/* ** Copyright 2008, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "utils.h" #include <errno.h> #include <fcntl.h> #include <stdlib.h> #include <sys/stat.h> #include <sys/wait.h> #include <sys/xattr.h> #if defined(__APPLE__) #include <sys/mount.h> #else #include <sys/statfs.h> #endif #include <android-base/logging.h> #include <android-base/stringprintf.h> #include <cutils/fs.h> #include <cutils/log.h> #include <private/android_filesystem_config.h> #include "globals.h" // extern variables. #ifndef LOG_TAG #define LOG_TAG "installd" #endif #define CACHE_NOISY(x) //x #define DEBUG_XATTRS 0 using android::base::StringPrintf; namespace android { namespace installd { /** * Check that given string is valid filename, and that it attempts no * parent or child directory traversal. */ static bool is_valid_filename(const std::string& name) { if (name.empty() || (name == ".") || (name == "..") || (name.find('/') != std::string::npos)) { return false; } else { return true; } } static void check_package_name(const char* package_name) { CHECK(is_valid_filename(package_name)); CHECK(is_valid_package_name(package_name) == 0); } /** * Create the path name where package app contents should be stored for * the given volume UUID and package name. An empty UUID is assumed to * be internal storage. */ std::string create_data_app_package_path(const char* volume_uuid, const char* package_name) { check_package_name(package_name); return StringPrintf("%s/%s", create_data_app_path(volume_uuid).c_str(), package_name); } /** * Create the path name where package data should be stored for the given * volume UUID, package name, and user ID. An empty UUID is assumed to be * internal storage. */ std::string create_data_user_ce_package_path(const char* volume_uuid, userid_t user, const char* package_name) { check_package_name(package_name); return StringPrintf("%s/%s", create_data_user_ce_path(volume_uuid, user).c_str(), package_name); } std::string create_data_user_ce_package_path(const char* volume_uuid, userid_t user, const char* package_name, ino_t ce_data_inode) { // For testing purposes, rely on the inode when defined; this could be // optimized to use access() in the future. auto fallback = create_data_user_ce_package_path(volume_uuid, user, package_name); if (ce_data_inode != 0) { auto user_path = create_data_user_ce_path(volume_uuid, user); DIR* dir = opendir(user_path.c_str()); if (dir == nullptr) { PLOG(ERROR) << "Failed to opendir " << user_path; return fallback; } struct dirent* ent; while ((ent = readdir(dir))) { if (ent->d_ino == ce_data_inode) { auto resolved = StringPrintf("%s/%s", user_path.c_str(), ent->d_name); #if DEBUG_XATTRS if (resolved != fallback) { LOG(DEBUG) << "Resolved path " << resolved << " for inode " << ce_data_inode << " instead of " << fallback; } #endif closedir(dir); return resolved; } } LOG(WARNING) << "Failed to resolve inode " << ce_data_inode << "; using " << fallback; closedir(dir); return fallback; } else { return fallback; } } std::string create_data_user_de_package_path(const char* volume_uuid, userid_t user, const char* package_name) { check_package_name(package_name); return StringPrintf("%s/%s", create_data_user_de_path(volume_uuid, user).c_str(), package_name); } int create_pkg_path(char path[PKG_PATH_MAX], const char *pkgname, const char *postfix, userid_t userid) { if (is_valid_package_name(pkgname) != 0) { path[0] = '\0'; return -1; } std::string _tmp(create_data_user_ce_package_path(nullptr, userid, pkgname) + postfix); const char* tmp = _tmp.c_str(); if (strlen(tmp) >= PKG_PATH_MAX) { path[0] = '\0'; return -1; } else { strcpy(path, tmp); return 0; } } std::string create_data_path(const char* volume_uuid) { if (volume_uuid == nullptr) { return "/data"; } else { CHECK(is_valid_filename(volume_uuid)); return StringPrintf("/mnt/expand/%s", volume_uuid); } } /** * Create the path name for app data. */ std::string create_data_app_path(const char* volume_uuid) { return StringPrintf("%s/app", create_data_path(volume_uuid).c_str()); } /** * Create the path name for user data for a certain userid. */ std::string create_data_user_ce_path(const char* volume_uuid, userid_t userid) { std::string data(create_data_path(volume_uuid)); if (volume_uuid == nullptr) { if (userid == 0) { return StringPrintf("%s/data", data.c_str()); } else { return StringPrintf("%s/user/%u", data.c_str(), userid); } } else { return StringPrintf("%s/user/%u", data.c_str(), userid); } } /** * Create the path name for device encrypted user data for a certain userid. */ std::string create_data_user_de_path(const char* volume_uuid, userid_t userid) { std::string data(create_data_path(volume_uuid)); return StringPrintf("%s/user_de/%u", data.c_str(), userid); } /** * Create the path name for media for a certain userid. */ std::string create_data_media_path(const char* volume_uuid, userid_t userid) { return StringPrintf("%s/media/%u", create_data_path(volume_uuid).c_str(), userid); } std::string create_data_misc_legacy_path(userid_t userid) { return StringPrintf("%s/misc/user/%u", create_data_path(nullptr).c_str(), userid); } std::string create_data_user_profiles_path(userid_t userid) { return StringPrintf("%s/cur/%u", android_profiles_dir.path, userid); } std::string create_data_user_profile_package_path(userid_t user, const char* package_name) { check_package_name(package_name); return StringPrintf("%s/%s",create_data_user_profiles_path(user).c_str(), package_name); } std::string create_data_ref_profile_package_path(const char* package_name) { check_package_name(package_name); return StringPrintf("%s/ref/%s", android_profiles_dir.path, package_name); } std::vector<userid_t> get_known_users(const char* volume_uuid) { std::vector<userid_t> users; // We always have an owner users.push_back(0); std::string path(create_data_path(volume_uuid) + "/" + SECONDARY_USER_PREFIX); DIR* dir = opendir(path.c_str()); if (dir == NULL) { // Unable to discover other users, but at least return owner PLOG(ERROR) << "Failed to opendir " << path; return users; } struct dirent* ent; while ((ent = readdir(dir))) { if (ent->d_type != DT_DIR) { continue; } char* end; userid_t user = strtol(ent->d_name, &end, 10); if (*end == '\0' && user != 0) { LOG(DEBUG) << "Found valid user " << user; users.push_back(user); } } closedir(dir); return users; } int create_move_path(char path[PKG_PATH_MAX], const char* pkgname, const char* leaf, userid_t userid ATTRIBUTE_UNUSED) { if ((android_data_dir.len + strlen(PRIMARY_USER_PREFIX) + strlen(pkgname) + strlen(leaf) + 1) >= PKG_PATH_MAX) { return -1; } sprintf(path, "%s%s%s/%s", android_data_dir.path, PRIMARY_USER_PREFIX, pkgname, leaf); return 0; } /** * Checks whether the package name is valid. Returns -1 on error and * 0 on success. */ int is_valid_package_name(const char* pkgname) { const char *x = pkgname; int alpha = -1; if (strlen(pkgname) > PKG_NAME_MAX) { return -1; } while (*x) { if (isalnum(*x) || (*x == '_')) { /* alphanumeric or underscore are fine */ } else if (*x == '.') { if ((x == pkgname) || (x[1] == '.') || (x[1] == 0)) { /* periods must not be first, last, or doubled */ ALOGE("invalid package name '%s'\n", pkgname); return -1; } } else if (*x == '-') { /* Suffix -X is fine to let versioning of packages. But whatever follows should be alphanumeric.*/ alpha = 1; } else { /* anything not A-Z, a-z, 0-9, _, or . is invalid */ ALOGE("invalid package name '%s'\n", pkgname); return -1; } x++; } if (alpha == 1) { // Skip current character x++; while (*x) { if (!isalnum(*x)) { ALOGE("invalid package name '%s' should include only numbers after -\n", pkgname); return -1; } x++; } } return 0; } static int _delete_dir_contents(DIR *d, int (*exclusion_predicate)(const char *name, const int is_dir)) { int result = 0; struct dirent *de; int dfd; dfd = dirfd(d); if (dfd < 0) return -1; while ((de = readdir(d))) { const char *name = de->d_name; /* check using the exclusion predicate, if provided */ if (exclusion_predicate && exclusion_predicate(name, (de->d_type == DT_DIR))) { continue; } if (de->d_type == DT_DIR) { int subfd; DIR *subdir; /* always skip "." and ".." */ if (name[0] == '.') { if (name[1] == 0) continue; if ((name[1] == '.') && (name[2] == 0)) continue; } subfd = openat(dfd, name, O_RDONLY | O_DIRECTORY | O_NOFOLLOW | O_CLOEXEC); if (subfd < 0) { ALOGE("Couldn't openat %s: %s\n", name, strerror(errno)); result = -1; continue; } subdir = fdopendir(subfd); if (subdir == NULL) { ALOGE("Couldn't fdopendir %s: %s\n", name, strerror(errno)); close(subfd); result = -1; continue; } if (_delete_dir_contents(subdir, exclusion_predicate)) { result = -1; } closedir(subdir); if (unlinkat(dfd, name, AT_REMOVEDIR) < 0) { ALOGE("Couldn't unlinkat %s: %s\n", name, strerror(errno)); result = -1; } } else { if (unlinkat(dfd, name, 0) < 0) { ALOGE("Couldn't unlinkat %s: %s\n", name, strerror(errno)); result = -1; } } } return result; } int delete_dir_contents(const std::string& pathname, bool ignore_if_missing) { return delete_dir_contents(pathname.c_str(), 0, NULL, ignore_if_missing); } int delete_dir_contents_and_dir(const std::string& pathname, bool ignore_if_missing) { return delete_dir_contents(pathname.c_str(), 1, NULL, ignore_if_missing); } int delete_dir_contents(const char *pathname, int also_delete_dir, int (*exclusion_predicate)(const char*, const int), bool ignore_if_missing) { int res = 0; DIR *d; d = opendir(pathname); if (d == NULL) { if (ignore_if_missing && (errno == ENOENT)) { return 0; } ALOGE("Couldn't opendir %s: %s\n", pathname, strerror(errno)); return -errno; } res = _delete_dir_contents(d, exclusion_predicate); closedir(d); if (also_delete_dir) { if (rmdir(pathname)) { ALOGE("Couldn't rmdir %s: %s\n", pathname, strerror(errno)); res = -1; } } return res; } int delete_dir_contents_fd(int dfd, const char *name) { int fd, res; DIR *d; fd = openat(dfd, name, O_RDONLY | O_DIRECTORY | O_NOFOLLOW | O_CLOEXEC); if (fd < 0) { ALOGE("Couldn't openat %s: %s\n", name, strerror(errno)); return -1; } d = fdopendir(fd); if (d == NULL) { ALOGE("Couldn't fdopendir %s: %s\n", name, strerror(errno)); close(fd); return -1; } res = _delete_dir_contents(d, 0); closedir(d); return res; } static int _copy_owner_permissions(int srcfd, int dstfd) { struct stat st; if (fstat(srcfd, &st) != 0) { return -1; } if (fchmod(dstfd, st.st_mode) != 0) { return -1; } return 0; } static int _copy_dir_files(int sdfd, int ddfd, uid_t owner, gid_t group) { int result = 0; if (_copy_owner_permissions(sdfd, ddfd) != 0) { ALOGE("_copy_dir_files failed to copy dir permissions\n"); } if (fchown(ddfd, owner, group) != 0) { ALOGE("_copy_dir_files failed to change dir owner\n"); } DIR *ds = fdopendir(sdfd); if (ds == NULL) { ALOGE("Couldn't fdopendir: %s\n", strerror(errno)); return -1; } struct dirent *de; while ((de = readdir(ds))) { if (de->d_type != DT_REG) { continue; } const char *name = de->d_name; int fsfd = openat(sdfd, name, O_RDONLY | O_NOFOLLOW | O_CLOEXEC); int fdfd = openat(ddfd, name, O_WRONLY | O_NOFOLLOW | O_CLOEXEC | O_CREAT, 0600); if (fsfd == -1 || fdfd == -1) { ALOGW("Couldn't copy %s: %s\n", name, strerror(errno)); } else { if (_copy_owner_permissions(fsfd, fdfd) != 0) { ALOGE("Failed to change file permissions\n"); } if (fchown(fdfd, owner, group) != 0) { ALOGE("Failed to change file owner\n"); } char buf[8192]; ssize_t size; while ((size = read(fsfd, buf, sizeof(buf))) > 0) { write(fdfd, buf, size); } if (size < 0) { ALOGW("Couldn't copy %s: %s\n", name, strerror(errno)); result = -1; } } close(fdfd); close(fsfd); } return result; } int copy_dir_files(const char *srcname, const char *dstname, uid_t owner, uid_t group) { int res = 0; DIR *ds = NULL; DIR *dd = NULL; ds = opendir(srcname); if (ds == NULL) { ALOGE("Couldn't opendir %s: %s\n", srcname, strerror(errno)); return -errno; } mkdir(dstname, 0600); dd = opendir(dstname); if (dd == NULL) { ALOGE("Couldn't opendir %s: %s\n", dstname, strerror(errno)); closedir(ds); return -errno; } int sdfd = dirfd(ds); int ddfd = dirfd(dd); if (sdfd != -1 && ddfd != -1) { res = _copy_dir_files(sdfd, ddfd, owner, group); } else { res = -errno; } closedir(dd); closedir(ds); return res; } int64_t data_disk_free(const std::string& data_path) { struct statfs sfs; if (statfs(data_path.c_str(), &sfs) == 0) { return sfs.f_bavail * sfs.f_bsize; } else { PLOG(ERROR) << "Couldn't statfs " << data_path; return -1; } } cache_t* start_cache_collection() { cache_t* cache = (cache_t*)calloc(1, sizeof(cache_t)); return cache; } #define CACHE_BLOCK_SIZE (512*1024) static void* _cache_malloc(cache_t* cache, size_t len) { len = (len+3)&~3; if (len > (CACHE_BLOCK_SIZE/2)) { // It doesn't make sense to try to put this allocation into one // of our blocks, because it is so big. Instead, make a new dedicated // block for it. int8_t* res = (int8_t*)malloc(len+sizeof(void*)); if (res == NULL) { return NULL; } CACHE_NOISY(ALOGI("Allocated large cache mem block: %p size %zu", res, len)); // Link it into our list of blocks, not disrupting the current one. if (cache->memBlocks == NULL) { *(void**)res = NULL; cache->memBlocks = res; } else { *(void**)res = *(void**)cache->memBlocks; *(void**)cache->memBlocks = res; } return res + sizeof(void*); } int8_t* res = cache->curMemBlockAvail; int8_t* nextPos = res + len; if (cache->memBlocks == NULL || nextPos > cache->curMemBlockEnd) { int8_t* newBlock = (int8_t*) malloc(CACHE_BLOCK_SIZE); if (newBlock == NULL) { return NULL; } CACHE_NOISY(ALOGI("Allocated new cache mem block: %p", newBlock)); *(void**)newBlock = cache->memBlocks; cache->memBlocks = newBlock; res = cache->curMemBlockAvail = newBlock + sizeof(void*); cache->curMemBlockEnd = newBlock + CACHE_BLOCK_SIZE; nextPos = res + len; } CACHE_NOISY(ALOGI("cache_malloc: ret %p size %zu, block=%p, nextPos=%p", res, len, cache->memBlocks, nextPos)); cache->curMemBlockAvail = nextPos; return res; } static void* _cache_realloc(cache_t* cache, void* cur, size_t origLen, size_t len) { // This isn't really a realloc, but it is good enough for our purposes here. void* alloc = _cache_malloc(cache, len); if (alloc != NULL && cur != NULL) { memcpy(alloc, cur, origLen < len ? origLen : len); } return alloc; } static void _inc_num_cache_collected(cache_t* cache) { cache->numCollected++; if ((cache->numCollected%20000) == 0) { ALOGI("Collected cache so far: %zd directories, %zd files", cache->numDirs, cache->numFiles); } } static cache_dir_t* _add_cache_dir_t(cache_t* cache, cache_dir_t* parent, const char *name) { size_t nameLen = strlen(name); cache_dir_t* dir = (cache_dir_t*)_cache_malloc(cache, sizeof(cache_dir_t)+nameLen+1); if (dir != NULL) { dir->parent = parent; dir->childCount = 0; dir->hiddenCount = 0; dir->deleted = 0; strcpy(dir->name, name); if (cache->numDirs >= cache->availDirs) { size_t newAvail = cache->availDirs < 1000 ? 1000 : cache->availDirs*2; cache_dir_t** newDirs = (cache_dir_t**)_cache_realloc(cache, cache->dirs, cache->availDirs*sizeof(cache_dir_t*), newAvail*sizeof(cache_dir_t*)); if (newDirs == NULL) { ALOGE("Failure growing cache dirs array for %s\n", name); return NULL; } cache->availDirs = newAvail; cache->dirs = newDirs; } cache->dirs[cache->numDirs] = dir; cache->numDirs++; if (parent != NULL) { parent->childCount++; } _inc_num_cache_collected(cache); } else { ALOGE("Failure allocating cache_dir_t for %s\n", name); } return dir; } static cache_file_t* _add_cache_file_t(cache_t* cache, cache_dir_t* dir, time_t modTime, const char *name) { size_t nameLen = strlen(name); cache_file_t* file = (cache_file_t*)_cache_malloc(cache, sizeof(cache_file_t)+nameLen+1); if (file != NULL) { file->dir = dir; file->modTime = modTime; strcpy(file->name, name); if (cache->numFiles >= cache->availFiles) { size_t newAvail = cache->availFiles < 1000 ? 1000 : cache->availFiles*2; cache_file_t** newFiles = (cache_file_t**)_cache_realloc(cache, cache->files, cache->availFiles*sizeof(cache_file_t*), newAvail*sizeof(cache_file_t*)); if (newFiles == NULL) { ALOGE("Failure growing cache file array for %s\n", name); return NULL; } cache->availFiles = newAvail; cache->files = newFiles; } CACHE_NOISY(ALOGI("Setting file %p at position %zd in array %p", file, cache->numFiles, cache->files)); cache->files[cache->numFiles] = file; cache->numFiles++; dir->childCount++; _inc_num_cache_collected(cache); } else { ALOGE("Failure allocating cache_file_t for %s\n", name); } return file; } static int _add_cache_files(cache_t *cache, cache_dir_t *parentDir, const char *dirName, DIR* dir, char *pathBase, char *pathPos, size_t pathAvailLen) { struct dirent *de; cache_dir_t* cacheDir = NULL; int dfd; CACHE_NOISY(ALOGI("_add_cache_files: parent=%p dirName=%s dir=%p pathBase=%s", parentDir, dirName, dir, pathBase)); dfd = dirfd(dir); if (dfd < 0) return 0; // Sub-directories always get added to the data structure, so if they // are empty we will know about them to delete them later. cacheDir = _add_cache_dir_t(cache, parentDir, dirName); while ((de = readdir(dir))) { const char *name = de->d_name; if (de->d_type == DT_DIR) { int subfd; DIR *subdir; /* always skip "." and ".." */ if (name[0] == '.') { if (name[1] == 0) continue; if ((name[1] == '.') && (name[2] == 0)) continue; } subfd = openat(dfd, name, O_RDONLY | O_DIRECTORY | O_NOFOLLOW | O_CLOEXEC); if (subfd < 0) { ALOGE("Couldn't openat %s: %s\n", name, strerror(errno)); continue; } subdir = fdopendir(subfd); if (subdir == NULL) { ALOGE("Couldn't fdopendir %s: %s\n", name, strerror(errno)); close(subfd); continue; } if (cacheDir == NULL) { cacheDir = _add_cache_dir_t(cache, parentDir, dirName); } if (cacheDir != NULL) { // Update pathBase for the new path... this may change dirName // if that is also pointing to the path, but we are done with it // now. size_t finallen = snprintf(pathPos, pathAvailLen, "/%s", name); CACHE_NOISY(ALOGI("Collecting dir %s\n", pathBase)); if (finallen < pathAvailLen) { _add_cache_files(cache, cacheDir, name, subdir, pathBase, pathPos+finallen, pathAvailLen-finallen); } else { // Whoops, the final path is too long! We'll just delete // this directory. ALOGW("Cache dir %s truncated in path %s; deleting dir\n", name, pathBase); _delete_dir_contents(subdir, NULL); if (unlinkat(dfd, name, AT_REMOVEDIR) < 0) { ALOGE("Couldn't unlinkat %s: %s\n", name, strerror(errno)); } } } closedir(subdir); } else if (de->d_type == DT_REG) { // Skip files that start with '.'; they will be deleted if // their entire directory is deleted. This allows for metadata // like ".nomedia" to remain in the directory until the entire // directory is deleted. if (cacheDir == NULL) { cacheDir = _add_cache_dir_t(cache, parentDir, dirName); } if (name[0] == '.') { cacheDir->hiddenCount++; continue; } if (cacheDir != NULL) { // Build final full path for file... this may change dirName // if that is also pointing to the path, but we are done with it // now. size_t finallen = snprintf(pathPos, pathAvailLen, "/%s", name); CACHE_NOISY(ALOGI("Collecting file %s\n", pathBase)); if (finallen < pathAvailLen) { struct stat s; if (stat(pathBase, &s) >= 0) { _add_cache_file_t(cache, cacheDir, s.st_mtime, name); } else { ALOGW("Unable to stat cache file %s; deleting\n", pathBase); if (unlink(pathBase) < 0) { ALOGE("Couldn't unlink %s: %s\n", pathBase, strerror(errno)); } } } else { // Whoops, the final path is too long! We'll just delete // this file. ALOGW("Cache file %s truncated in path %s; deleting\n", name, pathBase); if (unlinkat(dfd, name, 0) < 0) { *pathPos = 0; ALOGE("Couldn't unlinkat %s in %s: %s\n", name, pathBase, strerror(errno)); } } } } else { cacheDir->hiddenCount++; } } return 0; } int get_path_inode(const std::string& path, ino_t *inode) { struct stat buf; memset(&buf, 0, sizeof(buf)); if (stat(path.c_str(), &buf) != 0) { PLOG(WARNING) << "Failed to stat " << path; return -1; } else { *inode = buf.st_ino; return 0; } } /** * Write the inode of a specific child file into the given xattr on the * parent directory. This allows you to find the child later, even if its * name is encrypted. */ int write_path_inode(const std::string& parent, const char* name, const char* inode_xattr) { ino_t inode = 0; uint64_t inode_raw = 0; auto path = StringPrintf("%s/%s", parent.c_str(), name); if (get_path_inode(path, &inode) != 0) { // Path probably doesn't exist yet; ignore return 0; } // Check to see if already set correctly if (getxattr(parent.c_str(), inode_xattr, &inode_raw, sizeof(inode_raw)) == sizeof(inode_raw)) { if (inode_raw == inode) { // Already set correctly; skip writing return 0; } else { PLOG(WARNING) << "Mismatched inode value; found " << inode << " on disk but marked value was " << inode_raw << "; overwriting"; } } inode_raw = inode; if (setxattr(parent.c_str(), inode_xattr, &inode_raw, sizeof(inode_raw), 0) != 0 && errno != EOPNOTSUPP) { PLOG(ERROR) << "Failed to write xattr " << inode_xattr << " at " << parent; return -1; } else { return 0; } } /** * Read the inode of a specific child file from the given xattr on the * parent directory. Returns a currently valid path for that child, which * might have an encrypted name. */ std::string read_path_inode(const std::string& parent, const char* name, const char* inode_xattr) { ino_t inode = 0; uint64_t inode_raw = 0; auto fallback = StringPrintf("%s/%s", parent.c_str(), name); // Lookup the inode value written earlier if (getxattr(parent.c_str(), inode_xattr, &inode_raw, sizeof(inode_raw)) == sizeof(inode_raw)) { inode = inode_raw; } // For testing purposes, rely on the inode when defined; this could be // optimized to use access() in the future. if (inode != 0) { DIR* dir = opendir(parent.c_str()); if (dir == nullptr) { PLOG(ERROR) << "Failed to opendir " << parent; return fallback; } struct dirent* ent; while ((ent = readdir(dir))) { if (ent->d_ino == inode) { auto resolved = StringPrintf("%s/%s", parent.c_str(), ent->d_name); #if DEBUG_XATTRS if (resolved != fallback) { LOG(DEBUG) << "Resolved path " << resolved << " for inode " << inode << " instead of " << fallback; } #endif closedir(dir); return resolved; } } LOG(WARNING) << "Failed to resolve inode " << inode << "; using " << fallback; closedir(dir); return fallback; } else { return fallback; } } void add_cache_files(cache_t* cache, const std::string& data_path) { DIR *d; struct dirent *de; char dirname[PATH_MAX]; const char* basepath = data_path.c_str(); CACHE_NOISY(ALOGI("add_cache_files: basepath=%s\n", basepath)); d = opendir(basepath); if (d == NULL) { return; } while ((de = readdir(d))) { if (de->d_type == DT_DIR) { DIR* subdir; const char *name = de->d_name; /* always skip "." and ".." */ if (name[0] == '.') { if (name[1] == 0) continue; if ((name[1] == '.') && (name[2] == 0)) continue; } auto parent = StringPrintf("%s/%s", basepath, name); auto resolved = read_path_inode(parent, "cache", kXattrInodeCache); strcpy(dirname, resolved.c_str()); CACHE_NOISY(ALOGI("Adding cache files from dir: %s\n", dirname)); subdir = opendir(dirname); if (subdir != NULL) { size_t dirnameLen = strlen(dirname); _add_cache_files(cache, NULL, dirname, subdir, dirname, dirname+dirnameLen, PATH_MAX - dirnameLen); closedir(subdir); } } } closedir(d); } static char *create_dir_path(char path[PATH_MAX], cache_dir_t* dir) { char *pos = path; if (dir->parent != NULL) { pos = create_dir_path(path, dir->parent); } // Note that we don't need to worry about going beyond the buffer, // since when we were constructing the cache entries our maximum // buffer size for full paths was PATH_MAX. strcpy(pos, dir->name); pos += strlen(pos); *pos = '/'; pos++; *pos = 0; return pos; } static void delete_cache_dir(char path[PATH_MAX], cache_dir_t* dir) { if (dir->parent != NULL) { create_dir_path(path, dir); ALOGI("DEL DIR %s\n", path); if (dir->hiddenCount <= 0) { if (rmdir(path)) { ALOGE("Couldn't rmdir %s: %s\n", path, strerror(errno)); return; } } else { // The directory contains hidden files so we need to delete // them along with the directory itself. if (delete_dir_contents(path, 1, NULL)) { return; } } dir->parent->childCount--; dir->deleted = 1; if (dir->parent->childCount <= 0) { delete_cache_dir(path, dir->parent); } } else if (dir->hiddenCount > 0) { // This is a root directory, but it has hidden files. Get rid of // all of those files, but not the directory itself. create_dir_path(path, dir); ALOGI("DEL CONTENTS %s\n", path); delete_dir_contents(path, 0, NULL); } } static int cache_modtime_sort(const void *lhsP, const void *rhsP) { const cache_file_t *lhs = *(const cache_file_t**)lhsP; const cache_file_t *rhs = *(const cache_file_t**)rhsP; return lhs->modTime < rhs->modTime ? -1 : (lhs->modTime > rhs->modTime ? 1 : 0); } void clear_cache_files(const std::string& data_path, cache_t* cache, int64_t free_size) { size_t i; int skip = 0; char path[PATH_MAX]; ALOGI("Collected cache files: %zd directories, %zd files", cache->numDirs, cache->numFiles); CACHE_NOISY(ALOGI("Sorting files...")); qsort(cache->files, cache->numFiles, sizeof(cache_file_t*), cache_modtime_sort); CACHE_NOISY(ALOGI("Cleaning empty directories...")); for (i=cache->numDirs; i>0; i--) { cache_dir_t* dir = cache->dirs[i-1]; if (dir->childCount <= 0 && !dir->deleted) { delete_cache_dir(path, dir); } } CACHE_NOISY(ALOGI("Trimming files...")); for (i=0; i<cache->numFiles; i++) { skip++; if (skip > 10) { if (data_disk_free(data_path) > free_size) { return; } skip = 0; } cache_file_t* file = cache->files[i]; strcpy(create_dir_path(path, file->dir), file->name); ALOGI("DEL (mod %d) %s\n", (int)file->modTime, path); if (unlink(path) < 0) { ALOGE("Couldn't unlink %s: %s\n", path, strerror(errno)); } file->dir->childCount--; if (file->dir->childCount <= 0) { delete_cache_dir(path, file->dir); } } } void finish_cache_collection(cache_t* cache) { CACHE_NOISY(size_t i;) CACHE_NOISY(ALOGI("clear_cache_files: %zu dirs, %zu files\n", cache->numDirs, cache->numFiles)); CACHE_NOISY( for (i=0; i<cache->numDirs; i++) { cache_dir_t* dir = cache->dirs[i]; ALOGI("dir #%zu: %p %s parent=%p\n", i, dir, dir->name, dir->parent); }) CACHE_NOISY( for (i=0; i<cache->numFiles; i++) { cache_file_t* file = cache->files[i]; ALOGI("file #%zu: %p %s time=%d dir=%p\n", i, file, file->name, (int)file->modTime, file->dir); }) void* block = cache->memBlocks; while (block != NULL) { void* nextBlock = *(void**)block; CACHE_NOISY(ALOGI("Freeing cache mem block: %p", block)); free(block); block = nextBlock; } free(cache); } /** * Validate that the path is valid in the context of the provided directory. * The path is allowed to have at most one subdirectory and no indirections * to top level directories (i.e. have ".."). */ static int validate_path(const dir_rec_t* dir, const char* path, int maxSubdirs) { size_t dir_len = dir->len; const char* subdir = strchr(path + dir_len, '/'); // Only allow the path to have at most one subdirectory. if (subdir != NULL) { ++subdir; if ((--maxSubdirs == 0) && strchr(subdir, '/') != NULL) { ALOGE("invalid apk path '%s' (subdir?)\n", path); return -1; } } // Directories can't have a period directly after the directory markers to prevent "..". if ((path[dir_len] == '.') || ((subdir != NULL) && (*subdir == '.'))) { ALOGE("invalid apk path '%s' (trickery)\n", path); return -1; } return 0; } /** * Checks whether a path points to a system app (.apk file). Returns 0 * if it is a system app or -1 if it is not. */ int validate_system_app_path(const char* path) { size_t i; for (i = 0; i < android_system_dirs.count; i++) { const size_t dir_len = android_system_dirs.dirs[i].len; if (!strncmp(path, android_system_dirs.dirs[i].path, dir_len)) { return validate_path(android_system_dirs.dirs + i, path, 1); } } return -1; } /** * Get the contents of a environment variable that contains a path. Caller * owns the string that is inserted into the directory record. Returns * 0 on success and -1 on error. */ int get_path_from_env(dir_rec_t* rec, const char* var) { const char* path = getenv(var); int ret = get_path_from_string(rec, path); if (ret < 0) { ALOGW("Problem finding value for environment variable %s\n", var); } return ret; } /** * Puts the string into the record as a directory. Appends '/' to the end * of all paths. Caller owns the string that is inserted into the directory * record. A null value will result in an error. * * Returns 0 on success and -1 on error. */ int get_path_from_string(dir_rec_t* rec, const char* path) { if (path == NULL) { return -1; } else { const size_t path_len = strlen(path); if (path_len <= 0) { return -1; } // Make sure path is absolute. if (path[0] != '/') { return -1; } if (path[path_len - 1] == '/') { // Path ends with a forward slash. Make our own copy. rec->path = strdup(path); if (rec->path == NULL) { return -1; } rec->len = path_len; } else { // Path does not end with a slash. Generate a new string. char *dst; // Add space for slash and terminating null. size_t dst_size = path_len + 2; rec->path = (char*) malloc(dst_size); if (rec->path == NULL) { return -1; } dst = rec->path; if (append_and_increment(&dst, path, &dst_size) < 0 || append_and_increment(&dst, "/", &dst_size)) { ALOGE("Error canonicalizing path"); return -1; } rec->len = dst - rec->path; } } return 0; } int copy_and_append(dir_rec_t* dst, const dir_rec_t* src, const char* suffix) { dst->len = src->len + strlen(suffix); const size_t dstSize = dst->len + 1; dst->path = (char*) malloc(dstSize); if (dst->path == NULL || snprintf(dst->path, dstSize, "%s%s", src->path, suffix) != (ssize_t) dst->len) { ALOGE("Could not allocate memory to hold appended path; aborting\n"); return -1; } return 0; } /** * Check whether path points to a valid path for an APK file. The path must * begin with a whitelisted prefix path and must be no deeper than |maxSubdirs| within * that path. Returns -1 when an invalid path is encountered and 0 when a valid path * is encountered. */ static int validate_apk_path_internal(const char *path, int maxSubdirs) { const dir_rec_t* dir = NULL; if (!strncmp(path, android_app_dir.path, android_app_dir.len)) { dir = &android_app_dir; } else if (!strncmp(path, android_app_private_dir.path, android_app_private_dir.len)) { dir = &android_app_private_dir; } else if (!strncmp(path, android_app_ephemeral_dir.path, android_app_ephemeral_dir.len)) { dir = &android_app_ephemeral_dir; } else if (!strncmp(path, android_asec_dir.path, android_asec_dir.len)) { dir = &android_asec_dir; } else if (!strncmp(path, android_mnt_expand_dir.path, android_mnt_expand_dir.len)) { dir = &android_mnt_expand_dir; if (maxSubdirs < 2) { maxSubdirs = 2; } } else { return -1; } return validate_path(dir, path, maxSubdirs); } int validate_apk_path(const char* path) { return validate_apk_path_internal(path, 1 /* maxSubdirs */); } int validate_apk_path_subdirs(const char* path) { return validate_apk_path_internal(path, 3 /* maxSubdirs */); } int append_and_increment(char** dst, const char* src, size_t* dst_size) { ssize_t ret = strlcpy(*dst, src, *dst_size); if (ret < 0 || (size_t) ret >= *dst_size) { return -1; } *dst += ret; *dst_size -= ret; return 0; } char *build_string2(const char *s1, const char *s2) { if (s1 == NULL || s2 == NULL) return NULL; int len_s1 = strlen(s1); int len_s2 = strlen(s2); int len = len_s1 + len_s2 + 1; char *result = (char *) malloc(len); if (result == NULL) return NULL; strcpy(result, s1); strcpy(result + len_s1, s2); return result; } char *build_string3(const char *s1, const char *s2, const char *s3) { if (s1 == NULL || s2 == NULL || s3 == NULL) return NULL; int len_s1 = strlen(s1); int len_s2 = strlen(s2); int len_s3 = strlen(s3); int len = len_s1 + len_s2 + len_s3 + 1; char *result = (char *) malloc(len); if (result == NULL) return NULL; strcpy(result, s1); strcpy(result + len_s1, s2); strcpy(result + len_s1 + len_s2, s3); return result; } int ensure_config_user_dirs(userid_t userid) { // writable by system, readable by any app within the same user const int uid = multiuser_get_uid(userid, AID_SYSTEM); const int gid = multiuser_get_uid(userid, AID_EVERYBODY); // Ensure /data/misc/user/<userid> exists auto path = create_data_misc_legacy_path(userid); return fs_prepare_dir(path.c_str(), 0750, uid, gid); } int wait_child(pid_t pid) { int status; pid_t got_pid; while (1) { got_pid = waitpid(pid, &status, 0); if (got_pid == -1 && errno == EINTR) { printf("waitpid interrupted, retrying\n"); } else { break; } } if (got_pid != pid) { ALOGW("waitpid failed: wanted %d, got %d: %s\n", (int) pid, (int) got_pid, strerror(errno)); return 1; } if (WIFEXITED(status) && WEXITSTATUS(status) == 0) { return 0; } else { return status; /* always nonzero */ } } } // namespace installd } // namespace android