/* ** Copyright 2008, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "commands.h" #include <errno.h> #include <inttypes.h> #include <regex> #include <stdlib.h> #include <sys/capability.h> #include <sys/file.h> #include <sys/resource.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/xattr.h> #include <unistd.h> #include <android-base/logging.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <android-base/unique_fd.h> #include <cutils/fs.h> #include <cutils/log.h> // TODO: Move everything to base/logging. #include <cutils/sched_policy.h> #include <diskusage/dirsize.h> #include <logwrap/logwrap.h> #include <private/android_filesystem_config.h> #include <selinux/android.h> #include <system/thread_defs.h> #include <globals.h> #include <installd_deps.h> #include <otapreopt_utils.h> #include <utils.h> #ifndef LOG_TAG #define LOG_TAG "installd" #endif using android::base::EndsWith; using android::base::StringPrintf; namespace android { namespace installd { static constexpr const char* kCpPath = "/system/bin/cp"; static constexpr const char* kXattrDefault = "user.default"; static constexpr const char* PKG_LIB_POSTFIX = "/lib"; static constexpr const char* CACHE_DIR_POSTFIX = "/cache"; static constexpr const char* CODE_CACHE_DIR_POSTFIX = "/code_cache"; static constexpr const char* IDMAP_PREFIX = "/data/resource-cache/"; static constexpr const char* IDMAP_SUFFIX = "@idmap"; // NOTE: keep in sync with StorageManager static constexpr int FLAG_STORAGE_DE = 1 << 0; static constexpr int FLAG_STORAGE_CE = 1 << 1; // NOTE: keep in sync with Installer static constexpr int FLAG_CLEAR_CACHE_ONLY = 1 << 8; static constexpr int FLAG_CLEAR_CODE_CACHE_ONLY = 1 << 9; /* dexopt needed flags matching those in dalvik.system.DexFile */ static constexpr int DEXOPT_DEX2OAT_NEEDED = 1; static constexpr int DEXOPT_PATCHOAT_NEEDED = 2; static constexpr int DEXOPT_SELF_PATCHOAT_NEEDED = 3; #define MIN_RESTRICTED_HOME_SDK_VERSION 24 // > M typedef int fd_t; static bool property_get_bool(const char* property_name, bool default_value = false) { char tmp_property_value[kPropertyValueMax]; bool have_property = get_property(property_name, tmp_property_value, nullptr) > 0; if (!have_property) { return default_value; } return strcmp(tmp_property_value, "true") == 0; } // Keep profile paths in sync with ActivityThread. constexpr const char* PRIMARY_PROFILE_NAME = "primary.prof"; static std::string create_primary_profile(const std::string& profile_dir) { return StringPrintf("%s/%s", profile_dir.c_str(), PRIMARY_PROFILE_NAME); } /** * Perform restorecon of the given path, but only perform recursive restorecon * if the label of that top-level file actually changed. This can save us * significant time by avoiding no-op traversals of large filesystem trees. */ static int restorecon_app_data_lazy(const std::string& path, const char* seinfo, uid_t uid) { int res = 0; char* before = nullptr; char* after = nullptr; // Note that SELINUX_ANDROID_RESTORECON_DATADATA flag is set by // libselinux. Not needed here. if (lgetfilecon(path.c_str(), &before) < 0) { PLOG(ERROR) << "Failed before getfilecon for " << path; goto fail; } if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, 0) < 0) { PLOG(ERROR) << "Failed top-level restorecon for " << path; goto fail; } if (lgetfilecon(path.c_str(), &after) < 0) { PLOG(ERROR) << "Failed after getfilecon for " << path; goto fail; } // If the initial top-level restorecon above changed the label, then go // back and restorecon everything recursively if (strcmp(before, after)) { LOG(DEBUG) << "Detected label change from " << before << " to " << after << " at " << path << "; running recursive restorecon"; if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, SELINUX_ANDROID_RESTORECON_RECURSE) < 0) { PLOG(ERROR) << "Failed recursive restorecon for " << path; goto fail; } } goto done; fail: res = -1; done: free(before); free(after); return res; } static int restorecon_app_data_lazy(const std::string& parent, const char* name, const char* seinfo, uid_t uid) { return restorecon_app_data_lazy(StringPrintf("%s/%s", parent.c_str(), name), seinfo, uid); } static int prepare_app_dir(const std::string& path, mode_t target_mode, uid_t uid) { if (fs_prepare_dir_strict(path.c_str(), target_mode, uid, uid) != 0) { PLOG(ERROR) << "Failed to prepare " << path; return -1; } return 0; } static int prepare_app_dir(const std::string& parent, const char* name, mode_t target_mode, uid_t uid) { return prepare_app_dir(StringPrintf("%s/%s", parent.c_str(), name), target_mode, uid); } int create_app_data(const char *uuid, const char *pkgname, userid_t userid, int flags, appid_t appid, const char* seinfo, int target_sdk_version) { uid_t uid = multiuser_get_uid(userid, appid); mode_t target_mode = target_sdk_version >= MIN_RESTRICTED_HOME_SDK_VERSION ? 0700 : 0751; if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid, userid, pkgname); if (prepare_app_dir(path, target_mode, uid) || prepare_app_dir(path, "cache", 0771, uid) || prepare_app_dir(path, "code_cache", 0771, uid)) { return -1; } // Consider restorecon over contents if label changed if (restorecon_app_data_lazy(path, seinfo, uid) || restorecon_app_data_lazy(path, "cache", seinfo, uid) || restorecon_app_data_lazy(path, "code_cache", seinfo, uid)) { return -1; } // Remember inode numbers of cache directories so that we can clear // contents while CE storage is locked if (write_path_inode(path, "cache", kXattrInodeCache) || write_path_inode(path, "code_cache", kXattrInodeCodeCache)) { return -1; } } if (flags & FLAG_STORAGE_DE) { auto path = create_data_user_de_package_path(uuid, userid, pkgname); if (prepare_app_dir(path, target_mode, uid)) { // TODO: include result once 25796509 is fixed return 0; } // Consider restorecon over contents if label changed if (restorecon_app_data_lazy(path, seinfo, uid)) { return -1; } if (property_get_bool("dalvik.vm.usejitprofiles")) { const std::string profile_path = create_data_user_profile_package_path(userid, pkgname); // read-write-execute only for the app user. if (fs_prepare_dir_strict(profile_path.c_str(), 0700, uid, uid) != 0) { PLOG(ERROR) << "Failed to prepare " << profile_path; return -1; } std::string profile_file = create_primary_profile(profile_path); // read-write only for the app user. if (fs_prepare_file_strict(profile_file.c_str(), 0600, uid, uid) != 0) { PLOG(ERROR) << "Failed to prepare " << profile_path; return -1; } const std::string ref_profile_path = create_data_ref_profile_package_path(pkgname); // dex2oat/profman runs under the shared app gid and it needs to read/write reference // profiles. appid_t shared_app_gid = multiuser_get_shared_app_gid(uid); if (fs_prepare_dir_strict( ref_profile_path.c_str(), 0700, shared_app_gid, shared_app_gid) != 0) { PLOG(ERROR) << "Failed to prepare " << ref_profile_path; return -1; } } } return 0; } int migrate_app_data(const char *uuid, const char *pkgname, userid_t userid, int flags) { // This method only exists to upgrade system apps that have requested // forceDeviceEncrypted, so their default storage always lives in a // consistent location. This only works on non-FBE devices, since we // never want to risk exposing data on a device with real CE/DE storage. auto ce_path = create_data_user_ce_package_path(uuid, userid, pkgname); auto de_path = create_data_user_de_package_path(uuid, userid, pkgname); // If neither directory is marked as default, assume CE is default if (getxattr(ce_path.c_str(), kXattrDefault, nullptr, 0) == -1 && getxattr(de_path.c_str(), kXattrDefault, nullptr, 0) == -1) { if (setxattr(ce_path.c_str(), kXattrDefault, nullptr, 0, 0) != 0) { PLOG(ERROR) << "Failed to mark default storage " << ce_path; return -1; } } // Migrate default data location if needed auto target = (flags & FLAG_STORAGE_DE) ? de_path : ce_path; auto source = (flags & FLAG_STORAGE_DE) ? ce_path : de_path; if (getxattr(target.c_str(), kXattrDefault, nullptr, 0) == -1) { LOG(WARNING) << "Requested default storage " << target << " is not active; migrating from " << source; if (delete_dir_contents_and_dir(target) != 0) { PLOG(ERROR) << "Failed to delete"; return -1; } if (rename(source.c_str(), target.c_str()) != 0) { PLOG(ERROR) << "Failed to rename"; return -1; } } return 0; } static bool clear_profile(const std::string& profile) { base::unique_fd ufd(open(profile.c_str(), O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); if (ufd.get() < 0) { if (errno != ENOENT) { PLOG(WARNING) << "Could not open profile " << profile; return false; } else { // Nothing to clear. That's ok. return true; } } if (flock(ufd.get(), LOCK_EX | LOCK_NB) != 0) { if (errno != EWOULDBLOCK) { PLOG(WARNING) << "Error locking profile " << profile; } // This implies that the app owning this profile is running // (and has acquired the lock). // // If we can't acquire the lock bail out since clearing is useless anyway // (the app will write again to the profile). // // Note: // This does not impact the this is not an issue for the profiling correctness. // In case this is needed because of an app upgrade, profiles will still be // eventually cleared by the app itself due to checksum mismatch. // If this is needed because profman advised, then keeping the data around // until the next run is again not an issue. // // If the app attempts to acquire a lock while we've held one here, // it will simply skip the current write cycle. return false; } bool truncated = ftruncate(ufd.get(), 0) == 0; if (!truncated) { PLOG(WARNING) << "Could not truncate " << profile; } if (flock(ufd.get(), LOCK_UN) != 0) { PLOG(WARNING) << "Error unlocking profile " << profile; } return truncated; } static bool clear_reference_profile(const char* pkgname) { std::string reference_profile_dir = create_data_ref_profile_package_path(pkgname); std::string reference_profile = create_primary_profile(reference_profile_dir); return clear_profile(reference_profile); } static bool clear_current_profile(const char* pkgname, userid_t user) { std::string profile_dir = create_data_user_profile_package_path(user, pkgname); std::string profile = create_primary_profile(profile_dir); return clear_profile(profile); } static bool clear_current_profiles(const char* pkgname) { bool success = true; std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr); for (auto user : users) { success &= clear_current_profile(pkgname, user); } return success; } int clear_app_profiles(const char* pkgname) { bool success = true; success &= clear_reference_profile(pkgname); success &= clear_current_profiles(pkgname); return success ? 0 : -1; } int clear_app_data(const char *uuid, const char *pkgname, userid_t userid, int flags, ino_t ce_data_inode) { int res = 0; if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid, userid, pkgname, ce_data_inode); if (flags & FLAG_CLEAR_CACHE_ONLY) { path = read_path_inode(path, "cache", kXattrInodeCache); } else if (flags & FLAG_CLEAR_CODE_CACHE_ONLY) { path = read_path_inode(path, "code_cache", kXattrInodeCodeCache); } if (access(path.c_str(), F_OK) == 0) { res |= delete_dir_contents(path); } } if (flags & FLAG_STORAGE_DE) { std::string suffix = ""; bool only_cache = false; if (flags & FLAG_CLEAR_CACHE_ONLY) { suffix = CACHE_DIR_POSTFIX; only_cache = true; } else if (flags & FLAG_CLEAR_CODE_CACHE_ONLY) { suffix = CODE_CACHE_DIR_POSTFIX; only_cache = true; } auto path = create_data_user_de_package_path(uuid, userid, pkgname) + suffix; if (access(path.c_str(), F_OK) == 0) { // TODO: include result once 25796509 is fixed delete_dir_contents(path); } if (!only_cache) { if (!clear_current_profile(pkgname, userid)) { res |= -1; } } } return res; } static int destroy_app_reference_profile(const char *pkgname) { return delete_dir_contents_and_dir( create_data_ref_profile_package_path(pkgname), /*ignore_if_missing*/ true); } static int destroy_app_current_profiles(const char *pkgname, userid_t userid) { return delete_dir_contents_and_dir( create_data_user_profile_package_path(userid, pkgname), /*ignore_if_missing*/ true); } int destroy_app_profiles(const char *pkgname) { int result = 0; std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr); for (auto user : users) { result |= destroy_app_current_profiles(pkgname, user); } result |= destroy_app_reference_profile(pkgname); return result; } int destroy_app_data(const char *uuid, const char *pkgname, userid_t userid, int flags, ino_t ce_data_inode) { int res = 0; if (flags & FLAG_STORAGE_CE) { res |= delete_dir_contents_and_dir( create_data_user_ce_package_path(uuid, userid, pkgname, ce_data_inode)); } if (flags & FLAG_STORAGE_DE) { res |= delete_dir_contents_and_dir( create_data_user_de_package_path(uuid, userid, pkgname)); destroy_app_current_profiles(pkgname, userid); // TODO(calin): If the package is still installed by other users it's probably // beneficial to keep the reference profile around. // Verify if it's ok to do that. destroy_app_reference_profile(pkgname); } return res; } int move_complete_app(const char *from_uuid, const char *to_uuid, const char *package_name, const char *data_app_name, appid_t appid, const char* seinfo, int target_sdk_version) { std::vector<userid_t> users = get_known_users(from_uuid); // Copy app { auto from = create_data_app_package_path(from_uuid, data_app_name); auto to = create_data_app_package_path(to_uuid, data_app_name); auto to_parent = create_data_app_path(to_uuid); char *argv[] = { (char*) kCpPath, (char*) "-F", /* delete any existing destination file first (--remove-destination) */ (char*) "-p", /* preserve timestamps, ownership, and permissions */ (char*) "-R", /* recurse into subdirectories (DEST must be a directory) */ (char*) "-P", /* Do not follow symlinks [default] */ (char*) "-d", /* don't dereference symlinks */ (char*) from.c_str(), (char*) to_parent.c_str() }; LOG(DEBUG) << "Copying " << from << " to " << to; int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true); if (rc != 0) { LOG(ERROR) << "Failed copying " << from << " to " << to << ": status " << rc; goto fail; } if (selinux_android_restorecon(to.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE) != 0) { LOG(ERROR) << "Failed to restorecon " << to; goto fail; } } // Copy private data for all known users for (auto user : users) { // Data source may not exist for all users; that's okay auto from_ce = create_data_user_ce_package_path(from_uuid, user, package_name); if (access(from_ce.c_str(), F_OK) != 0) { LOG(INFO) << "Missing source " << from_ce; continue; } if (create_app_data(to_uuid, package_name, user, FLAG_STORAGE_CE | FLAG_STORAGE_DE, appid, seinfo, target_sdk_version) != 0) { LOG(ERROR) << "Failed to create package target on " << to_uuid; goto fail; } char *argv[] = { (char*) kCpPath, (char*) "-F", /* delete any existing destination file first (--remove-destination) */ (char*) "-p", /* preserve timestamps, ownership, and permissions */ (char*) "-R", /* recurse into subdirectories (DEST must be a directory) */ (char*) "-P", /* Do not follow symlinks [default] */ (char*) "-d", /* don't dereference symlinks */ nullptr, nullptr }; { auto from = create_data_user_de_package_path(from_uuid, user, package_name); auto to = create_data_user_de_path(to_uuid, user); argv[6] = (char*) from.c_str(); argv[7] = (char*) to.c_str(); LOG(DEBUG) << "Copying " << from << " to " << to; int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true); if (rc != 0) { LOG(ERROR) << "Failed copying " << from << " to " << to << " with status " << rc; goto fail; } } { auto from = create_data_user_ce_package_path(from_uuid, user, package_name); auto to = create_data_user_ce_path(to_uuid, user); argv[6] = (char*) from.c_str(); argv[7] = (char*) to.c_str(); LOG(DEBUG) << "Copying " << from << " to " << to; int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true); if (rc != 0) { LOG(ERROR) << "Failed copying " << from << " to " << to << " with status " << rc; goto fail; } } if (restorecon_app_data(to_uuid, package_name, user, FLAG_STORAGE_CE | FLAG_STORAGE_DE, appid, seinfo) != 0) { LOG(ERROR) << "Failed to restorecon"; goto fail; } } // We let the framework scan the new location and persist that before // deleting the data in the old location; this ordering ensures that // we can recover from things like battery pulls. return 0; fail: // Nuke everything we might have already copied { auto to = create_data_app_package_path(to_uuid, data_app_name); if (delete_dir_contents(to.c_str(), 1, NULL) != 0) { LOG(WARNING) << "Failed to rollback " << to; } } for (auto user : users) { { auto to = create_data_user_de_package_path(to_uuid, user, package_name); if (delete_dir_contents(to.c_str(), 1, NULL) != 0) { LOG(WARNING) << "Failed to rollback " << to; } } { auto to = create_data_user_ce_package_path(to_uuid, user, package_name); if (delete_dir_contents(to.c_str(), 1, NULL) != 0) { LOG(WARNING) << "Failed to rollback " << to; } } } return -1; } int create_user_data(const char *uuid, userid_t userid, int user_serial ATTRIBUTE_UNUSED, int flags) { if (flags & FLAG_STORAGE_DE) { if (uuid == nullptr) { return ensure_config_user_dirs(userid); } } return 0; } int destroy_user_data(const char *uuid, userid_t userid, int flags) { int res = 0; if (flags & FLAG_STORAGE_DE) { res |= delete_dir_contents_and_dir(create_data_user_de_path(uuid, userid), true); if (uuid == nullptr) { res |= delete_dir_contents_and_dir(create_data_misc_legacy_path(userid), true); res |= delete_dir_contents_and_dir(create_data_user_profiles_path(userid), true); } } if (flags & FLAG_STORAGE_CE) { res |= delete_dir_contents_and_dir(create_data_user_ce_path(uuid, userid), true); res |= delete_dir_contents_and_dir(create_data_media_path(uuid, userid), true); } return res; } /* Try to ensure free_size bytes of storage are available. * Returns 0 on success. * This is rather simple-minded because doing a full LRU would * be potentially memory-intensive, and without atime it would * also require that apps constantly modify file metadata even * when just reading from the cache, which is pretty awful. */ int free_cache(const char *uuid, int64_t free_size) { cache_t* cache; int64_t avail; auto data_path = create_data_path(uuid); avail = data_disk_free(data_path); if (avail < 0) return -1; ALOGI("free_cache(%" PRId64 ") avail %" PRId64 "\n", free_size, avail); if (avail >= free_size) return 0; cache = start_cache_collection(); auto users = get_known_users(uuid); for (auto user : users) { add_cache_files(cache, create_data_user_ce_path(uuid, user)); add_cache_files(cache, create_data_user_de_path(uuid, user)); add_cache_files(cache, StringPrintf("%s/Android/data", create_data_media_path(uuid, user).c_str())); } clear_cache_files(data_path, cache, free_size); finish_cache_collection(cache); return data_disk_free(data_path) >= free_size ? 0 : -1; } int rm_dex(const char *path, const char *instruction_set) { char dex_path[PKG_PATH_MAX]; if (validate_apk_path(path) && validate_system_app_path(path)) { ALOGE("invalid apk path '%s' (bad prefix)\n", path); return -1; } if (!create_cache_path(dex_path, path, instruction_set)) return -1; ALOGV("unlink %s\n", dex_path); if (unlink(dex_path) < 0) { if (errno != ENOENT) { ALOGE("Couldn't unlink %s: %s\n", dex_path, strerror(errno)); } return -1; } else { return 0; } } static void add_app_data_size(std::string& path, int64_t *codesize, int64_t *datasize, int64_t *cachesize) { DIR *d; int dfd; struct dirent *de; struct stat s; d = opendir(path.c_str()); if (d == nullptr) { PLOG(WARNING) << "Failed to open " << path; return; } dfd = dirfd(d); while ((de = readdir(d))) { const char *name = de->d_name; int64_t statsize = 0; if (fstatat(dfd, name, &s, AT_SYMLINK_NOFOLLOW) == 0) { statsize = stat_size(&s); } if (de->d_type == DT_DIR) { int subfd; int64_t dirsize = 0; /* always skip "." and ".." */ if (name[0] == '.') { if (name[1] == 0) continue; if ((name[1] == '.') && (name[2] == 0)) continue; } subfd = openat(dfd, name, O_RDONLY | O_DIRECTORY); if (subfd >= 0) { dirsize = calculate_dir_size(subfd); close(subfd); } // TODO: check xattrs! if (!strcmp(name, "cache") || !strcmp(name, "code_cache")) { *datasize += statsize; *cachesize += dirsize; } else { *datasize += dirsize + statsize; } } else if (de->d_type == DT_LNK && !strcmp(name, "lib")) { *codesize += statsize; } else { *datasize += statsize; } } closedir(d); } int get_app_size(const char *uuid, const char *pkgname, int userid, int flags, ino_t ce_data_inode, const char *code_path, int64_t *codesize, int64_t *datasize, int64_t *cachesize, int64_t* asecsize) { DIR *d; int dfd; d = opendir(code_path); if (d != nullptr) { dfd = dirfd(d); *codesize += calculate_dir_size(dfd); closedir(d); } if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid, userid, pkgname, ce_data_inode); add_app_data_size(path, codesize, datasize, cachesize); } if (flags & FLAG_STORAGE_DE) { auto path = create_data_user_de_package_path(uuid, userid, pkgname); add_app_data_size(path, codesize, datasize, cachesize); } *asecsize = 0; return 0; } int get_app_data_inode(const char *uuid, const char *pkgname, int userid, int flags, ino_t *inode) { if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid, userid, pkgname); return get_path_inode(path, inode); } return -1; } static int split_count(const char *str) { char *ctx; int count = 0; char buf[kPropertyValueMax]; strncpy(buf, str, sizeof(buf)); char *pBuf = buf; while(strtok_r(pBuf, " ", &ctx) != NULL) { count++; pBuf = NULL; } return count; } static int split(char *buf, const char **argv) { char *ctx; int count = 0; char *tok; char *pBuf = buf; while((tok = strtok_r(pBuf, " ", &ctx)) != NULL) { argv[count++] = tok; pBuf = NULL; } return count; } static void run_patchoat(int input_fd, int oat_fd, const char* input_file_name, const char* output_file_name, const char *pkgname ATTRIBUTE_UNUSED, const char *instruction_set) { static const int MAX_INT_LEN = 12; // '-'+10dig+'\0' -OR- 0x+8dig static const unsigned int MAX_INSTRUCTION_SET_LEN = 7; static const char* PATCHOAT_BIN = "/system/bin/patchoat"; if (strlen(instruction_set) >= MAX_INSTRUCTION_SET_LEN) { ALOGE("Instruction set %s longer than max length of %d", instruction_set, MAX_INSTRUCTION_SET_LEN); return; } /* input_file_name/input_fd should be the .odex/.oat file that is precompiled. I think*/ char instruction_set_arg[strlen("--instruction-set=") + MAX_INSTRUCTION_SET_LEN]; char output_oat_fd_arg[strlen("--output-oat-fd=") + MAX_INT_LEN]; char input_oat_fd_arg[strlen("--input-oat-fd=") + MAX_INT_LEN]; const char* patched_image_location_arg = "--patched-image-location=/system/framework/boot.art"; // The caller has already gotten all the locks we need. const char* no_lock_arg = "--no-lock-output"; sprintf(instruction_set_arg, "--instruction-set=%s", instruction_set); sprintf(output_oat_fd_arg, "--output-oat-fd=%d", oat_fd); sprintf(input_oat_fd_arg, "--input-oat-fd=%d", input_fd); ALOGV("Running %s isa=%s in-fd=%d (%s) out-fd=%d (%s)\n", PATCHOAT_BIN, instruction_set, input_fd, input_file_name, oat_fd, output_file_name); /* patchoat, patched-image-location, no-lock, isa, input-fd, output-fd */ char* argv[7]; argv[0] = (char*) PATCHOAT_BIN; argv[1] = (char*) patched_image_location_arg; argv[2] = (char*) no_lock_arg; argv[3] = instruction_set_arg; argv[4] = output_oat_fd_arg; argv[5] = input_oat_fd_arg; argv[6] = NULL; execv(PATCHOAT_BIN, (char* const *)argv); ALOGE("execv(%s) failed: %s\n", PATCHOAT_BIN, strerror(errno)); } static void run_dex2oat(int zip_fd, int oat_fd, int image_fd, const char* input_file_name, const char* output_file_name, int swap_fd, const char *instruction_set, const char* compiler_filter, bool vm_safe_mode, bool debuggable, bool post_bootcomplete, int profile_fd, const char* shared_libraries) { static const unsigned int MAX_INSTRUCTION_SET_LEN = 7; if (strlen(instruction_set) >= MAX_INSTRUCTION_SET_LEN) { ALOGE("Instruction set %s longer than max length of %d", instruction_set, MAX_INSTRUCTION_SET_LEN); return; } char dex2oat_Xms_flag[kPropertyValueMax]; bool have_dex2oat_Xms_flag = get_property("dalvik.vm.dex2oat-Xms", dex2oat_Xms_flag, NULL) > 0; char dex2oat_Xmx_flag[kPropertyValueMax]; bool have_dex2oat_Xmx_flag = get_property("dalvik.vm.dex2oat-Xmx", dex2oat_Xmx_flag, NULL) > 0; char dex2oat_threads_buf[kPropertyValueMax]; bool have_dex2oat_threads_flag = get_property(post_bootcomplete ? "dalvik.vm.dex2oat-threads" : "dalvik.vm.boot-dex2oat-threads", dex2oat_threads_buf, NULL) > 0; char dex2oat_threads_arg[kPropertyValueMax + 2]; if (have_dex2oat_threads_flag) { sprintf(dex2oat_threads_arg, "-j%s", dex2oat_threads_buf); } char dex2oat_isa_features_key[kPropertyKeyMax]; sprintf(dex2oat_isa_features_key, "dalvik.vm.isa.%s.features", instruction_set); char dex2oat_isa_features[kPropertyValueMax]; bool have_dex2oat_isa_features = get_property(dex2oat_isa_features_key, dex2oat_isa_features, NULL) > 0; char dex2oat_isa_variant_key[kPropertyKeyMax]; sprintf(dex2oat_isa_variant_key, "dalvik.vm.isa.%s.variant", instruction_set); char dex2oat_isa_variant[kPropertyValueMax]; bool have_dex2oat_isa_variant = get_property(dex2oat_isa_variant_key, dex2oat_isa_variant, NULL) > 0; const char *dex2oat_norelocation = "-Xnorelocate"; bool have_dex2oat_relocation_skip_flag = false; char dex2oat_flags[kPropertyValueMax]; int dex2oat_flags_count = get_property("dalvik.vm.dex2oat-flags", dex2oat_flags, NULL) <= 0 ? 0 : split_count(dex2oat_flags); ALOGV("dalvik.vm.dex2oat-flags=%s\n", dex2oat_flags); // If we booting without the real /data, don't spend time compiling. char vold_decrypt[kPropertyValueMax]; bool have_vold_decrypt = get_property("vold.decrypt", vold_decrypt, "") > 0; bool skip_compilation = (have_vold_decrypt && (strcmp(vold_decrypt, "trigger_restart_min_framework") == 0 || (strcmp(vold_decrypt, "1") == 0))); bool generate_debug_info = property_get_bool("debug.generate-debug-info"); char app_image_format[kPropertyValueMax]; char image_format_arg[strlen("--image-format=") + kPropertyValueMax]; bool have_app_image_format = image_fd >= 0 && get_property("dalvik.vm.appimageformat", app_image_format, NULL) > 0; if (have_app_image_format) { sprintf(image_format_arg, "--image-format=%s", app_image_format); } char dex2oat_large_app_threshold[kPropertyValueMax]; bool have_dex2oat_large_app_threshold = get_property("dalvik.vm.dex2oat-very-large", dex2oat_large_app_threshold, NULL) > 0; char dex2oat_large_app_threshold_arg[strlen("--very-large-app-threshold=") + kPropertyValueMax]; if (have_dex2oat_large_app_threshold) { sprintf(dex2oat_large_app_threshold_arg, "--very-large-app-threshold=%s", dex2oat_large_app_threshold); } static const char* DEX2OAT_BIN = "/system/bin/dex2oat"; static const char* RUNTIME_ARG = "--runtime-arg"; static const int MAX_INT_LEN = 12; // '-'+10dig+'\0' -OR- 0x+8dig char zip_fd_arg[strlen("--zip-fd=") + MAX_INT_LEN]; char zip_location_arg[strlen("--zip-location=") + PKG_PATH_MAX]; char oat_fd_arg[strlen("--oat-fd=") + MAX_INT_LEN]; char oat_location_arg[strlen("--oat-location=") + PKG_PATH_MAX]; char instruction_set_arg[strlen("--instruction-set=") + MAX_INSTRUCTION_SET_LEN]; char instruction_set_variant_arg[strlen("--instruction-set-variant=") + kPropertyValueMax]; char instruction_set_features_arg[strlen("--instruction-set-features=") + kPropertyValueMax]; char dex2oat_Xms_arg[strlen("-Xms") + kPropertyValueMax]; char dex2oat_Xmx_arg[strlen("-Xmx") + kPropertyValueMax]; char dex2oat_compiler_filter_arg[strlen("--compiler-filter=") + kPropertyValueMax]; bool have_dex2oat_swap_fd = false; char dex2oat_swap_fd[strlen("--swap-fd=") + MAX_INT_LEN]; bool have_dex2oat_image_fd = false; char dex2oat_image_fd[strlen("--app-image-fd=") + MAX_INT_LEN]; sprintf(zip_fd_arg, "--zip-fd=%d", zip_fd); sprintf(zip_location_arg, "--zip-location=%s", input_file_name); sprintf(oat_fd_arg, "--oat-fd=%d", oat_fd); sprintf(oat_location_arg, "--oat-location=%s", output_file_name); sprintf(instruction_set_arg, "--instruction-set=%s", instruction_set); sprintf(instruction_set_variant_arg, "--instruction-set-variant=%s", dex2oat_isa_variant); sprintf(instruction_set_features_arg, "--instruction-set-features=%s", dex2oat_isa_features); if (swap_fd >= 0) { have_dex2oat_swap_fd = true; sprintf(dex2oat_swap_fd, "--swap-fd=%d", swap_fd); } if (image_fd >= 0) { have_dex2oat_image_fd = true; sprintf(dex2oat_image_fd, "--app-image-fd=%d", image_fd); } if (have_dex2oat_Xms_flag) { sprintf(dex2oat_Xms_arg, "-Xms%s", dex2oat_Xms_flag); } if (have_dex2oat_Xmx_flag) { sprintf(dex2oat_Xmx_arg, "-Xmx%s", dex2oat_Xmx_flag); } // Compute compiler filter. bool have_dex2oat_compiler_filter_flag; if (skip_compilation) { strcpy(dex2oat_compiler_filter_arg, "--compiler-filter=verify-none"); have_dex2oat_compiler_filter_flag = true; have_dex2oat_relocation_skip_flag = true; } else if (vm_safe_mode) { strcpy(dex2oat_compiler_filter_arg, "--compiler-filter=interpret-only"); have_dex2oat_compiler_filter_flag = true; } else if (compiler_filter != nullptr && strlen(compiler_filter) + strlen("--compiler-filter=") < arraysize(dex2oat_compiler_filter_arg)) { sprintf(dex2oat_compiler_filter_arg, "--compiler-filter=%s", compiler_filter); have_dex2oat_compiler_filter_flag = true; } else { char dex2oat_compiler_filter_flag[kPropertyValueMax]; have_dex2oat_compiler_filter_flag = get_property("dalvik.vm.dex2oat-filter", dex2oat_compiler_filter_flag, NULL) > 0; if (have_dex2oat_compiler_filter_flag) { sprintf(dex2oat_compiler_filter_arg, "--compiler-filter=%s", dex2oat_compiler_filter_flag); } } // Check whether all apps should be compiled debuggable. if (!debuggable) { char prop_buf[kPropertyValueMax]; debuggable = (get_property("dalvik.vm.always_debuggable", prop_buf, "0") > 0) && (prop_buf[0] == '1'); } char profile_arg[strlen("--profile-file-fd=") + MAX_INT_LEN]; if (profile_fd != -1) { sprintf(profile_arg, "--profile-file-fd=%d", profile_fd); } ALOGV("Running %s in=%s out=%s\n", DEX2OAT_BIN, input_file_name, output_file_name); const char* argv[7 // program name, mandatory arguments and the final NULL + (have_dex2oat_isa_variant ? 1 : 0) + (have_dex2oat_isa_features ? 1 : 0) + (have_dex2oat_Xms_flag ? 2 : 0) + (have_dex2oat_Xmx_flag ? 2 : 0) + (have_dex2oat_compiler_filter_flag ? 1 : 0) + (have_dex2oat_threads_flag ? 1 : 0) + (have_dex2oat_swap_fd ? 1 : 0) + (have_dex2oat_image_fd ? 1 : 0) + (have_dex2oat_relocation_skip_flag ? 2 : 0) + (generate_debug_info ? 1 : 0) + (debuggable ? 1 : 0) + (have_app_image_format ? 1 : 0) + dex2oat_flags_count + (profile_fd == -1 ? 0 : 1) + (shared_libraries != nullptr ? 4 : 0) + (have_dex2oat_large_app_threshold ? 1 : 0)]; int i = 0; argv[i++] = DEX2OAT_BIN; argv[i++] = zip_fd_arg; argv[i++] = zip_location_arg; argv[i++] = oat_fd_arg; argv[i++] = oat_location_arg; argv[i++] = instruction_set_arg; if (have_dex2oat_isa_variant) { argv[i++] = instruction_set_variant_arg; } if (have_dex2oat_isa_features) { argv[i++] = instruction_set_features_arg; } if (have_dex2oat_Xms_flag) { argv[i++] = RUNTIME_ARG; argv[i++] = dex2oat_Xms_arg; } if (have_dex2oat_Xmx_flag) { argv[i++] = RUNTIME_ARG; argv[i++] = dex2oat_Xmx_arg; } if (have_dex2oat_compiler_filter_flag) { argv[i++] = dex2oat_compiler_filter_arg; } if (have_dex2oat_threads_flag) { argv[i++] = dex2oat_threads_arg; } if (have_dex2oat_swap_fd) { argv[i++] = dex2oat_swap_fd; } if (have_dex2oat_image_fd) { argv[i++] = dex2oat_image_fd; } if (generate_debug_info) { argv[i++] = "--generate-debug-info"; } if (debuggable) { argv[i++] = "--debuggable"; } if (have_app_image_format) { argv[i++] = image_format_arg; } if (have_dex2oat_large_app_threshold) { argv[i++] = dex2oat_large_app_threshold_arg; } if (dex2oat_flags_count) { i += split(dex2oat_flags, argv + i); } if (have_dex2oat_relocation_skip_flag) { argv[i++] = RUNTIME_ARG; argv[i++] = dex2oat_norelocation; } if (profile_fd != -1) { argv[i++] = profile_arg; } if (shared_libraries != nullptr) { argv[i++] = RUNTIME_ARG; argv[i++] = "-classpath"; argv[i++] = RUNTIME_ARG; argv[i++] = shared_libraries; } // Do not add after dex2oat_flags, they should override others for debugging. argv[i] = NULL; execv(DEX2OAT_BIN, (char * const *)argv); ALOGE("execv(%s) failed: %s\n", DEX2OAT_BIN, strerror(errno)); } /* * Whether dexopt should use a swap file when compiling an APK. * * If kAlwaysProvideSwapFile, do this on all devices (dex2oat will make a more informed decision * itself, anyways). * * Otherwise, read "dalvik.vm.dex2oat-swap". If the property exists, return whether it is "true". * * Otherwise, return true if this is a low-mem device. * * Otherwise, return default value. */ static bool kAlwaysProvideSwapFile = false; static bool kDefaultProvideSwapFile = true; static bool ShouldUseSwapFileForDexopt() { if (kAlwaysProvideSwapFile) { return true; } // Check the "override" property. If it exists, return value == "true". char dex2oat_prop_buf[kPropertyValueMax]; if (get_property("dalvik.vm.dex2oat-swap", dex2oat_prop_buf, "") > 0) { if (strcmp(dex2oat_prop_buf, "true") == 0) { return true; } else { return false; } } // Shortcut for default value. This is an implementation optimization for the process sketched // above. If the default value is true, we can avoid to check whether this is a low-mem device, // as low-mem is never returning false. The compiler will optimize this away if it can. if (kDefaultProvideSwapFile) { return true; } bool is_low_mem = property_get_bool("ro.config.low_ram"); if (is_low_mem) { return true; } // Default value must be false here. return kDefaultProvideSwapFile; } static void SetDex2OatAndPatchOatScheduling(bool set_to_bg) { if (set_to_bg) { if (set_sched_policy(0, SP_BACKGROUND) < 0) { ALOGE("set_sched_policy failed: %s\n", strerror(errno)); exit(70); } if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_BACKGROUND) < 0) { ALOGE("setpriority failed: %s\n", strerror(errno)); exit(71); } } } static void close_all_fds(const std::vector<fd_t>& fds, const char* description) { for (size_t i = 0; i < fds.size(); i++) { if (close(fds[i]) != 0) { PLOG(WARNING) << "Failed to close fd for " << description << " at index " << i; } } } static fd_t open_profile_dir(const std::string& profile_dir) { fd_t profile_dir_fd = TEMP_FAILURE_RETRY(open(profile_dir.c_str(), O_PATH | O_CLOEXEC | O_DIRECTORY | O_NOFOLLOW)); if (profile_dir_fd < 0) { // In a multi-user environment, these directories can be created at // different points and it's possible we'll attempt to open a profile // dir before it exists. if (errno != ENOENT) { PLOG(ERROR) << "Failed to open profile_dir: " << profile_dir; } } return profile_dir_fd; } static fd_t open_primary_profile_file_from_dir(const std::string& profile_dir, mode_t open_mode) { fd_t profile_dir_fd = open_profile_dir(profile_dir); if (profile_dir_fd < 0) { return -1; } fd_t profile_fd = -1; std::string profile_file = create_primary_profile(profile_dir); profile_fd = TEMP_FAILURE_RETRY(open(profile_file.c_str(), open_mode | O_NOFOLLOW)); if (profile_fd == -1) { // It's not an error if the profile file does not exist. if (errno != ENOENT) { PLOG(ERROR) << "Failed to lstat profile_dir: " << profile_dir; } } // TODO(calin): use AutoCloseFD instead of closing the fd manually. if (close(profile_dir_fd) != 0) { PLOG(WARNING) << "Could not close profile dir " << profile_dir; } return profile_fd; } static fd_t open_primary_profile_file(userid_t user, const char* pkgname) { std::string profile_dir = create_data_user_profile_package_path(user, pkgname); return open_primary_profile_file_from_dir(profile_dir, O_RDONLY); } static fd_t open_reference_profile(uid_t uid, const char* pkgname, bool read_write) { std::string reference_profile_dir = create_data_ref_profile_package_path(pkgname); int flags = read_write ? O_RDWR | O_CREAT : O_RDONLY; fd_t fd = open_primary_profile_file_from_dir(reference_profile_dir, flags); if (fd < 0) { return -1; } if (read_write) { // Fix the owner. if (fchown(fd, uid, uid) < 0) { close(fd); return -1; } } return fd; } static void open_profile_files(uid_t uid, const char* pkgname, /*out*/ std::vector<fd_t>* profiles_fd, /*out*/ fd_t* reference_profile_fd) { // Open the reference profile in read-write mode as profman might need to save the merge. *reference_profile_fd = open_reference_profile(uid, pkgname, /*read_write*/ true); if (*reference_profile_fd < 0) { // We can't access the reference profile file. return; } std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr); for (auto user : users) { fd_t profile_fd = open_primary_profile_file(user, pkgname); // Add to the lists only if both fds are valid. if (profile_fd >= 0) { profiles_fd->push_back(profile_fd); } } } static void drop_capabilities(uid_t uid) { if (setgid(uid) != 0) { ALOGE("setgid(%d) failed in installd during dexopt\n", uid); exit(64); } if (setuid(uid) != 0) { ALOGE("setuid(%d) failed in installd during dexopt\n", uid); exit(65); } // drop capabilities struct __user_cap_header_struct capheader; struct __user_cap_data_struct capdata[2]; memset(&capheader, 0, sizeof(capheader)); memset(&capdata, 0, sizeof(capdata)); capheader.version = _LINUX_CAPABILITY_VERSION_3; if (capset(&capheader, &capdata[0]) < 0) { ALOGE("capset failed: %s\n", strerror(errno)); exit(66); } } static constexpr int PROFMAN_BIN_RETURN_CODE_COMPILE = 0; static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION = 1; static constexpr int PROFMAN_BIN_RETURN_CODE_BAD_PROFILES = 2; static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_IO = 3; static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING = 4; static void run_profman_merge(const std::vector<fd_t>& profiles_fd, fd_t reference_profile_fd) { static const size_t MAX_INT_LEN = 32; static const char* PROFMAN_BIN = "/system/bin/profman"; std::vector<std::string> profile_args(profiles_fd.size()); char profile_buf[strlen("--profile-file-fd=") + MAX_INT_LEN]; for (size_t k = 0; k < profiles_fd.size(); k++) { sprintf(profile_buf, "--profile-file-fd=%d", profiles_fd[k]); profile_args[k].assign(profile_buf); } char reference_profile_arg[strlen("--reference-profile-file-fd=") + MAX_INT_LEN]; sprintf(reference_profile_arg, "--reference-profile-file-fd=%d", reference_profile_fd); // program name, reference profile fd, the final NULL and the profile fds const char* argv[3 + profiles_fd.size()]; int i = 0; argv[i++] = PROFMAN_BIN; argv[i++] = reference_profile_arg; for (size_t k = 0; k < profile_args.size(); k++) { argv[i++] = profile_args[k].c_str(); } // Do not add after dex2oat_flags, they should override others for debugging. argv[i] = NULL; execv(PROFMAN_BIN, (char * const *)argv); ALOGE("execv(%s) failed: %s\n", PROFMAN_BIN, strerror(errno)); exit(68); /* only get here on exec failure */ } // Decides if profile guided compilation is needed or not based on existing profiles. // Returns true if there is enough information in the current profiles that worth // a re-compilation of the package. // If the return value is true all the current profiles would have been merged into // the reference profiles accessible with open_reference_profile(). static bool analyse_profiles(uid_t uid, const char* pkgname) { std::vector<fd_t> profiles_fd; fd_t reference_profile_fd = -1; open_profile_files(uid, pkgname, &profiles_fd, &reference_profile_fd); if (profiles_fd.empty() || (reference_profile_fd == -1)) { // Skip profile guided compilation because no profiles were found. // Or if the reference profile info couldn't be opened. close_all_fds(profiles_fd, "profiles_fd"); if ((reference_profile_fd != - 1) && (close(reference_profile_fd) != 0)) { PLOG(WARNING) << "Failed to close fd for reference profile"; } return false; } ALOGV("PROFMAN (MERGE): --- BEGIN '%s' ---\n", pkgname); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(uid); run_profman_merge(profiles_fd, reference_profile_fd); exit(68); /* only get here on exec failure */ } /* parent */ int return_code = wait_child(pid); bool need_to_compile = false; bool should_clear_current_profiles = false; bool should_clear_reference_profile = false; if (!WIFEXITED(return_code)) { LOG(WARNING) << "profman failed for package " << pkgname << ": " << return_code; } else { return_code = WEXITSTATUS(return_code); switch (return_code) { case PROFMAN_BIN_RETURN_CODE_COMPILE: need_to_compile = true; should_clear_current_profiles = true; should_clear_reference_profile = false; break; case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION: need_to_compile = false; should_clear_current_profiles = false; should_clear_reference_profile = false; break; case PROFMAN_BIN_RETURN_CODE_BAD_PROFILES: LOG(WARNING) << "Bad profiles for package " << pkgname; need_to_compile = false; should_clear_current_profiles = true; should_clear_reference_profile = true; break; case PROFMAN_BIN_RETURN_CODE_ERROR_IO: // fall-through case PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING: // Temporary IO problem (e.g. locking). Ignore but log a warning. LOG(WARNING) << "IO error while reading profiles for package " << pkgname; need_to_compile = false; should_clear_current_profiles = false; should_clear_reference_profile = false; break; default: // Unknown return code or error. Unlink profiles. LOG(WARNING) << "Unknown error code while processing profiles for package " << pkgname << ": " << return_code; need_to_compile = false; should_clear_current_profiles = true; should_clear_reference_profile = true; break; } } close_all_fds(profiles_fd, "profiles_fd"); if (close(reference_profile_fd) != 0) { PLOG(WARNING) << "Failed to close fd for reference profile"; } if (should_clear_current_profiles) { clear_current_profiles(pkgname); } if (should_clear_reference_profile) { clear_reference_profile(pkgname); } return need_to_compile; } static void run_profman_dump(const std::vector<fd_t>& profile_fds, fd_t reference_profile_fd, const std::vector<std::string>& dex_locations, const std::vector<fd_t>& apk_fds, fd_t output_fd) { std::vector<std::string> profman_args; static const char* PROFMAN_BIN = "/system/bin/profman"; profman_args.push_back(PROFMAN_BIN); profman_args.push_back("--dump-only"); profman_args.push_back(StringPrintf("--dump-output-to-fd=%d", output_fd)); if (reference_profile_fd != -1) { profman_args.push_back(StringPrintf("--reference-profile-file-fd=%d", reference_profile_fd)); } for (fd_t profile_fd : profile_fds) { profman_args.push_back(StringPrintf("--profile-file-fd=%d", profile_fd)); } for (const std::string& dex_location : dex_locations) { profman_args.push_back(StringPrintf("--dex-location=%s", dex_location.c_str())); } for (fd_t apk_fd : apk_fds) { profman_args.push_back(StringPrintf("--apk-fd=%d", apk_fd)); } const char **argv = new const char*[profman_args.size() + 1]; size_t i = 0; for (const std::string& profman_arg : profman_args) { argv[i++] = profman_arg.c_str(); } argv[i] = NULL; execv(PROFMAN_BIN, (char * const *)argv); ALOGE("execv(%s) failed: %s\n", PROFMAN_BIN, strerror(errno)); exit(68); /* only get here on exec failure */ } static const char* get_location_from_path(const char* path) { static constexpr char kLocationSeparator = '/'; const char *location = strrchr(path, kLocationSeparator); if (location == NULL) { return path; } else { // Skip the separator character. return location + 1; } } // Dumps the contents of a profile file, using pkgname's dex files for pretty // printing the result. bool dump_profile(uid_t uid, const char* pkgname, const char* code_path_string) { std::vector<fd_t> profile_fds; fd_t reference_profile_fd = -1; std::string out_file_name = StringPrintf("/data/misc/profman/%s.txt", pkgname); ALOGV("PROFMAN (DUMP): --- BEGIN '%s' ---\n", pkgname); open_profile_files(uid, pkgname, &profile_fds, &reference_profile_fd); const bool has_reference_profile = (reference_profile_fd != -1); const bool has_profiles = !profile_fds.empty(); if (!has_reference_profile && !has_profiles) { ALOGE("profman dump: no profiles to dump for '%s'", pkgname); return false; } fd_t output_fd = open(out_file_name.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW); if (fchmod(output_fd, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0) { ALOGE("installd cannot chmod '%s' dump_profile\n", out_file_name.c_str()); return false; } std::vector<std::string> code_full_paths = base::Split(code_path_string, ";"); std::vector<std::string> dex_locations; std::vector<fd_t> apk_fds; for (const std::string& code_full_path : code_full_paths) { const char* full_path = code_full_path.c_str(); fd_t apk_fd = open(full_path, O_RDONLY | O_NOFOLLOW); if (apk_fd == -1) { ALOGE("installd cannot open '%s'\n", full_path); return false; } dex_locations.push_back(get_location_from_path(full_path)); apk_fds.push_back(apk_fd); } pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(uid); run_profman_dump(profile_fds, reference_profile_fd, dex_locations, apk_fds, output_fd); exit(68); /* only get here on exec failure */ } /* parent */ close_all_fds(apk_fds, "apk_fds"); close_all_fds(profile_fds, "profile_fds"); if (close(reference_profile_fd) != 0) { PLOG(WARNING) << "Failed to close fd for reference profile"; } int return_code = wait_child(pid); if (!WIFEXITED(return_code)) { LOG(WARNING) << "profman failed for package " << pkgname << ": " << return_code; return false; } return true; } // Translate the given oat path to an art (app image) path. An empty string // denotes an error. static std::string create_image_filename(const std::string& oat_path) { // A standard dalvik-cache entry. Replace ".dex" with ".art." if (EndsWith(oat_path, ".dex")) { std::string art_path = oat_path; art_path.replace(art_path.length() - strlen("dex"), strlen("dex"), "art"); CHECK(EndsWith(art_path, ".art")); return art_path; } // An odex entry. Not that this may not be an extension, e.g., in the OTA // case (where the base name will have an extension for the B artifact). size_t odex_pos = oat_path.rfind(".odex"); if (odex_pos != std::string::npos) { std::string art_path = oat_path; art_path.replace(odex_pos, strlen(".odex"), ".art"); CHECK_NE(art_path.find(".art"), std::string::npos); return art_path; } // Don't know how to handle this. return ""; } static bool add_extension_to_file_name(char* file_name, const char* extension) { if (strlen(file_name) + strlen(extension) + 1 > PKG_PATH_MAX) { return false; } strcat(file_name, extension); return true; } static int open_output_file(const char* file_name, bool recreate, int permissions) { int flags = O_RDWR | O_CREAT; if (recreate) { if (unlink(file_name) < 0) { if (errno != ENOENT) { PLOG(ERROR) << "open_output_file: Couldn't unlink " << file_name; } } flags |= O_EXCL; } return open(file_name, flags, permissions); } static bool set_permissions_and_ownership(int fd, bool is_public, int uid, const char* path) { if (fchmod(fd, S_IRUSR|S_IWUSR|S_IRGRP | (is_public ? S_IROTH : 0)) < 0) { ALOGE("installd cannot chmod '%s' during dexopt\n", path); return false; } else if (fchown(fd, AID_SYSTEM, uid) < 0) { ALOGE("installd cannot chown '%s' during dexopt\n", path); return false; } return true; } static bool create_oat_out_path(const char* apk_path, const char* instruction_set, const char* oat_dir, /*out*/ char* out_path) { // Early best-effort check whether we can fit the the path into our buffers. // Note: the cache path will require an additional 5 bytes for ".swap", but we'll try to run // without a swap file, if necessary. Reference profiles file also add an extra ".prof" // extension to the cache path (5 bytes). if (strlen(apk_path) >= (PKG_PATH_MAX - 8)) { ALOGE("apk_path too long '%s'\n", apk_path); return false; } if (oat_dir != NULL && oat_dir[0] != '!') { if (validate_apk_path(oat_dir)) { ALOGE("invalid oat_dir '%s'\n", oat_dir); return false; } if (!calculate_oat_file_path(out_path, oat_dir, apk_path, instruction_set)) { return false; } } else { if (!create_cache_path(out_path, apk_path, instruction_set)) { return false; } } return true; } // TODO: Consider returning error codes. bool merge_profiles(uid_t uid, const char *pkgname) { return analyse_profiles(uid, pkgname); } static const char* parse_null(const char* arg) { if (strcmp(arg, "!") == 0) { return nullptr; } else { return arg; } } int dexopt(const char* const params[DEXOPT_PARAM_COUNT]) { return dexopt(params[0], // apk_path atoi(params[1]), // uid params[2], // pkgname params[3], // instruction_set atoi(params[4]), // dexopt_needed params[5], // oat_dir atoi(params[6]), // dexopt_flags params[7], // compiler_filter parse_null(params[8]), // volume_uuid parse_null(params[9])); // shared_libraries static_assert(DEXOPT_PARAM_COUNT == 10U, "Unexpected dexopt param count"); } // Helper for fd management. This is similar to a unique_fd in that it closes the file descriptor // on destruction. It will also run the given cleanup (unless told not to) after closing. // // Usage example: // // Dex2oatFileWrapper<std::function<void ()>> file(open(...), // [name]() { // unlink(name.c_str()); // }); // // Note: care needs to be taken about name, as it needs to have a lifetime longer than the // wrapper if captured as a reference. // // if (file.get() == -1) { // // Error opening... // } // // ... // if (error) { // // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will run // // and delete the file (after the fd is closed). // return -1; // } // // (Success case) // file.SetCleanup(false); // // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will not run // // (leaving the file around; after the fd is closed). // template <typename Cleanup> class Dex2oatFileWrapper { public: Dex2oatFileWrapper() : value_(-1), cleanup_(), do_cleanup_(true) { } Dex2oatFileWrapper(int value, Cleanup cleanup) : value_(value), cleanup_(cleanup), do_cleanup_(true) {} ~Dex2oatFileWrapper() { reset(-1); } int get() { return value_; } void SetCleanup(bool cleanup) { do_cleanup_ = cleanup; } void reset(int new_value) { if (value_ >= 0) { close(value_); } if (do_cleanup_ && cleanup_ != nullptr) { cleanup_(); } value_ = new_value; } void reset(int new_value, Cleanup new_cleanup) { if (value_ >= 0) { close(value_); } if (do_cleanup_ && cleanup_ != nullptr) { cleanup_(); } value_ = new_value; cleanup_ = new_cleanup; } private: int value_; Cleanup cleanup_; bool do_cleanup_; }; int dexopt(const char* apk_path, uid_t uid, const char* pkgname, const char* instruction_set, int dexopt_needed, const char* oat_dir, int dexopt_flags, const char* compiler_filter, const char* volume_uuid ATTRIBUTE_UNUSED, const char* shared_libraries) { bool is_public = ((dexopt_flags & DEXOPT_PUBLIC) != 0); bool vm_safe_mode = (dexopt_flags & DEXOPT_SAFEMODE) != 0; bool debuggable = (dexopt_flags & DEXOPT_DEBUGGABLE) != 0; bool boot_complete = (dexopt_flags & DEXOPT_BOOTCOMPLETE) != 0; bool profile_guided = (dexopt_flags & DEXOPT_PROFILE_GUIDED) != 0; // Don't use profile for vm_safe_mode. b/30688277 profile_guided = profile_guided && !vm_safe_mode; CHECK(pkgname != nullptr); CHECK(pkgname[0] != 0); // Public apps should not be compiled with profile information ever. Same goes for the special // package '*' used for the system server. Dex2oatFileWrapper<std::function<void ()>> reference_profile_fd; if (!is_public && pkgname[0] != '*') { // Open reference profile in read only mode as dex2oat does not get write permissions. const std::string pkgname_str(pkgname); reference_profile_fd.reset(open_reference_profile(uid, pkgname, /*read_write*/ false), [pkgname_str]() { clear_reference_profile(pkgname_str.c_str()); }); // Note: it's OK to not find a profile here. } if ((dexopt_flags & ~DEXOPT_MASK) != 0) { LOG_FATAL("dexopt flags contains unknown fields\n"); } char out_path[PKG_PATH_MAX]; if (!create_oat_out_path(apk_path, instruction_set, oat_dir, out_path)) { return false; } const char *input_file; char in_odex_path[PKG_PATH_MAX]; switch (dexopt_needed) { case DEXOPT_DEX2OAT_NEEDED: input_file = apk_path; break; case DEXOPT_PATCHOAT_NEEDED: if (!calculate_odex_file_path(in_odex_path, apk_path, instruction_set)) { return -1; } input_file = in_odex_path; break; case DEXOPT_SELF_PATCHOAT_NEEDED: input_file = out_path; break; default: ALOGE("Invalid dexopt needed: %d\n", dexopt_needed); return 72; } struct stat input_stat; memset(&input_stat, 0, sizeof(input_stat)); stat(input_file, &input_stat); base::unique_fd input_fd(open(input_file, O_RDONLY, 0)); if (input_fd.get() < 0) { ALOGE("installd cannot open '%s' for input during dexopt\n", input_file); return -1; } const std::string out_path_str(out_path); Dex2oatFileWrapper<std::function<void ()>> out_fd( open_output_file(out_path, /*recreate*/true, /*permissions*/0644), [out_path_str]() { unlink(out_path_str.c_str()); }); if (out_fd.get() < 0) { ALOGE("installd cannot open '%s' for output during dexopt\n", out_path); return -1; } if (!set_permissions_and_ownership(out_fd.get(), is_public, uid, out_path)) { return -1; } // Create a swap file if necessary. base::unique_fd swap_fd; if (ShouldUseSwapFileForDexopt()) { // Make sure there really is enough space. char swap_file_name[PKG_PATH_MAX]; strcpy(swap_file_name, out_path); if (add_extension_to_file_name(swap_file_name, ".swap")) { swap_fd.reset(open_output_file(swap_file_name, /*recreate*/true, /*permissions*/0600)); } if (swap_fd.get() < 0) { // Could not create swap file. Optimistically go on and hope that we can compile // without it. ALOGE("installd could not create '%s' for swap during dexopt\n", swap_file_name); } else { // Immediately unlink. We don't really want to hit flash. if (unlink(swap_file_name) < 0) { PLOG(ERROR) << "Couldn't unlink swap file " << swap_file_name; } } } // Avoid generating an app image for extract only since it will not contain any classes. Dex2oatFileWrapper<std::function<void ()>> image_fd; const std::string image_path = create_image_filename(out_path); if (!image_path.empty()) { char app_image_format[kPropertyValueMax]; bool have_app_image_format = get_property("dalvik.vm.appimageformat", app_image_format, NULL) > 0; // Use app images only if it is enabled (by a set image format) and we are compiling // profile-guided (so the app image doesn't conservatively contain all classes). if (profile_guided && have_app_image_format) { // Recreate is true since we do not want to modify a mapped image. If the app is // already running and we modify the image file, it can cause crashes (b/27493510). image_fd.reset(open_output_file(image_path.c_str(), true /*recreate*/, 0600 /*permissions*/), [image_path]() { unlink(image_path.c_str()); } ); if (image_fd.get() < 0) { // Could not create application image file. Go on since we can compile without // it. LOG(ERROR) << "installd could not create '" << image_path << "' for image file during dexopt"; } else if (!set_permissions_and_ownership(image_fd.get(), is_public, uid, image_path.c_str())) { image_fd.reset(-1); } } // If we have a valid image file path but no image fd, explicitly erase the image file. if (image_fd.get() < 0) { if (unlink(image_path.c_str()) < 0) { if (errno != ENOENT) { PLOG(ERROR) << "Couldn't unlink image file " << image_path; } } } } ALOGV("DexInv: --- BEGIN '%s' ---\n", input_file); pid_t pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ drop_capabilities(uid); SetDex2OatAndPatchOatScheduling(boot_complete); if (flock(out_fd.get(), LOCK_EX | LOCK_NB) != 0) { ALOGE("flock(%s) failed: %s\n", out_path, strerror(errno)); _exit(67); } if (dexopt_needed == DEXOPT_PATCHOAT_NEEDED || dexopt_needed == DEXOPT_SELF_PATCHOAT_NEEDED) { run_patchoat(input_fd.get(), out_fd.get(), input_file, out_path, pkgname, instruction_set); } else if (dexopt_needed == DEXOPT_DEX2OAT_NEEDED) { // Pass dex2oat the relative path to the input file. const char *input_file_name = get_location_from_path(input_file); run_dex2oat(input_fd.get(), out_fd.get(), image_fd.get(), input_file_name, out_path, swap_fd.get(), instruction_set, compiler_filter, vm_safe_mode, debuggable, boot_complete, reference_profile_fd.get(), shared_libraries); } else { ALOGE("Invalid dexopt needed: %d\n", dexopt_needed); _exit(73); } _exit(68); /* only get here on exec failure */ } else { int res = wait_child(pid); if (res == 0) { ALOGV("DexInv: --- END '%s' (success) ---\n", input_file); } else { ALOGE("DexInv: --- END '%s' --- status=0x%04x, process failed\n", input_file, res); return -1; } } struct utimbuf ut; ut.actime = input_stat.st_atime; ut.modtime = input_stat.st_mtime; utime(out_path, &ut); // We've been successful, don't delete output. out_fd.SetCleanup(false); image_fd.SetCleanup(false); reference_profile_fd.SetCleanup(false); return 0; } int mark_boot_complete(const char* instruction_set) { char boot_marker_path[PKG_PATH_MAX]; sprintf(boot_marker_path, "%s/%s/%s/.booting", android_data_dir.path, DALVIK_CACHE, instruction_set); ALOGV("mark_boot_complete : %s", boot_marker_path); if (unlink(boot_marker_path) != 0) { ALOGE("Unable to unlink boot marker at %s, error=%s", boot_marker_path, strerror(errno)); return -1; } return 0; } void mkinnerdirs(char* path, int basepos, mode_t mode, int uid, int gid, struct stat* statbuf) { while (path[basepos] != 0) { if (path[basepos] == '/') { path[basepos] = 0; if (lstat(path, statbuf) < 0) { ALOGV("Making directory: %s\n", path); if (mkdir(path, mode) == 0) { chown(path, uid, gid); } else { ALOGW("Unable to make directory %s: %s\n", path, strerror(errno)); } } path[basepos] = '/'; basepos++; } basepos++; } } int linklib(const char* uuid, const char* pkgname, const char* asecLibDir, int userId) { struct stat s, libStat; int rc = 0; std::string _pkgdir(create_data_user_ce_package_path(uuid, userId, pkgname)); std::string _libsymlink(_pkgdir + PKG_LIB_POSTFIX); const char* pkgdir = _pkgdir.c_str(); const char* libsymlink = _libsymlink.c_str(); if (stat(pkgdir, &s) < 0) return -1; if (chown(pkgdir, AID_INSTALL, AID_INSTALL) < 0) { ALOGE("failed to chown '%s': %s\n", pkgdir, strerror(errno)); return -1; } if (chmod(pkgdir, 0700) < 0) { ALOGE("linklib() 1: failed to chmod '%s': %s\n", pkgdir, strerror(errno)); rc = -1; goto out; } if (lstat(libsymlink, &libStat) < 0) { if (errno != ENOENT) { ALOGE("couldn't stat lib dir: %s\n", strerror(errno)); rc = -1; goto out; } } else { if (S_ISDIR(libStat.st_mode)) { if (delete_dir_contents(libsymlink, 1, NULL) < 0) { rc = -1; goto out; } } else if (S_ISLNK(libStat.st_mode)) { if (unlink(libsymlink) < 0) { ALOGE("couldn't unlink lib dir: %s\n", strerror(errno)); rc = -1; goto out; } } } if (symlink(asecLibDir, libsymlink) < 0) { ALOGE("couldn't symlink directory '%s' -> '%s': %s\n", libsymlink, asecLibDir, strerror(errno)); rc = -errno; goto out; } out: if (chmod(pkgdir, s.st_mode) < 0) { ALOGE("linklib() 2: failed to chmod '%s': %s\n", pkgdir, strerror(errno)); rc = -errno; } if (chown(pkgdir, s.st_uid, s.st_gid) < 0) { ALOGE("failed to chown '%s' : %s\n", pkgdir, strerror(errno)); return -errno; } return rc; } static void run_idmap(const char *target_apk, const char *overlay_apk, int idmap_fd) { static const char *IDMAP_BIN = "/system/bin/idmap"; static const size_t MAX_INT_LEN = 32; char idmap_str[MAX_INT_LEN]; snprintf(idmap_str, sizeof(idmap_str), "%d", idmap_fd); execl(IDMAP_BIN, IDMAP_BIN, "--fd", target_apk, overlay_apk, idmap_str, (char*)NULL); ALOGE("execl(%s) failed: %s\n", IDMAP_BIN, strerror(errno)); } // Transform string /a/b/c.apk to (prefix)/a@b@c.apk@(suffix) // eg /a/b/c.apk to /data/resource-cache/a@b@c.apk@idmap static int flatten_path(const char *prefix, const char *suffix, const char *overlay_path, char *idmap_path, size_t N) { if (overlay_path == NULL || idmap_path == NULL) { return -1; } const size_t len_overlay_path = strlen(overlay_path); // will access overlay_path + 1 further below; requires absolute path if (len_overlay_path < 2 || *overlay_path != '/') { return -1; } const size_t len_idmap_root = strlen(prefix); const size_t len_suffix = strlen(suffix); if (SIZE_MAX - len_idmap_root < len_overlay_path || SIZE_MAX - (len_idmap_root + len_overlay_path) < len_suffix) { // additions below would cause overflow return -1; } if (N < len_idmap_root + len_overlay_path + len_suffix) { return -1; } memset(idmap_path, 0, N); snprintf(idmap_path, N, "%s%s%s", prefix, overlay_path + 1, suffix); char *ch = idmap_path + len_idmap_root; while (*ch != '\0') { if (*ch == '/') { *ch = '@'; } ++ch; } return 0; } int idmap(const char *target_apk, const char *overlay_apk, uid_t uid) { ALOGV("idmap target_apk=%s overlay_apk=%s uid=%d\n", target_apk, overlay_apk, uid); int idmap_fd = -1; char idmap_path[PATH_MAX]; if (flatten_path(IDMAP_PREFIX, IDMAP_SUFFIX, overlay_apk, idmap_path, sizeof(idmap_path)) == -1) { ALOGE("idmap cannot generate idmap path for overlay %s\n", overlay_apk); goto fail; } unlink(idmap_path); idmap_fd = open(idmap_path, O_RDWR | O_CREAT | O_EXCL, 0644); if (idmap_fd < 0) { ALOGE("idmap cannot open '%s' for output: %s\n", idmap_path, strerror(errno)); goto fail; } if (fchown(idmap_fd, AID_SYSTEM, uid) < 0) { ALOGE("idmap cannot chown '%s'\n", idmap_path); goto fail; } if (fchmod(idmap_fd, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0) { ALOGE("idmap cannot chmod '%s'\n", idmap_path); goto fail; } pid_t pid; pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ if (setgid(uid) != 0) { ALOGE("setgid(%d) failed during idmap\n", uid); exit(1); } if (setuid(uid) != 0) { ALOGE("setuid(%d) failed during idmap\n", uid); exit(1); } if (flock(idmap_fd, LOCK_EX | LOCK_NB) != 0) { ALOGE("flock(%s) failed during idmap: %s\n", idmap_path, strerror(errno)); exit(1); } run_idmap(target_apk, overlay_apk, idmap_fd); exit(1); /* only if exec call to idmap failed */ } else { int status = wait_child(pid); if (status != 0) { ALOGE("idmap failed, status=0x%04x\n", status); goto fail; } } close(idmap_fd); return 0; fail: if (idmap_fd >= 0) { close(idmap_fd); unlink(idmap_path); } return -1; } int restorecon_app_data(const char* uuid, const char* pkgName, userid_t userid, int flags, appid_t appid, const char* seinfo) { int res = 0; // SELINUX_ANDROID_RESTORECON_DATADATA flag is set by libselinux. Not needed here. unsigned int seflags = SELINUX_ANDROID_RESTORECON_RECURSE; if (!pkgName || !seinfo) { ALOGE("Package name or seinfo tag is null when trying to restorecon."); return -1; } uid_t uid = multiuser_get_uid(userid, appid); if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid, userid, pkgName); if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, seflags) < 0) { PLOG(ERROR) << "restorecon failed for " << path; res = -1; } } if (flags & FLAG_STORAGE_DE) { auto path = create_data_user_de_package_path(uuid, userid, pkgName); if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, seflags) < 0) { PLOG(ERROR) << "restorecon failed for " << path; // TODO: include result once 25796509 is fixed } } return res; } int create_oat_dir(const char* oat_dir, const char* instruction_set) { char oat_instr_dir[PKG_PATH_MAX]; if (validate_apk_path(oat_dir)) { ALOGE("invalid apk path '%s' (bad prefix)\n", oat_dir); return -1; } if (fs_prepare_dir(oat_dir, S_IRWXU | S_IRWXG | S_IXOTH, AID_SYSTEM, AID_INSTALL)) { return -1; } if (selinux_android_restorecon(oat_dir, 0)) { ALOGE("cannot restorecon dir '%s': %s\n", oat_dir, strerror(errno)); return -1; } snprintf(oat_instr_dir, PKG_PATH_MAX, "%s/%s", oat_dir, instruction_set); if (fs_prepare_dir(oat_instr_dir, S_IRWXU | S_IRWXG | S_IXOTH, AID_SYSTEM, AID_INSTALL)) { return -1; } return 0; } int rm_package_dir(const char* apk_path) { if (validate_apk_path(apk_path)) { ALOGE("invalid apk path '%s' (bad prefix)\n", apk_path); return -1; } return delete_dir_contents(apk_path, 1 /* also_delete_dir */ , NULL /* exclusion_predicate */); } int link_file(const char* relative_path, const char* from_base, const char* to_base) { char from_path[PKG_PATH_MAX]; char to_path[PKG_PATH_MAX]; snprintf(from_path, PKG_PATH_MAX, "%s/%s", from_base, relative_path); snprintf(to_path, PKG_PATH_MAX, "%s/%s", to_base, relative_path); if (validate_apk_path_subdirs(from_path)) { ALOGE("invalid app data sub-path '%s' (bad prefix)\n", from_path); return -1; } if (validate_apk_path_subdirs(to_path)) { ALOGE("invalid app data sub-path '%s' (bad prefix)\n", to_path); return -1; } const int ret = link(from_path, to_path); if (ret < 0) { ALOGE("link(%s, %s) failed : %s", from_path, to_path, strerror(errno)); return -1; } return 0; } // Helper for move_ab, so that we can have common failure-case cleanup. static bool unlink_and_rename(const char* from, const char* to) { // Check whether "from" exists, and if so whether it's regular. If it is, unlink. Otherwise, // return a failure. struct stat s; if (stat(to, &s) == 0) { if (!S_ISREG(s.st_mode)) { LOG(ERROR) << from << " is not a regular file to replace for A/B."; return false; } if (unlink(to) != 0) { LOG(ERROR) << "Could not unlink " << to << " to move A/B."; return false; } } else { // This may be a permission problem. We could investigate the error code, but we'll just // let the rename failure do the work for us. } // Try to rename "to" to "from." if (rename(from, to) != 0) { PLOG(ERROR) << "Could not rename " << from << " to " << to; return false; } return true; } // Move/rename a B artifact (from) to an A artifact (to). static bool move_ab_path(const std::string& b_path, const std::string& a_path) { // Check whether B exists. { struct stat s; if (stat(b_path.c_str(), &s) != 0) { // Silently ignore for now. The service calling this isn't smart enough to understand // lack of artifacts at the moment. return false; } if (!S_ISREG(s.st_mode)) { LOG(ERROR) << "A/B artifact " << b_path << " is not a regular file."; // Try to unlink, but swallow errors. unlink(b_path.c_str()); return false; } } // Rename B to A. if (!unlink_and_rename(b_path.c_str(), a_path.c_str())) { // Delete the b_path so we don't try again (or fail earlier). if (unlink(b_path.c_str()) != 0) { PLOG(ERROR) << "Could not unlink " << b_path; } return false; } return true; } int move_ab(const char* apk_path, const char* instruction_set, const char* oat_dir) { if (apk_path == nullptr || instruction_set == nullptr || oat_dir == nullptr) { LOG(ERROR) << "Cannot move_ab with null input"; return -1; } // Get the current slot suffix. No suffix, no A/B. std::string slot_suffix; { char buf[kPropertyValueMax]; if (get_property("ro.boot.slot_suffix", buf, nullptr) <= 0) { return -1; } slot_suffix = buf; if (!ValidateTargetSlotSuffix(slot_suffix)) { LOG(ERROR) << "Target slot suffix not legal: " << slot_suffix; return -1; } } // Validate other inputs. if (validate_apk_path(apk_path) != 0) { LOG(ERROR) << "invalid apk_path " << apk_path; return -1; } if (validate_apk_path(oat_dir) != 0) { LOG(ERROR) << "invalid oat_dir " << oat_dir; return -1; } char a_path[PKG_PATH_MAX]; if (!calculate_oat_file_path(a_path, oat_dir, apk_path, instruction_set)) { return -1; } const std::string a_image_path = create_image_filename(a_path); // B path = A path + slot suffix. const std::string b_path = StringPrintf("%s.%s", a_path, slot_suffix.c_str()); const std::string b_image_path = StringPrintf("%s.%s", a_image_path.c_str(), slot_suffix.c_str()); bool oat_success = move_ab_path(b_path, a_path); bool success; if (oat_success) { // Note: we can live without an app image. As such, ignore failure to move the image file. // If we decide to require the app image, or the app image being moved correctly, // then change accordingly. constexpr bool kIgnoreAppImageFailure = true; bool art_success = true; if (!a_image_path.empty()) { art_success = move_ab_path(b_image_path, a_image_path); if (!art_success) { unlink(a_image_path.c_str()); } } success = art_success || kIgnoreAppImageFailure; } else { // Cleanup: delete B image, ignore errors. unlink(b_image_path.c_str()); success = false; } return success ? 0 : -1; } bool delete_odex(const char *apk_path, const char *instruction_set, const char *oat_dir) { // Delete the oat/odex file. char out_path[PKG_PATH_MAX]; if (!create_oat_out_path(apk_path, instruction_set, oat_dir, out_path)) { return false; } // In case of a permission failure report the issue. Otherwise just print a warning. auto unlink_and_check = [](const char* path) -> bool { int result = unlink(path); if (result != 0) { if (errno == EACCES || errno == EPERM) { PLOG(ERROR) << "Could not unlink " << path; return false; } PLOG(WARNING) << "Could not unlink " << path; } return true; }; // Delete the oat/odex file. bool return_value_oat = unlink_and_check(out_path); // Derive and delete the app image. bool return_value_art = unlink_and_check(create_image_filename(out_path).c_str()); // Report success. return return_value_oat && return_value_art; } } // namespace installd } // namespace android