QUALIFIER float compute_linearRand::operator()<float> (float const & Min, float const & Max) const { return float(std::rand()) / float(RAND_MAX) * (Max - Min) + Min; } template <> GLM_FUNC_QUALIFIER double compute_linearRand::operator()<double> (double const & Min, double const & Max) const { return double(std::rand()) / double(RAND_MAX) * (Max - Min) + Min; } template <> GLM_FUNC_QUALIFIER long double compute_linearRand::operator()<long double> (long double const & Min, long double const & Max) const { return (long double)(std::rand()) / (long double)(RAND_MAX) * (Max - Min) + Min; } }//namespace detail template <typename genType> GLM_FUNC_QUALIFIER genType linearRand ( genType const & Min, genType const & Max ) { return detail::compute_linearRand()(Min, Max); } VECTORIZE_VEC_VEC(linearRand) template <typename genType> GLM_FUNC_QUALIFIER genType gaussRand ( genType const & Mean, genType const & Deviation ) { genType w, x1, x2; do { x1 = linearRand(genType(-1), genType(1)); x2 = linearRand(genType(-1), genType(1)); w = x1 * x1 + x2 * x2; } while(w > genType(1)); return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean; } VECTORIZE_VEC_VEC(gaussRand) template <typename T> GLM_FUNC_QUALIFIER detail::tvec2<T, defaultp> diskRand ( T const & Radius ) { detail::tvec2<T, defaultp> Result(T(0)); T LenRadius(T(0)); do { Result = linearRand( detail::tvec2<T, defaultp>(-Radius), detail::tvec2<T, defaultp>(Radius)); LenRadius = length(Result); } while(LenRadius > Radius); return Result; } template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T, defaultp> ballRand ( T const & Radius ) { detail::tvec3<T, defaultp> Result(T(0)); T LenRadius(T(0)); do { Result = linearRand( detail::tvec3<T, defaultp>(-Radius), detail::tvec3<T, defaultp>(Radius)); LenRadius = length(Result); } while(LenRadius > Radius); return Result; } template <typename T> GLM_FUNC_QUALIFIER detail::tvec2<T, defaultp> circularRand ( T const & Radius ) { T a = linearRand(T(0), T(6.283185307179586476925286766559f)); return detail::tvec2<T, defaultp>(cos(a), sin(a)) * Radius; } template <typename T> GLM_FUNC_QUALIFIER detail::tvec3<T, defaultp> sphericalRand ( T const & Radius ) { T z = linearRand(T(-1), T(1)); T a = linearRand(T(0), T(6.283185307179586476925286766559f)); T r = sqrt(T(1) - z * z); T x = r * cos(a); T y = r * sin(a); return detail::tvec3<T, defaultp>(x, y, z) * Radius; } }//namespace glm