// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Bit writing and boolean coder // // Author: Skal (pascal.massimino@gmail.com) // Vikas Arora (vikaas.arora@gmail.com) #include <assert.h> #include <string.h> // for memcpy() #include <stdlib.h> #include "./bit_writer.h" #include "./endian_inl.h" #include "./utils.h" //------------------------------------------------------------------------------ // VP8BitWriter static int BitWriterResize(VP8BitWriter* const bw, size_t extra_size) { uint8_t* new_buf; size_t new_size; const uint64_t needed_size_64b = (uint64_t)bw->pos_ + extra_size; const size_t needed_size = (size_t)needed_size_64b; if (needed_size_64b != needed_size) { bw->error_ = 1; return 0; } if (needed_size <= bw->max_pos_) return 1; // If the following line wraps over 32bit, the test just after will catch it. new_size = 2 * bw->max_pos_; if (new_size < needed_size) new_size = needed_size; if (new_size < 1024) new_size = 1024; new_buf = (uint8_t*)WebPSafeMalloc(1ULL, new_size); if (new_buf == NULL) { bw->error_ = 1; return 0; } if (bw->pos_ > 0) { assert(bw->buf_ != NULL); memcpy(new_buf, bw->buf_, bw->pos_); } WebPSafeFree(bw->buf_); bw->buf_ = new_buf; bw->max_pos_ = new_size; return 1; } static void Flush(VP8BitWriter* const bw) { const int s = 8 + bw->nb_bits_; const int32_t bits = bw->value_ >> s; assert(bw->nb_bits_ >= 0); bw->value_ -= bits << s; bw->nb_bits_ -= 8; if ((bits & 0xff) != 0xff) { size_t pos = bw->pos_; if (!BitWriterResize(bw, bw->run_ + 1)) { return; } if (bits & 0x100) { // overflow -> propagate carry over pending 0xff's if (pos > 0) bw->buf_[pos - 1]++; } if (bw->run_ > 0) { const int value = (bits & 0x100) ? 0x00 : 0xff; for (; bw->run_ > 0; --bw->run_) bw->buf_[pos++] = value; } bw->buf_[pos++] = bits; bw->pos_ = pos; } else { bw->run_++; // delay writing of bytes 0xff, pending eventual carry. } } //------------------------------------------------------------------------------ // renormalization static const uint8_t kNorm[128] = { // renorm_sizes[i] = 8 - log2(i) 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 }; // range = ((range + 1) << kVP8Log2Range[range]) - 1 static const uint8_t kNewRange[128] = { 127, 127, 191, 127, 159, 191, 223, 127, 143, 159, 175, 191, 207, 223, 239, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 127 }; int VP8PutBit(VP8BitWriter* const bw, int bit, int prob) { const int split = (bw->range_ * prob) >> 8; if (bit) { bw->value_ += split + 1; bw->range_ -= split + 1; } else { bw->range_ = split; } if (bw->range_ < 127) { // emit 'shift' bits out and renormalize const int shift = kNorm[bw->range_]; bw->range_ = kNewRange[bw->range_]; bw->value_ <<= shift; bw->nb_bits_ += shift; if (bw->nb_bits_ > 0) Flush(bw); } return bit; } int VP8PutBitUniform(VP8BitWriter* const bw, int bit) { const int split = bw->range_ >> 1; if (bit) { bw->value_ += split + 1; bw->range_ -= split + 1; } else { bw->range_ = split; } if (bw->range_ < 127) { bw->range_ = kNewRange[bw->range_]; bw->value_ <<= 1; bw->nb_bits_ += 1; if (bw->nb_bits_ > 0) Flush(bw); } return bit; } void VP8PutBits(VP8BitWriter* const bw, uint32_t value, int nb_bits) { uint32_t mask; assert(nb_bits > 0 && nb_bits < 32); for (mask = 1u << (nb_bits - 1); mask; mask >>= 1) VP8PutBitUniform(bw, value & mask); } void VP8PutSignedBits(VP8BitWriter* const bw, int value, int nb_bits) { if (!VP8PutBitUniform(bw, value != 0)) return; if (value < 0) { VP8PutBits(bw, ((-value) << 1) | 1, nb_bits + 1); } else { VP8PutBits(bw, value << 1, nb_bits + 1); } } //------------------------------------------------------------------------------ int VP8BitWriterInit(VP8BitWriter* const bw, size_t expected_size) { bw->range_ = 255 - 1; bw->value_ = 0; bw->run_ = 0; bw->nb_bits_ = -8; bw->pos_ = 0; bw->max_pos_ = 0; bw->error_ = 0; bw->buf_ = NULL; return (expected_size > 0) ? BitWriterResize(bw, expected_size) : 1; } uint8_t* VP8BitWriterFinish(VP8BitWriter* const bw) { VP8PutBits(bw, 0, 9 - bw->nb_bits_); bw->nb_bits_ = 0; // pad with zeroes Flush(bw); return bw->buf_; } int VP8BitWriterAppend(VP8BitWriter* const bw, const uint8_t* data, size_t size) { assert(data != NULL); if (bw->nb_bits_ != -8) return 0; // Flush() must have been called if (!BitWriterResize(bw, size)) return 0; memcpy(bw->buf_ + bw->pos_, data, size); bw->pos_ += size; return 1; } void VP8BitWriterWipeOut(VP8BitWriter* const bw) { if (bw != NULL) { WebPSafeFree(bw->buf_); memset(bw, 0, sizeof(*bw)); } } //------------------------------------------------------------------------------ // VP8LBitWriter // This is the minimum amount of size the memory buffer is guaranteed to grow // when extra space is needed. #define MIN_EXTRA_SIZE (32768ULL) // Returns 1 on success. static int VP8LBitWriterResize(VP8LBitWriter* const bw, size_t extra_size) { uint8_t* allocated_buf; size_t allocated_size; const size_t max_bytes = bw->end_ - bw->buf_; const size_t current_size = bw->cur_ - bw->buf_; const uint64_t size_required_64b = (uint64_t)current_size + extra_size; const size_t size_required = (size_t)size_required_64b; if (size_required != size_required_64b) { bw->error_ = 1; return 0; } if (max_bytes > 0 && size_required <= max_bytes) return 1; allocated_size = (3 * max_bytes) >> 1; if (allocated_size < size_required) allocated_size = size_required; // make allocated size multiple of 1k allocated_size = (((allocated_size >> 10) + 1) << 10); allocated_buf = (uint8_t*)WebPSafeMalloc(1ULL, allocated_size); if (allocated_buf == NULL) { bw->error_ = 1; return 0; } if (current_size > 0) { memcpy(allocated_buf, bw->buf_, current_size); } WebPSafeFree(bw->buf_); bw->buf_ = allocated_buf; bw->cur_ = bw->buf_ + current_size; bw->end_ = bw->buf_ + allocated_size; return 1; } int VP8LBitWriterInit(VP8LBitWriter* const bw, size_t expected_size) { memset(bw, 0, sizeof(*bw)); return VP8LBitWriterResize(bw, expected_size); } void VP8LBitWriterWipeOut(VP8LBitWriter* const bw) { if (bw != NULL) { WebPSafeFree(bw->buf_); memset(bw, 0, sizeof(*bw)); } } void VP8LPutBitsFlushBits(VP8LBitWriter* const bw) { // If needed, make some room by flushing some bits out. if (bw->cur_ + VP8L_WRITER_BYTES > bw->end_) { const uint64_t extra_size = (bw->end_ - bw->buf_) + MIN_EXTRA_SIZE; if (extra_size != (size_t)extra_size || !VP8LBitWriterResize(bw, (size_t)extra_size)) { bw->cur_ = bw->buf_; bw->error_ = 1; return; } } *(vp8l_wtype_t*)bw->cur_ = (vp8l_wtype_t)WSWAP((vp8l_wtype_t)bw->bits_); bw->cur_ += VP8L_WRITER_BYTES; bw->bits_ >>= VP8L_WRITER_BITS; bw->used_ -= VP8L_WRITER_BITS; } void VP8LPutBitsInternal(VP8LBitWriter* const bw, uint32_t bits, int n_bits) { assert(n_bits <= 32); // That's the max we can handle: assert(sizeof(vp8l_wtype_t) == 2); if (n_bits > 0) { vp8l_atype_t lbits = bw->bits_; int used = bw->used_; // Special case of overflow handling for 32bit accumulator (2-steps flush). #if VP8L_WRITER_BITS == 16 if (used + n_bits >= VP8L_WRITER_MAX_BITS) { // Fill up all the VP8L_WRITER_MAX_BITS so it can be flushed out below. const int shift = VP8L_WRITER_MAX_BITS - used; lbits |= (vp8l_atype_t)bits << used; used = VP8L_WRITER_MAX_BITS; n_bits -= shift; bits >>= shift; assert(n_bits <= VP8L_WRITER_MAX_BITS); } #endif // If needed, make some room by flushing some bits out. while (used >= VP8L_WRITER_BITS) { if (bw->cur_ + VP8L_WRITER_BYTES > bw->end_) { const uint64_t extra_size = (bw->end_ - bw->buf_) + MIN_EXTRA_SIZE; if (extra_size != (size_t)extra_size || !VP8LBitWriterResize(bw, (size_t)extra_size)) { bw->cur_ = bw->buf_; bw->error_ = 1; return; } } *(vp8l_wtype_t*)bw->cur_ = (vp8l_wtype_t)WSWAP((vp8l_wtype_t)lbits); bw->cur_ += VP8L_WRITER_BYTES; lbits >>= VP8L_WRITER_BITS; used -= VP8L_WRITER_BITS; } bw->bits_ = lbits | ((vp8l_atype_t)bits << used); bw->used_ = used + n_bits; } } uint8_t* VP8LBitWriterFinish(VP8LBitWriter* const bw) { // flush leftover bits if (VP8LBitWriterResize(bw, (bw->used_ + 7) >> 3)) { while (bw->used_ > 0) { *bw->cur_++ = (uint8_t)bw->bits_; bw->bits_ >>= 8; bw->used_ -= 8; } bw->used_ = 0; } return bw->buf_; } //------------------------------------------------------------------------------