# # Copyright (C) 2015 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # header: summary: Quaternion Functions description: The following functions manipulate quaternions. end: function: rsQuaternionAdd version: 9 23 ret: void arg: rs_quaternion* q, "Destination quaternion to add to." arg: const rs_quaternion* rhs, "Quaternion to add." summary: Add two quaternions description: Adds two quaternions, i.e. <code>*q += *rhs;</code> inline: q->w += rhs->w; q->x += rhs->x; q->y += rhs->y; q->z += rhs->z; test: none end: function: rsQuaternionConjugate version: 9 23 ret: void arg: rs_quaternion* q, "Quaternion to modify." summary: Conjugate a quaternion description: Conjugates the quaternion. inline: q->x = -q->x; q->y = -q->y; q->z = -q->z; test: none end: function: rsQuaternionDot version: 9 23 ret: float arg: const rs_quaternion* q0, "First quaternion." arg: const rs_quaternion* q1, "Second quaternion." summary: Dot product of two quaternions description: Returns the dot product of two quaternions. inline: return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z; test: none end: function: rsQuaternionGetMatrixUnit version: 9 23 ret: void arg: rs_matrix4x4* m, "Resulting matrix." arg: const rs_quaternion* q, "Normalized quaternion." summary: Get a rotation matrix from a quaternion description: Computes a rotation matrix from the normalized quaternion. inline: float xx = q->x * q->x; float xy = q->x * q->y; float xz = q->x * q->z; float xw = q->x * q->w; float yy = q->y * q->y; float yz = q->y * q->z; float yw = q->y * q->w; float zz = q->z * q->z; float zw = q->z * q->w; m->m[0] = 1.0f - 2.0f * ( yy + zz ); m->m[4] = 2.0f * ( xy - zw ); m->m[8] = 2.0f * ( xz + yw ); m->m[1] = 2.0f * ( xy + zw ); m->m[5] = 1.0f - 2.0f * ( xx + zz ); m->m[9] = 2.0f * ( yz - xw ); m->m[2] = 2.0f * ( xz - yw ); m->m[6] = 2.0f * ( yz + xw ); m->m[10] = 1.0f - 2.0f * ( xx + yy ); m->m[3] = m->m[7] = m->m[11] = m->m[12] = m->m[13] = m->m[14] = 0.0f; m->m[15] = 1.0f; test: none end: function: rsQuaternionLoadRotateUnit version: 9 23 ret: void arg: rs_quaternion* q, "Destination quaternion." arg: float rot, "Angle to rotate by, in radians." arg: float x, "X component of the vector." arg: float y, "Y component of the vector." arg: float z, "Z component of the vector." summary: Quaternion that represents a rotation about an arbitrary unit vector description: Loads a quaternion that represents a rotation about an arbitrary unit vector. inline: rot *= (float)(M_PI / 180.0f) * 0.5f; float c = cos(rot); float s = sin(rot); q->w = c; q->x = x * s; q->y = y * s; q->z = z * s; test: none end: function: rsQuaternionSet version: 9 23 ret: void arg: rs_quaternion* q, "Destination quaternion." arg: float w, "W component." arg: float x, "X component." arg: float y, "Y component." arg: float z, "Z component." summary: Create a quaternion description: Creates a quaternion from its four components or from another quaternion. inline: q->w = w; q->x = x; q->y = y; q->z = z; test: none end: function: rsQuaternionSet version: 9 23 ret: void arg: rs_quaternion* q arg: const rs_quaternion* rhs, "Source quaternion." inline: q->w = rhs->w; q->x = rhs->x; q->y = rhs->y; q->z = rhs->z; test: none end: # NOTE: The following inline definitions depend on each other. The order must be preserved # for the compilation to work. function: rsQuaternionLoadRotate version: 9 23 ret: void arg: rs_quaternion* q, "Destination quaternion." arg: float rot, "Angle to rotate by." arg: float x, "X component of a vector." arg: float y, "Y component of a vector." arg: float z, "Z component of a vector." summary: Create a rotation quaternion description: Loads a quaternion that represents a rotation about an arbitrary vector (doesn't have to be unit) inline: const float len = x*x + y*y + z*z; if (len != 1) { const float recipLen = 1.f / sqrt(len); x *= recipLen; y *= recipLen; z *= recipLen; } rsQuaternionLoadRotateUnit(q, rot, x, y, z); test: none end: function: rsQuaternionNormalize version: 9 23 ret: void arg: rs_quaternion* q, "Quaternion to normalize." summary: Normalize a quaternion description: Normalizes the quaternion. inline: const float len = rsQuaternionDot(q, q); if (len != 1) { const float recipLen = 1.f / sqrt(len); q->w *= recipLen; q->x *= recipLen; q->y *= recipLen; q->z *= recipLen; } test: none end: function: rsQuaternionMultiply version: 9 23 ret: void arg: rs_quaternion* q, "Destination quaternion." arg: float scalar, "Scalar to multiply the quaternion by." summary: Multiply a quaternion by a scalar or another quaternion description: Multiplies a quaternion by a scalar or by another quaternion, e.g <code>*q = *q * scalar;</code> or <code>*q = *q * *rhs;</code>. inline: q->w *= scalar; q->x *= scalar; q->y *= scalar; q->z *= scalar; test: none end: function: rsQuaternionMultiply version: 9 23 ret: void arg: rs_quaternion* q arg: const rs_quaternion* rhs, "Quaternion to multiply the destination quaternion by." inline: rs_quaternion qtmp; rsQuaternionSet(&qtmp, q); q->w = qtmp.w*rhs->w - qtmp.x*rhs->x - qtmp.y*rhs->y - qtmp.z*rhs->z; q->x = qtmp.w*rhs->x + qtmp.x*rhs->w + qtmp.y*rhs->z - qtmp.z*rhs->y; q->y = qtmp.w*rhs->y + qtmp.y*rhs->w + qtmp.z*rhs->x - qtmp.x*rhs->z; q->z = qtmp.w*rhs->z + qtmp.z*rhs->w + qtmp.x*rhs->y - qtmp.y*rhs->x; rsQuaternionNormalize(q); test: none end: function: rsQuaternionSlerp version: 9 23 ret: void arg: rs_quaternion* q, "Result quaternion from the interpolation." arg: const rs_quaternion* q0, "First input quaternion." arg: const rs_quaternion* q1, "Second input quaternion." arg: float t, "How much to interpolate by." summary: Spherical linear interpolation between two quaternions description: Performs spherical linear interpolation between two quaternions. inline: if (t <= 0.0f) { rsQuaternionSet(q, q0); return; } if (t >= 1.0f) { rsQuaternionSet(q, q1); return; } rs_quaternion tempq0, tempq1; rsQuaternionSet(&tempq0, q0); rsQuaternionSet(&tempq1, q1); float angle = rsQuaternionDot(q0, q1); if (angle < 0) { rsQuaternionMultiply(&tempq0, -1.0f); angle *= -1.0f; } float scale, invScale; if (angle + 1.0f > 0.05f) { if (1.0f - angle >= 0.05f) { float theta = acos(angle); float invSinTheta = 1.0f / sin(theta); scale = sin(theta * (1.0f - t)) * invSinTheta; invScale = sin(theta * t) * invSinTheta; } else { scale = 1.0f - t; invScale = t; } } else { rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w); scale = sin(M_PI * (0.5f - t)); invScale = sin(M_PI * t); } rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale, tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale); test: none end: # New versions. Same signatures but don't contain a body. function: rsQuaternionAdd version: 24 ret: void arg: rs_quaternion* q arg: const rs_quaternion* rhs test: none end: function: rsQuaternionConjugate version: 24 ret: void arg: rs_quaternion* q test: none end: function: rsQuaternionDot version: 24 ret: float arg: const rs_quaternion* q0 arg: const rs_quaternion* q1 test: none end: function: rsQuaternionGetMatrixUnit version: 24 ret: void arg: rs_matrix4x4* m arg: const rs_quaternion* q test: none end: function: rsQuaternionLoadRotateUnit version: 24 ret: void arg: rs_quaternion* q arg: float rot arg: float x arg: float y arg: float z test: none end: function: rsQuaternionSet version: 24 ret: void arg: rs_quaternion* q arg: float w arg: float x arg: float y arg: float z test: none end: function: rsQuaternionSet version: 24 ret: void arg: rs_quaternion* q arg: const rs_quaternion* rhs test: none end: # NOTE: The following inline definitions depend on each other. The order must be preserved # for the compilation to work. function: rsQuaternionLoadRotate version: 24 ret: void arg: rs_quaternion* q arg: float rot arg: float x arg: float y arg: float z test: none end: function: rsQuaternionNormalize version: 24 ret: void arg: rs_quaternion* q test: none end: function: rsQuaternionMultiply version: 24 ret: void arg: rs_quaternion* q arg: float scalar test: none end: function: rsQuaternionMultiply version: 24 ret: void arg: rs_quaternion* q arg: const rs_quaternion* rhs test: none end: function: rsQuaternionSlerp version: 24 ret: void arg: rs_quaternion* q arg: const rs_quaternion* q0 arg: const rs_quaternion* q1 arg: float t test: none end: