/* * Copyright (C) 2013-2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "audio_hw_primary" #define ATRACE_TAG ATRACE_TAG_AUDIO /*#define LOG_NDEBUG 0*/ /*#define VERY_VERY_VERBOSE_LOGGING*/ #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif #include <errno.h> #include <pthread.h> #include <stdint.h> #include <sys/time.h> #include <stdlib.h> #include <math.h> #include <dlfcn.h> #include <sys/resource.h> #include <sys/prctl.h> #include <cutils/log.h> #include <cutils/trace.h> #include <cutils/str_parms.h> #include <cutils/properties.h> #include <cutils/atomic.h> #include <cutils/sched_policy.h> #include <hardware/audio_effect.h> #include <hardware/audio_alsaops.h> #include <system/thread_defs.h> #include <audio_effects/effect_aec.h> #include <audio_effects/effect_ns.h> #include "audio_hw.h" #include "audio_extn.h" #include "platform_api.h" #include <platform.h> #include "voice_extn.h" #include "sound/compress_params.h" /* COMPRESS_OFFLOAD_FRAGMENT_SIZE must be more than 8KB and a multiple of 32KB if more than 32KB. * COMPRESS_OFFLOAD_FRAGMENT_SIZE * COMPRESS_OFFLOAD_NUM_FRAGMENTS must be less than 8MB. */ #define COMPRESS_OFFLOAD_FRAGMENT_SIZE (256 * 1024) // 2 buffers causes problems with high bitrate files #define COMPRESS_OFFLOAD_NUM_FRAGMENTS 3 /* ToDo: Check and update a proper value in msec */ #define COMPRESS_OFFLOAD_PLAYBACK_LATENCY 96 #define COMPRESS_PLAYBACK_VOLUME_MAX 0x2000 #define PROXY_OPEN_RETRY_COUNT 100 #define PROXY_OPEN_WAIT_TIME 20 #define MIN_CHANNEL_COUNT 1 #define DEFAULT_CHANNEL_COUNT 2 #ifndef MAX_TARGET_SPECIFIC_CHANNEL_CNT #define MAX_CHANNEL_COUNT 1 #else #define MAX_CHANNEL_COUNT atoi(XSTR(MAX_TARGET_SPECIFIC_CHANNEL_CNT)) #define XSTR(x) STR(x) #define STR(x) #x #endif #define ULL_PERIOD_SIZE (DEFAULT_OUTPUT_SAMPLING_RATE/1000) static unsigned int configured_low_latency_capture_period_size = LOW_LATENCY_CAPTURE_PERIOD_SIZE; /* This constant enables extended precision handling. * TODO The flag is off until more testing is done. */ static const bool k_enable_extended_precision = false; struct pcm_config pcm_config_deep_buffer = { .channels = DEFAULT_CHANNEL_COUNT, .rate = DEFAULT_OUTPUT_SAMPLING_RATE, .period_size = DEEP_BUFFER_OUTPUT_PERIOD_SIZE, .period_count = DEEP_BUFFER_OUTPUT_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = DEEP_BUFFER_OUTPUT_PERIOD_SIZE / 4, .stop_threshold = INT_MAX, .avail_min = DEEP_BUFFER_OUTPUT_PERIOD_SIZE / 4, }; struct pcm_config pcm_config_low_latency = { .channels = DEFAULT_CHANNEL_COUNT, .rate = DEFAULT_OUTPUT_SAMPLING_RATE, .period_size = LOW_LATENCY_OUTPUT_PERIOD_SIZE, .period_count = LOW_LATENCY_OUTPUT_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = LOW_LATENCY_OUTPUT_PERIOD_SIZE / 4, .stop_threshold = INT_MAX, .avail_min = LOW_LATENCY_OUTPUT_PERIOD_SIZE / 4, }; static int af_period_multiplier = 4; struct pcm_config pcm_config_rt = { .channels = DEFAULT_CHANNEL_COUNT, .rate = DEFAULT_OUTPUT_SAMPLING_RATE, .period_size = ULL_PERIOD_SIZE, //1 ms .period_count = 512, //=> buffer size is 512ms .format = PCM_FORMAT_S16_LE, .start_threshold = ULL_PERIOD_SIZE*8, //8ms .stop_threshold = INT_MAX, .silence_threshold = 0, .silence_size = 0, .avail_min = ULL_PERIOD_SIZE, //1 ms }; struct pcm_config pcm_config_hdmi_multi = { .channels = HDMI_MULTI_DEFAULT_CHANNEL_COUNT, /* changed when the stream is opened */ .rate = DEFAULT_OUTPUT_SAMPLING_RATE, /* changed when the stream is opened */ .period_size = HDMI_MULTI_PERIOD_SIZE, .period_count = HDMI_MULTI_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = 0, .stop_threshold = INT_MAX, .avail_min = 0, }; struct pcm_config pcm_config_audio_capture = { .channels = DEFAULT_CHANNEL_COUNT, .period_count = AUDIO_CAPTURE_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .stop_threshold = INT_MAX, .avail_min = 0, }; struct pcm_config pcm_config_audio_capture_rt = { .channels = DEFAULT_CHANNEL_COUNT, .rate = DEFAULT_OUTPUT_SAMPLING_RATE, .period_size = ULL_PERIOD_SIZE, .period_count = 512, .format = PCM_FORMAT_S16_LE, .start_threshold = 0, .stop_threshold = INT_MAX, .silence_threshold = 0, .silence_size = 0, .avail_min = ULL_PERIOD_SIZE, //1 ms }; #define AFE_PROXY_CHANNEL_COUNT 2 #define AFE_PROXY_SAMPLING_RATE 48000 #define AFE_PROXY_PLAYBACK_PERIOD_SIZE 768 #define AFE_PROXY_PLAYBACK_PERIOD_COUNT 4 struct pcm_config pcm_config_afe_proxy_playback = { .channels = AFE_PROXY_CHANNEL_COUNT, .rate = AFE_PROXY_SAMPLING_RATE, .period_size = AFE_PROXY_PLAYBACK_PERIOD_SIZE, .period_count = AFE_PROXY_PLAYBACK_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = AFE_PROXY_PLAYBACK_PERIOD_SIZE, .stop_threshold = INT_MAX, .avail_min = AFE_PROXY_PLAYBACK_PERIOD_SIZE, }; #define AFE_PROXY_RECORD_PERIOD_SIZE 768 #define AFE_PROXY_RECORD_PERIOD_COUNT 4 struct pcm_config pcm_config_afe_proxy_record = { .channels = AFE_PROXY_CHANNEL_COUNT, .rate = AFE_PROXY_SAMPLING_RATE, .period_size = AFE_PROXY_RECORD_PERIOD_SIZE, .period_count = AFE_PROXY_RECORD_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = AFE_PROXY_RECORD_PERIOD_SIZE, .stop_threshold = INT_MAX, .avail_min = AFE_PROXY_RECORD_PERIOD_SIZE, }; const char * const use_case_table[AUDIO_USECASE_MAX] = { [USECASE_AUDIO_PLAYBACK_DEEP_BUFFER] = "deep-buffer-playback", [USECASE_AUDIO_PLAYBACK_LOW_LATENCY] = "low-latency-playback", [USECASE_AUDIO_PLAYBACK_MULTI_CH] = "multi-channel-playback", [USECASE_AUDIO_PLAYBACK_OFFLOAD] = "compress-offload-playback", [USECASE_AUDIO_PLAYBACK_TTS] = "audio-tts-playback", [USECASE_AUDIO_PLAYBACK_ULL] = "audio-ull-playback", [USECASE_AUDIO_RECORD] = "audio-record", [USECASE_AUDIO_RECORD_LOW_LATENCY] = "low-latency-record", [USECASE_AUDIO_HFP_SCO] = "hfp-sco", [USECASE_AUDIO_HFP_SCO_WB] = "hfp-sco-wb", [USECASE_VOICE_CALL] = "voice-call", [USECASE_VOICE2_CALL] = "voice2-call", [USECASE_VOLTE_CALL] = "volte-call", [USECASE_QCHAT_CALL] = "qchat-call", [USECASE_VOWLAN_CALL] = "vowlan-call", [USECASE_VOICEMMODE1_CALL] = "voicemmode1-call", [USECASE_VOICEMMODE2_CALL] = "voicemmode2-call", [USECASE_AUDIO_SPKR_CALIB_RX] = "spkr-rx-calib", [USECASE_AUDIO_SPKR_CALIB_TX] = "spkr-vi-record", [USECASE_AUDIO_PLAYBACK_AFE_PROXY] = "afe-proxy-playback", [USECASE_AUDIO_RECORD_AFE_PROXY] = "afe-proxy-record", }; #define STRING_TO_ENUM(string) { #string, string } struct string_to_enum { const char *name; uint32_t value; }; static const struct string_to_enum out_channels_name_to_enum_table[] = { STRING_TO_ENUM(AUDIO_CHANNEL_OUT_STEREO), STRING_TO_ENUM(AUDIO_CHANNEL_OUT_5POINT1), STRING_TO_ENUM(AUDIO_CHANNEL_OUT_7POINT1), }; static int set_voice_volume_l(struct audio_device *adev, float volume); static struct audio_device *adev = NULL; static pthread_mutex_t adev_init_lock; static unsigned int audio_device_ref_count; //cache last MBDRC cal step level static int last_known_cal_step = -1 ; static bool may_use_noirq_mode(struct audio_device *adev, audio_usecase_t uc_id, int flags __unused) { int dir = 0; switch (uc_id) { case USECASE_AUDIO_RECORD_LOW_LATENCY: dir = 1; case USECASE_AUDIO_PLAYBACK_ULL: break; default: return false; } int dev_id = platform_get_pcm_device_id(uc_id, dir == 0 ? PCM_PLAYBACK : PCM_CAPTURE); if (adev->adm_is_noirq_avail) return adev->adm_is_noirq_avail(adev->adm_data, adev->snd_card, dev_id, dir); return false; } static void register_out_stream(struct stream_out *out) { struct audio_device *adev = out->dev; if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) return; if (!adev->adm_register_output_stream) return; adev->adm_register_output_stream(adev->adm_data, out->handle, out->flags); if (!adev->adm_set_config) return; if (out->realtime) { adev->adm_set_config(adev->adm_data, out->handle, out->pcm, &out->config); } } static void register_in_stream(struct stream_in *in) { struct audio_device *adev = in->dev; if (!adev->adm_register_input_stream) return; adev->adm_register_input_stream(adev->adm_data, in->capture_handle, in->flags); if (!adev->adm_set_config) return; if (in->realtime) { adev->adm_set_config(adev->adm_data, in->capture_handle, in->pcm, &in->config); } } static void request_out_focus(struct stream_out *out, long ns) { struct audio_device *adev = out->dev; if (out->routing_change) { out->routing_change = false; if (adev->adm_on_routing_change) adev->adm_on_routing_change(adev->adm_data, out->handle); } if (adev->adm_request_focus_v2) { adev->adm_request_focus_v2(adev->adm_data, out->handle, ns); } else if (adev->adm_request_focus) { adev->adm_request_focus(adev->adm_data, out->handle); } } static void request_in_focus(struct stream_in *in, long ns) { struct audio_device *adev = in->dev; if (in->routing_change) { in->routing_change = false; if (adev->adm_on_routing_change) adev->adm_on_routing_change(adev->adm_data, in->capture_handle); } if (adev->adm_request_focus_v2) { adev->adm_request_focus_v2(adev->adm_data, in->capture_handle, ns); } else if (adev->adm_request_focus) { adev->adm_request_focus(adev->adm_data, in->capture_handle); } } static void release_out_focus(struct stream_out *out, long ns __unused) { struct audio_device *adev = out->dev; if (adev->adm_abandon_focus) adev->adm_abandon_focus(adev->adm_data, out->handle); } static void release_in_focus(struct stream_in *in, long ns __unused) { struct audio_device *adev = in->dev; if (adev->adm_abandon_focus) adev->adm_abandon_focus(adev->adm_data, in->capture_handle); } // Time string format similar to logcat, buffer_length must be >= 19 chars. static void ns2string(int64_t ns, char *buffer, int buffer_length) { const int one_second = 1000000000; const time_t sec = ns / one_second; struct tm tm; localtime_r(&sec, &tm); snprintf(buffer, buffer_length, "%02d-%02d %02d:%02d:%02d.%03d", tm.tm_mon + 1, // localtime_r uses months in 0 - 11 range tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(ns % one_second / 1000000)); } // Convert timespec to nsec. static int64_t ts2ns(const struct timespec *ts) { return ts->tv_sec * 1000000000LL + ts->tv_nsec; } // Log errors: consecutive errors with the same code will // be aggregated if they occur within one second. // A mutual exclusion lock must be held before calling. static void log_error_l(struct error_log *log, int code) { ++log->errors; struct timespec now_ts = { 0, 0 }; (void)clock_gettime(CLOCK_REALTIME, &now_ts); const int64_t now = ts2ns(&now_ts); // Within 1 second, cluster the same error codes together. const int one_second = 1000000000; if (code == log->entries[log->idx].code && now - log->entries[log->idx].last_time < one_second) { log->entries[log->idx].count++; log->entries[log->idx].last_time = now; return; } // Add new error entry. if (++log->idx >= ARRAY_SIZE(log->entries)) { log->idx = 0; } log->entries[log->idx].count = 1; log->entries[log->idx].code = code; log->entries[log->idx].first_time = now; log->entries[log->idx].last_time = now; } // Dump information in the error log. A mutual exclusion lock // should be held, but if that cannot be obtained, one should // make a copy of the error log before calling -- the call is // still safe, but there might be some misinterpreted data. static void log_dump_l(const struct error_log *log, int fd) { dprintf(fd, " Errors: %u\n", log->errors); if (log->errors == 0) return; dprintf(fd, " Index Code Freq First time Last time\n"); for (size_t i = 0; i < ARRAY_SIZE(log->entries); ++i) { if (log->entries[i].count != 0) { char first_time[32]; char last_time[32]; ns2string(log->entries[i].first_time, first_time, sizeof(first_time)); ns2string(log->entries[i].last_time, last_time, sizeof(last_time)); dprintf(fd, " %c%4zu %4d %5d %s %s\n", i == log->idx ? '*' : ' ', // mark head position i, log->entries[i].code, log->entries[i].count, first_time, last_time); } } } static int parse_snd_card_status(struct str_parms * parms, int * card, card_status_t * status) { char value[32]={0}; char state[32]={0}; int ret = str_parms_get_str(parms, "SND_CARD_STATUS", value, sizeof(value)); if (ret < 0) return -1; // sscanf should be okay as value is of max length 32. // same as sizeof state. if (sscanf(value, "%d,%s", card, state) < 2) return -1; *status = !strcmp(state, "ONLINE") ? CARD_STATUS_ONLINE : CARD_STATUS_OFFLINE; return 0; } __attribute__ ((visibility ("default"))) bool audio_hw_send_gain_dep_calibration(int level) { bool ret_val = false; ALOGV("%s: enter ... ", __func__); pthread_mutex_lock(&adev_init_lock); if (adev != NULL && adev->platform != NULL) { pthread_mutex_lock(&adev->lock); ret_val = platform_send_gain_dep_cal(adev->platform, level); pthread_mutex_unlock(&adev->lock); // if cal set fails, cache level info // if cal set succeds, reset known last cal set if (!ret_val) last_known_cal_step = level; else if (last_known_cal_step != -1) last_known_cal_step = -1; } else { ALOGE("%s: %s is NULL", __func__, adev == NULL ? "adev" : "adev->platform"); } pthread_mutex_unlock(&adev_init_lock); ALOGV("%s: exit with ret_val %d ", __func__, ret_val); return ret_val; } __attribute__ ((visibility ("default"))) int audio_hw_get_gain_level_mapping(struct amp_db_and_gain_table *mapping_tbl, int table_size) { int ret_val = 0; ALOGV("%s: enter ... ", __func__); pthread_mutex_lock(&adev_init_lock); if (adev == NULL) { ALOGW("%s: adev is NULL .... ", __func__); goto done; } pthread_mutex_lock(&adev->lock); ret_val = platform_get_gain_level_mapping(mapping_tbl, table_size); pthread_mutex_unlock(&adev->lock); done: pthread_mutex_unlock(&adev_init_lock); ALOGV("%s: exit ... ", __func__); return ret_val; } static bool is_supported_format(audio_format_t format) { switch (format) { case AUDIO_FORMAT_MP3: case AUDIO_FORMAT_AAC_LC: case AUDIO_FORMAT_AAC_HE_V1: case AUDIO_FORMAT_AAC_HE_V2: return true; default: break; } return false; } static inline bool is_mmap_usecase(audio_usecase_t uc_id) { return (uc_id == USECASE_AUDIO_RECORD_AFE_PROXY) || (uc_id == USECASE_AUDIO_PLAYBACK_AFE_PROXY); } static int get_snd_codec_id(audio_format_t format) { int id = 0; switch (format & AUDIO_FORMAT_MAIN_MASK) { case AUDIO_FORMAT_MP3: id = SND_AUDIOCODEC_MP3; break; case AUDIO_FORMAT_AAC: id = SND_AUDIOCODEC_AAC; break; default: ALOGE("%s: Unsupported audio format", __func__); } return id; } int enable_audio_route(struct audio_device *adev, struct audio_usecase *usecase) { snd_device_t snd_device; char mixer_path[50]; if (usecase == NULL) return -EINVAL; ALOGV("%s: enter: usecase(%d)", __func__, usecase->id); if (usecase->type == PCM_CAPTURE) snd_device = usecase->in_snd_device; else snd_device = usecase->out_snd_device; strcpy(mixer_path, use_case_table[usecase->id]); platform_add_backend_name(adev->platform, mixer_path, snd_device); ALOGD("%s: usecase(%d) apply and update mixer path: %s", __func__, usecase->id, mixer_path); audio_route_apply_and_update_path(adev->audio_route, mixer_path); ALOGV("%s: exit", __func__); return 0; } int disable_audio_route(struct audio_device *adev, struct audio_usecase *usecase) { snd_device_t snd_device; char mixer_path[50]; if (usecase == NULL) return -EINVAL; ALOGV("%s: enter: usecase(%d)", __func__, usecase->id); if (usecase->type == PCM_CAPTURE) snd_device = usecase->in_snd_device; else snd_device = usecase->out_snd_device; strcpy(mixer_path, use_case_table[usecase->id]); platform_add_backend_name(adev->platform, mixer_path, snd_device); ALOGD("%s: usecase(%d) reset and update mixer path: %s", __func__, usecase->id, mixer_path); audio_route_reset_and_update_path(adev->audio_route, mixer_path); ALOGV("%s: exit", __func__); return 0; } int enable_snd_device(struct audio_device *adev, snd_device_t snd_device) { int i, num_devices = 0; snd_device_t new_snd_devices[2]; int ret_val = -EINVAL; if (snd_device < SND_DEVICE_MIN || snd_device >= SND_DEVICE_MAX) { ALOGE("%s: Invalid sound device %d", __func__, snd_device); goto on_error; } platform_send_audio_calibration(adev->platform, snd_device); if (adev->snd_dev_ref_cnt[snd_device] >= 1) { ALOGV("%s: snd_device(%d: %s) is already active", __func__, snd_device, platform_get_snd_device_name(snd_device)); goto on_success; } /* due to the possibility of calibration overwrite between listen and audio, notify sound trigger hal before audio calibration is sent */ audio_extn_sound_trigger_update_device_status(snd_device, ST_EVENT_SND_DEVICE_BUSY); if (audio_extn_spkr_prot_is_enabled()) audio_extn_spkr_prot_calib_cancel(adev); audio_extn_dsm_feedback_enable(adev, snd_device, true); if ((snd_device == SND_DEVICE_OUT_SPEAKER || snd_device == SND_DEVICE_OUT_VOICE_SPEAKER) && audio_extn_spkr_prot_is_enabled()) { if (audio_extn_spkr_prot_get_acdb_id(snd_device) < 0) { goto on_error; } if (audio_extn_spkr_prot_start_processing(snd_device)) { ALOGE("%s: spkr_start_processing failed", __func__); goto on_error; } } else if (platform_can_split_snd_device(snd_device, &num_devices, new_snd_devices) == 0) { for (i = 0; i < num_devices; i++) { enable_snd_device(adev, new_snd_devices[i]); } platform_set_speaker_gain_in_combo(adev, snd_device, true); } else { char device_name[DEVICE_NAME_MAX_SIZE] = {0}; if (platform_get_snd_device_name_extn(adev->platform, snd_device, device_name) < 0 ) { ALOGE(" %s: Invalid sound device returned", __func__); goto on_error; } ALOGD("%s: snd_device(%d: %s)", __func__, snd_device, device_name); audio_route_apply_and_update_path(adev->audio_route, device_name); } on_success: adev->snd_dev_ref_cnt[snd_device]++; ret_val = 0; on_error: return ret_val; } int disable_snd_device(struct audio_device *adev, snd_device_t snd_device) { int i, num_devices = 0; snd_device_t new_snd_devices[2]; if (snd_device < SND_DEVICE_MIN || snd_device >= SND_DEVICE_MAX) { ALOGE("%s: Invalid sound device %d", __func__, snd_device); return -EINVAL; } if (adev->snd_dev_ref_cnt[snd_device] <= 0) { ALOGE("%s: device ref cnt is already 0", __func__); return -EINVAL; } adev->snd_dev_ref_cnt[snd_device]--; if (adev->snd_dev_ref_cnt[snd_device] == 0) { audio_extn_dsm_feedback_enable(adev, snd_device, false); if ((snd_device == SND_DEVICE_OUT_SPEAKER || snd_device == SND_DEVICE_OUT_VOICE_SPEAKER) && audio_extn_spkr_prot_is_enabled()) { audio_extn_spkr_prot_stop_processing(snd_device); } else if (platform_can_split_snd_device(snd_device, &num_devices, new_snd_devices) == 0) { for (i = 0; i < num_devices; i++) { disable_snd_device(adev, new_snd_devices[i]); } platform_set_speaker_gain_in_combo(adev, snd_device, false); } else { char device_name[DEVICE_NAME_MAX_SIZE] = {0}; if (platform_get_snd_device_name_extn(adev->platform, snd_device, device_name) < 0 ) { ALOGE(" %s: Invalid sound device returned", __func__); return -EINVAL; } ALOGD("%s: snd_device(%d: %s)", __func__, snd_device, device_name); audio_route_reset_and_update_path(adev->audio_route, device_name); } audio_extn_sound_trigger_update_device_status(snd_device, ST_EVENT_SND_DEVICE_FREE); } return 0; } /* legend: uc - existing usecase new_uc - new usecase d1, d11, d2 - SND_DEVICE enums a1, a2 - corresponding ANDROID device enums B, B1, B2 - backend strings case 1 uc->dev d1 (a1) B1 new_uc->dev d1 (a1), d2 (a2) B1, B2 resolution: disable and enable uc->dev on d1 case 2 uc->dev d1 (a1) B1 new_uc->dev d11 (a1) B1 resolution: need to switch uc since d1 and d11 are related (e.g. speaker and voice-speaker) use ANDROID_DEVICE_OUT enums to match devices since SND_DEVICE enums may vary case 3 uc->dev d1 (a1) B1 new_uc->dev d2 (a2) B2 resolution: no need to switch uc case 4 uc->dev d1 (a1) B new_uc->dev d2 (a2) B resolution: disable enable uc-dev on d2 since backends match we cannot enable two streams on two different devices if they share the same backend. e.g. if offload is on speaker device using QUAD_MI2S backend and a low-latency stream is started on voice-handset using the same backend, offload must also be switched to voice-handset. case 5 uc->dev d1 (a1) B new_uc->dev d1 (a1), d2 (a2) B resolution: disable enable uc-dev on d2 since backends match we cannot enable two streams on two different devices if they share the same backend. case 6 uc->dev d1 a1 B1 new_uc->dev d2 a1 B2 resolution: no need to switch case 7 uc->dev d1 (a1), d2 (a2) B1, B2 new_uc->dev d1 B1 resolution: no need to switch */ static snd_device_t derive_playback_snd_device(struct audio_usecase *uc, struct audio_usecase *new_uc, snd_device_t new_snd_device) { audio_devices_t a1 = uc->stream.out->devices; audio_devices_t a2 = new_uc->stream.out->devices; snd_device_t d1 = uc->out_snd_device; snd_device_t d2 = new_snd_device; // Treat as a special case when a1 and a2 are not disjoint if ((a1 != a2) && (a1 & a2)) { snd_device_t d3[2]; int num_devices = 0; int ret = platform_can_split_snd_device(popcount(a1) > 1 ? d1 : d2, &num_devices, d3); if (ret < 0) { if (ret != -ENOSYS) { ALOGW("%s failed to split snd_device %d", __func__, popcount(a1) > 1 ? d1 : d2); } goto end; } // NB: case 7 is hypothetical and isn't a practical usecase yet. // But if it does happen, we need to give priority to d2 if // the combo devices active on the existing usecase share a backend. // This is because we cannot have a usecase active on a combo device // and a new usecase requests one device in this combo pair. if (platform_check_backends_match(d3[0], d3[1])) { return d2; // case 5 } else { return d1; // case 1 } } else { if (platform_check_backends_match(d1, d2)) { return d2; // case 2, 4 } else { return d1; // case 6, 3 } } end: return d2; // return whatever was calculated before. } static void check_and_route_playback_usecases(struct audio_device *adev, struct audio_usecase *uc_info, snd_device_t snd_device) { struct listnode *node; struct audio_usecase *usecase; bool switch_device[AUDIO_USECASE_MAX]; int i, num_uc_to_switch = 0; /* * This function is to make sure that all the usecases that are active on * the hardware codec backend are always routed to any one device that is * handled by the hardware codec. * For example, if low-latency and deep-buffer usecases are currently active * on speaker and out_set_parameters(headset) is received on low-latency * output, then we have to make sure deep-buffer is also switched to headset, * because of the limitation that both the devices cannot be enabled * at the same time as they share the same backend. */ /* Disable all the usecases on the shared backend other than the specified usecase */ for (i = 0; i < AUDIO_USECASE_MAX; i++) switch_device[i] = false; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->type != PCM_CAPTURE && usecase != uc_info && usecase->out_snd_device != snd_device && usecase->devices & AUDIO_DEVICE_OUT_ALL_CODEC_BACKEND && platform_check_backends_match(snd_device, usecase->out_snd_device)) { ALOGV("%s: Usecase (%s) is active on (%s) - disabling ..", __func__, use_case_table[usecase->id], platform_get_snd_device_name(usecase->out_snd_device)); disable_audio_route(adev, usecase); switch_device[usecase->id] = true; num_uc_to_switch++; } } if (num_uc_to_switch) { list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (switch_device[usecase->id]) { disable_snd_device(adev, usecase->out_snd_device); } } snd_device_t d_device; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (switch_device[usecase->id]) { d_device = derive_playback_snd_device(usecase, uc_info, snd_device); enable_snd_device(adev, d_device); /* Update the out_snd_device before enabling the audio route */ usecase->out_snd_device = d_device; } } /* Re-route all the usecases on the shared backend other than the specified usecase to new snd devices */ list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (switch_device[usecase->id] ) { enable_audio_route(adev, usecase); } } } } static void check_and_route_capture_usecases(struct audio_device *adev, struct audio_usecase *uc_info, snd_device_t snd_device) { struct listnode *node; struct audio_usecase *usecase; bool switch_device[AUDIO_USECASE_MAX]; int i, num_uc_to_switch = 0; platform_check_and_set_capture_backend_cfg(adev, uc_info, snd_device); /* * This function is to make sure that all the active capture usecases * are always routed to the same input sound device. * For example, if audio-record and voice-call usecases are currently * active on speaker(rx) and speaker-mic (tx) and out_set_parameters(earpiece) * is received for voice call then we have to make sure that audio-record * usecase is also switched to earpiece i.e. voice-dmic-ef, * because of the limitation that two devices cannot be enabled * at the same time if they share the same backend. */ for (i = 0; i < AUDIO_USECASE_MAX; i++) switch_device[i] = false; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->type != PCM_PLAYBACK && usecase != uc_info && usecase->in_snd_device != snd_device && (usecase->id != USECASE_AUDIO_SPKR_CALIB_TX)) { ALOGV("%s: Usecase (%s) is active on (%s) - disabling ..", __func__, use_case_table[usecase->id], platform_get_snd_device_name(usecase->in_snd_device)); disable_audio_route(adev, usecase); switch_device[usecase->id] = true; num_uc_to_switch++; } } if (num_uc_to_switch) { list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (switch_device[usecase->id]) { disable_snd_device(adev, usecase->in_snd_device); } } list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (switch_device[usecase->id]) { enable_snd_device(adev, snd_device); } } /* Re-route all the usecases on the shared backend other than the specified usecase to new snd devices */ list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); /* Update the in_snd_device only before enabling the audio route */ if (switch_device[usecase->id] ) { usecase->in_snd_device = snd_device; enable_audio_route(adev, usecase); } } } } /* must be called with hw device mutex locked */ static int read_hdmi_channel_masks(struct stream_out *out) { int ret = 0; int channels = platform_edid_get_max_channels(out->dev->platform); switch (channels) { /* * Do not handle stereo output in Multi-channel cases * Stereo case is handled in normal playback path */ case 6: ALOGV("%s: HDMI supports 5.1", __func__); out->supported_channel_masks[0] = AUDIO_CHANNEL_OUT_5POINT1; break; case 8: ALOGV("%s: HDMI supports 5.1 and 7.1 channels", __func__); out->supported_channel_masks[0] = AUDIO_CHANNEL_OUT_5POINT1; out->supported_channel_masks[1] = AUDIO_CHANNEL_OUT_7POINT1; break; default: ALOGE("HDMI does not support multi channel playback"); ret = -ENOSYS; break; } return ret; } static audio_usecase_t get_voice_usecase_id_from_list(struct audio_device *adev) { struct audio_usecase *usecase; struct listnode *node; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->type == VOICE_CALL) { ALOGV("%s: usecase id %d", __func__, usecase->id); return usecase->id; } } return USECASE_INVALID; } struct audio_usecase *get_usecase_from_list(struct audio_device *adev, audio_usecase_t uc_id) { struct audio_usecase *usecase; struct listnode *node; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->id == uc_id) return usecase; } return NULL; } int select_devices(struct audio_device *adev, audio_usecase_t uc_id) { snd_device_t out_snd_device = SND_DEVICE_NONE; snd_device_t in_snd_device = SND_DEVICE_NONE; struct audio_usecase *usecase = NULL; struct audio_usecase *vc_usecase = NULL; struct audio_usecase *hfp_usecase = NULL; audio_usecase_t hfp_ucid; struct listnode *node; int status = 0; usecase = get_usecase_from_list(adev, uc_id); if (usecase == NULL) { ALOGE("%s: Could not find the usecase(%d)", __func__, uc_id); return -EINVAL; } if ((usecase->type == VOICE_CALL) || (usecase->type == PCM_HFP_CALL)) { out_snd_device = platform_get_output_snd_device(adev->platform, usecase->stream.out->devices); in_snd_device = platform_get_input_snd_device(adev->platform, usecase->stream.out->devices); usecase->devices = usecase->stream.out->devices; } else { /* * If the voice call is active, use the sound devices of voice call usecase * so that it would not result any device switch. All the usecases will * be switched to new device when select_devices() is called for voice call * usecase. This is to avoid switching devices for voice call when * check_and_route_playback_usecases() is called below. */ if (voice_is_in_call(adev)) { vc_usecase = get_usecase_from_list(adev, get_voice_usecase_id_from_list(adev)); if ((vc_usecase != NULL) && ((vc_usecase->devices & AUDIO_DEVICE_OUT_ALL_CODEC_BACKEND) || (usecase->devices == AUDIO_DEVICE_IN_VOICE_CALL))) { in_snd_device = vc_usecase->in_snd_device; out_snd_device = vc_usecase->out_snd_device; } } else if (audio_extn_hfp_is_active(adev)) { hfp_ucid = audio_extn_hfp_get_usecase(); hfp_usecase = get_usecase_from_list(adev, hfp_ucid); if (hfp_usecase->devices & AUDIO_DEVICE_OUT_ALL_CODEC_BACKEND) { in_snd_device = hfp_usecase->in_snd_device; out_snd_device = hfp_usecase->out_snd_device; } } if (usecase->type == PCM_PLAYBACK) { usecase->devices = usecase->stream.out->devices; in_snd_device = SND_DEVICE_NONE; if (out_snd_device == SND_DEVICE_NONE) { out_snd_device = platform_get_output_snd_device(adev->platform, usecase->stream.out->devices); if (usecase->stream.out == adev->primary_output && adev->active_input && (adev->active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION || adev->mode == AUDIO_MODE_IN_COMMUNICATION) && out_snd_device != usecase->out_snd_device) { select_devices(adev, adev->active_input->usecase); } } } else if (usecase->type == PCM_CAPTURE) { usecase->devices = usecase->stream.in->device; out_snd_device = SND_DEVICE_NONE; if (in_snd_device == SND_DEVICE_NONE) { audio_devices_t out_device = AUDIO_DEVICE_NONE; if (adev->active_input && (adev->active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION || adev->mode == AUDIO_MODE_IN_COMMUNICATION)) { platform_set_echo_reference(adev, false, AUDIO_DEVICE_NONE); if (usecase->id == USECASE_AUDIO_RECORD_AFE_PROXY) { out_device = AUDIO_DEVICE_OUT_TELEPHONY_TX; } else if (adev->primary_output) { out_device = adev->primary_output->devices; } } in_snd_device = platform_get_input_snd_device(adev->platform, out_device); } } } if (out_snd_device == usecase->out_snd_device && in_snd_device == usecase->in_snd_device) { return 0; } if (out_snd_device != SND_DEVICE_NONE && out_snd_device != adev->last_logged_snd_device[uc_id][0]) { ALOGD("%s: changing use case %s output device from(%d: %s, acdb %d) to (%d: %s, acdb %d)", __func__, use_case_table[uc_id], adev->last_logged_snd_device[uc_id][0], platform_get_snd_device_name(adev->last_logged_snd_device[uc_id][0]), adev->last_logged_snd_device[uc_id][0] != SND_DEVICE_NONE ? platform_get_snd_device_acdb_id(adev->last_logged_snd_device[uc_id][0]) : -1, out_snd_device, platform_get_snd_device_name(out_snd_device), platform_get_snd_device_acdb_id(out_snd_device)); adev->last_logged_snd_device[uc_id][0] = out_snd_device; } if (in_snd_device != SND_DEVICE_NONE && in_snd_device != adev->last_logged_snd_device[uc_id][1]) { ALOGD("%s: changing use case %s input device from(%d: %s, acdb %d) to (%d: %s, acdb %d)", __func__, use_case_table[uc_id], adev->last_logged_snd_device[uc_id][1], platform_get_snd_device_name(adev->last_logged_snd_device[uc_id][1]), adev->last_logged_snd_device[uc_id][1] != SND_DEVICE_NONE ? platform_get_snd_device_acdb_id(adev->last_logged_snd_device[uc_id][1]) : -1, in_snd_device, platform_get_snd_device_name(in_snd_device), platform_get_snd_device_acdb_id(in_snd_device)); adev->last_logged_snd_device[uc_id][1] = in_snd_device; } /* * Limitation: While in call, to do a device switch we need to disable * and enable both RX and TX devices though one of them is same as current * device. */ if ((usecase->type == VOICE_CALL) && (usecase->in_snd_device != SND_DEVICE_NONE) && (usecase->out_snd_device != SND_DEVICE_NONE)) { status = platform_switch_voice_call_device_pre(adev->platform); /* Disable sidetone only if voice call already exists */ if (voice_is_call_state_active(adev)) voice_set_sidetone(adev, usecase->out_snd_device, false); } /* Disable current sound devices */ if (usecase->out_snd_device != SND_DEVICE_NONE) { disable_audio_route(adev, usecase); disable_snd_device(adev, usecase->out_snd_device); } if (usecase->in_snd_device != SND_DEVICE_NONE) { disable_audio_route(adev, usecase); disable_snd_device(adev, usecase->in_snd_device); } /* Applicable only on the targets that has external modem. * New device information should be sent to modem before enabling * the devices to reduce in-call device switch time. */ if ((usecase->type == VOICE_CALL) && (usecase->in_snd_device != SND_DEVICE_NONE) && (usecase->out_snd_device != SND_DEVICE_NONE)) { status = platform_switch_voice_call_enable_device_config(adev->platform, out_snd_device, in_snd_device); } /* Enable new sound devices */ if (out_snd_device != SND_DEVICE_NONE) { if (usecase->devices & AUDIO_DEVICE_OUT_ALL_CODEC_BACKEND) check_and_route_playback_usecases(adev, usecase, out_snd_device); enable_snd_device(adev, out_snd_device); } if (in_snd_device != SND_DEVICE_NONE) { check_and_route_capture_usecases(adev, usecase, in_snd_device); enable_snd_device(adev, in_snd_device); } if (usecase->type == VOICE_CALL) status = platform_switch_voice_call_device_post(adev->platform, out_snd_device, in_snd_device); usecase->in_snd_device = in_snd_device; usecase->out_snd_device = out_snd_device; enable_audio_route(adev, usecase); /* Applicable only on the targets that has external modem. * Enable device command should be sent to modem only after * enabling voice call mixer controls */ if (usecase->type == VOICE_CALL) { status = platform_switch_voice_call_usecase_route_post(adev->platform, out_snd_device, in_snd_device); /* Enable sidetone only if voice call already exists */ if (voice_is_call_state_active(adev)) voice_set_sidetone(adev, out_snd_device, true); } return status; } static int stop_input_stream(struct stream_in *in) { int i, ret = 0; struct audio_usecase *uc_info; struct audio_device *adev = in->dev; adev->active_input = NULL; ALOGV("%s: enter: usecase(%d: %s)", __func__, in->usecase, use_case_table[in->usecase]); uc_info = get_usecase_from_list(adev, in->usecase); if (uc_info == NULL) { ALOGE("%s: Could not find the usecase (%d) in the list", __func__, in->usecase); return -EINVAL; } /* 1. Disable stream specific mixer controls */ disable_audio_route(adev, uc_info); /* 2. Disable the tx device */ disable_snd_device(adev, uc_info->in_snd_device); list_remove(&uc_info->list); free(uc_info); ALOGV("%s: exit: status(%d)", __func__, ret); return ret; } int start_input_stream(struct stream_in *in) { /* 1. Enable output device and stream routing controls */ int ret = 0; struct audio_usecase *uc_info; struct audio_device *adev = in->dev; ALOGV("%s: enter: usecase(%d)", __func__, in->usecase); if (in->card_status == CARD_STATUS_OFFLINE || adev->card_status == CARD_STATUS_OFFLINE) { ALOGW("in->card_status or adev->card_status offline, try again"); ret = -EAGAIN; goto error_config; } in->pcm_device_id = platform_get_pcm_device_id(in->usecase, PCM_CAPTURE); if (in->pcm_device_id < 0) { ALOGE("%s: Could not find PCM device id for the usecase(%d)", __func__, in->usecase); ret = -EINVAL; goto error_config; } adev->active_input = in; uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase)); uc_info->id = in->usecase; uc_info->type = PCM_CAPTURE; uc_info->stream.in = in; uc_info->devices = in->device; uc_info->in_snd_device = SND_DEVICE_NONE; uc_info->out_snd_device = SND_DEVICE_NONE; list_add_tail(&adev->usecase_list, &uc_info->list); audio_extn_perf_lock_acquire(); select_devices(adev, in->usecase); ALOGV("%s: Opening PCM device card_id(%d) device_id(%d), channels %d", __func__, adev->snd_card, in->pcm_device_id, in->config.channels); unsigned int flags = PCM_IN | PCM_MONOTONIC; unsigned int pcm_open_retry_count = 0; if (in->usecase == USECASE_AUDIO_RECORD_AFE_PROXY) { flags |= PCM_MMAP | PCM_NOIRQ; pcm_open_retry_count = PROXY_OPEN_RETRY_COUNT; } else if (in->realtime) { flags |= PCM_MMAP | PCM_NOIRQ; } while (1) { in->pcm = pcm_open(adev->snd_card, in->pcm_device_id, flags, &in->config); if (in->pcm == NULL || !pcm_is_ready(in->pcm)) { ALOGE("%s: %s", __func__, pcm_get_error(in->pcm)); if (in->pcm != NULL) { pcm_close(in->pcm); in->pcm = NULL; } if (pcm_open_retry_count-- == 0) { ret = -EIO; goto error_open; } usleep(PROXY_OPEN_WAIT_TIME * 1000); continue; } break; } ALOGV("%s: pcm_prepare", __func__); ret = pcm_prepare(in->pcm); if (ret < 0) { ALOGE("%s: pcm_prepare returned %d", __func__, ret); pcm_close(in->pcm); in->pcm = NULL; goto error_open; } if (in->realtime) { ret = pcm_start(in->pcm); if (ret < 0) { ALOGE("%s: RT pcm_start failed ret %d", __func__, ret); pcm_close(in->pcm); in->pcm = NULL; goto error_open; } } register_in_stream(in); audio_extn_perf_lock_release(); ALOGV("%s: exit", __func__); return ret; error_open: stop_input_stream(in); audio_extn_perf_lock_release(); error_config: adev->active_input = NULL; ALOGW("%s: exit: status(%d)", __func__, ret); return ret; } void lock_input_stream(struct stream_in *in) { pthread_mutex_lock(&in->pre_lock); pthread_mutex_lock(&in->lock); pthread_mutex_unlock(&in->pre_lock); } void lock_output_stream(struct stream_out *out) { pthread_mutex_lock(&out->pre_lock); pthread_mutex_lock(&out->lock); pthread_mutex_unlock(&out->pre_lock); } /* must be called with out->lock locked */ static int send_offload_cmd_l(struct stream_out* out, int command) { struct offload_cmd *cmd = (struct offload_cmd *)calloc(1, sizeof(struct offload_cmd)); ALOGVV("%s %d", __func__, command); cmd->cmd = command; list_add_tail(&out->offload_cmd_list, &cmd->node); pthread_cond_signal(&out->offload_cond); return 0; } /* must be called iwth out->lock locked */ static void stop_compressed_output_l(struct stream_out *out) { out->offload_state = OFFLOAD_STATE_IDLE; out->playback_started = 0; out->send_new_metadata = 1; if (out->compr != NULL) { compress_stop(out->compr); while (out->offload_thread_blocked) { pthread_cond_wait(&out->cond, &out->lock); } } } static void *offload_thread_loop(void *context) { struct stream_out *out = (struct stream_out *) context; struct listnode *item; out->offload_state = OFFLOAD_STATE_IDLE; out->playback_started = 0; setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_AUDIO); set_sched_policy(0, SP_FOREGROUND); prctl(PR_SET_NAME, (unsigned long)"Offload Callback", 0, 0, 0); ALOGV("%s", __func__); lock_output_stream(out); for (;;) { struct offload_cmd *cmd = NULL; stream_callback_event_t event; bool send_callback = false; ALOGVV("%s offload_cmd_list %d out->offload_state %d", __func__, list_empty(&out->offload_cmd_list), out->offload_state); if (list_empty(&out->offload_cmd_list)) { ALOGV("%s SLEEPING", __func__); pthread_cond_wait(&out->offload_cond, &out->lock); ALOGV("%s RUNNING", __func__); continue; } item = list_head(&out->offload_cmd_list); cmd = node_to_item(item, struct offload_cmd, node); list_remove(item); ALOGVV("%s STATE %d CMD %d out->compr %p", __func__, out->offload_state, cmd->cmd, out->compr); if (cmd->cmd == OFFLOAD_CMD_EXIT) { free(cmd); break; } if (out->compr == NULL) { ALOGE("%s: Compress handle is NULL", __func__); free(cmd); pthread_cond_signal(&out->cond); continue; } out->offload_thread_blocked = true; pthread_mutex_unlock(&out->lock); send_callback = false; switch(cmd->cmd) { case OFFLOAD_CMD_WAIT_FOR_BUFFER: compress_wait(out->compr, -1); send_callback = true; event = STREAM_CBK_EVENT_WRITE_READY; break; case OFFLOAD_CMD_PARTIAL_DRAIN: compress_next_track(out->compr); compress_partial_drain(out->compr); send_callback = true; event = STREAM_CBK_EVENT_DRAIN_READY; /* Resend the metadata for next iteration */ out->send_new_metadata = 1; break; case OFFLOAD_CMD_DRAIN: compress_drain(out->compr); send_callback = true; event = STREAM_CBK_EVENT_DRAIN_READY; break; case OFFLOAD_CMD_ERROR: send_callback = true; event = STREAM_CBK_EVENT_ERROR; break; default: ALOGE("%s unknown command received: %d", __func__, cmd->cmd); break; } lock_output_stream(out); out->offload_thread_blocked = false; pthread_cond_signal(&out->cond); if (send_callback) { ALOGVV("%s: sending offload_callback event %d", __func__, event); out->offload_callback(event, NULL, out->offload_cookie); } free(cmd); } pthread_cond_signal(&out->cond); while (!list_empty(&out->offload_cmd_list)) { item = list_head(&out->offload_cmd_list); list_remove(item); free(node_to_item(item, struct offload_cmd, node)); } pthread_mutex_unlock(&out->lock); return NULL; } static int create_offload_callback_thread(struct stream_out *out) { pthread_cond_init(&out->offload_cond, (const pthread_condattr_t *) NULL); list_init(&out->offload_cmd_list); pthread_create(&out->offload_thread, (const pthread_attr_t *) NULL, offload_thread_loop, out); return 0; } static int destroy_offload_callback_thread(struct stream_out *out) { lock_output_stream(out); stop_compressed_output_l(out); send_offload_cmd_l(out, OFFLOAD_CMD_EXIT); pthread_mutex_unlock(&out->lock); pthread_join(out->offload_thread, (void **) NULL); pthread_cond_destroy(&out->offload_cond); return 0; } static bool allow_hdmi_channel_config(struct audio_device *adev) { struct listnode *node; struct audio_usecase *usecase; bool ret = true; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->devices & AUDIO_DEVICE_OUT_AUX_DIGITAL) { /* * If voice call is already existing, do not proceed further to avoid * disabling/enabling both RX and TX devices, CSD calls, etc. * Once the voice call done, the HDMI channels can be configured to * max channels of remaining use cases. */ if (usecase->id == USECASE_VOICE_CALL) { ALOGV("%s: voice call is active, no change in HDMI channels", __func__); ret = false; break; } else if (usecase->id == USECASE_AUDIO_PLAYBACK_MULTI_CH) { ALOGV("%s: multi channel playback is active, " "no change in HDMI channels", __func__); ret = false; break; } } } return ret; } static int check_and_set_hdmi_channels(struct audio_device *adev, unsigned int channels) { struct listnode *node; struct audio_usecase *usecase; /* Check if change in HDMI channel config is allowed */ if (!allow_hdmi_channel_config(adev)) return 0; if (channels == adev->cur_hdmi_channels) { ALOGV("%s: Requested channels are same as current", __func__); return 0; } platform_set_hdmi_channels(adev->platform, channels); adev->cur_hdmi_channels = channels; /* * Deroute all the playback streams routed to HDMI so that * the back end is deactivated. Note that backend will not * be deactivated if any one stream is connected to it. */ list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->type == PCM_PLAYBACK && usecase->devices & AUDIO_DEVICE_OUT_AUX_DIGITAL) { disable_audio_route(adev, usecase); } } /* * Enable all the streams disabled above. Now the HDMI backend * will be activated with new channel configuration */ list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->type == PCM_PLAYBACK && usecase->devices & AUDIO_DEVICE_OUT_AUX_DIGITAL) { enable_audio_route(adev, usecase); } } return 0; } static int stop_output_stream(struct stream_out *out) { int i, ret = 0; struct audio_usecase *uc_info; struct audio_device *adev = out->dev; ALOGV("%s: enter: usecase(%d: %s)", __func__, out->usecase, use_case_table[out->usecase]); uc_info = get_usecase_from_list(adev, out->usecase); if (uc_info == NULL) { ALOGE("%s: Could not find the usecase (%d) in the list", __func__, out->usecase); return -EINVAL; } if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { if (adev->visualizer_stop_output != NULL) adev->visualizer_stop_output(out->handle, out->pcm_device_id); if (adev->offload_effects_stop_output != NULL) adev->offload_effects_stop_output(out->handle, out->pcm_device_id); } /* 1. Get and set stream specific mixer controls */ disable_audio_route(adev, uc_info); /* 2. Disable the rx device */ disable_snd_device(adev, uc_info->out_snd_device); list_remove(&uc_info->list); free(uc_info); audio_extn_extspk_update(adev->extspk); /* Must be called after removing the usecase from list */ if (out->devices & AUDIO_DEVICE_OUT_AUX_DIGITAL) check_and_set_hdmi_channels(adev, DEFAULT_HDMI_OUT_CHANNELS); ALOGV("%s: exit: status(%d)", __func__, ret); return ret; } int start_output_stream(struct stream_out *out) { int ret = 0; struct audio_usecase *uc_info; struct audio_device *adev = out->dev; ALOGV("%s: enter: usecase(%d: %s) devices(%#x)", __func__, out->usecase, use_case_table[out->usecase], out->devices); if (out->card_status == CARD_STATUS_OFFLINE || adev->card_status == CARD_STATUS_OFFLINE) { ALOGW("out->card_status or adev->card_status offline, try again"); ret = -EAGAIN; goto error_config; } out->pcm_device_id = platform_get_pcm_device_id(out->usecase, PCM_PLAYBACK); if (out->pcm_device_id < 0) { ALOGE("%s: Invalid PCM device id(%d) for the usecase(%d)", __func__, out->pcm_device_id, out->usecase); ret = -EINVAL; goto error_config; } uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase)); uc_info->id = out->usecase; uc_info->type = PCM_PLAYBACK; uc_info->stream.out = out; uc_info->devices = out->devices; uc_info->in_snd_device = SND_DEVICE_NONE; uc_info->out_snd_device = SND_DEVICE_NONE; /* This must be called before adding this usecase to the list */ if (out->devices & AUDIO_DEVICE_OUT_AUX_DIGITAL) check_and_set_hdmi_channels(adev, out->config.channels); list_add_tail(&adev->usecase_list, &uc_info->list); audio_extn_perf_lock_acquire(); select_devices(adev, out->usecase); audio_extn_extspk_update(adev->extspk); ALOGV("%s: Opening PCM device card_id(%d) device_id(%d) format(%#x)", __func__, adev->snd_card, out->pcm_device_id, out->config.format); if (out->usecase != USECASE_AUDIO_PLAYBACK_OFFLOAD) { unsigned int flags = PCM_OUT; unsigned int pcm_open_retry_count = 0; if (out->usecase == USECASE_AUDIO_PLAYBACK_AFE_PROXY) { flags |= PCM_MMAP | PCM_NOIRQ; pcm_open_retry_count = PROXY_OPEN_RETRY_COUNT; } else if (out->realtime) { flags |= PCM_MMAP | PCM_NOIRQ; } else flags |= PCM_MONOTONIC; while (1) { out->pcm = pcm_open(adev->snd_card, out->pcm_device_id, flags, &out->config); if (out->pcm == NULL || !pcm_is_ready(out->pcm)) { ALOGE("%s: %s", __func__, pcm_get_error(out->pcm)); if (out->pcm != NULL) { pcm_close(out->pcm); out->pcm = NULL; } if (pcm_open_retry_count-- == 0) { ret = -EIO; goto error_open; } usleep(PROXY_OPEN_WAIT_TIME * 1000); continue; } break; } ALOGV("%s: pcm_prepare", __func__); if (pcm_is_ready(out->pcm)) { ret = pcm_prepare(out->pcm); if (ret < 0) { ALOGE("%s: pcm_prepare returned %d", __func__, ret); pcm_close(out->pcm); out->pcm = NULL; goto error_open; } } } else { out->pcm = NULL; out->compr = compress_open(adev->snd_card, out->pcm_device_id, COMPRESS_IN, &out->compr_config); if (out->compr && !is_compress_ready(out->compr)) { ALOGE("%s: %s", __func__, compress_get_error(out->compr)); compress_close(out->compr); out->compr = NULL; ret = -EIO; goto error_open; } if (out->offload_callback) compress_nonblock(out->compr, out->non_blocking); if (adev->visualizer_start_output != NULL) adev->visualizer_start_output(out->handle, out->pcm_device_id); if (adev->offload_effects_start_output != NULL) adev->offload_effects_start_output(out->handle, out->pcm_device_id); } ret = 0; if (out->realtime) { ret = pcm_start(out->pcm); if (ret < 0) { ALOGE("%s: RT pcm_start failed ret %d", __func__, ret); pcm_close(out->pcm); out->pcm = NULL; goto error_open; } } register_out_stream(out); audio_extn_perf_lock_release(); ALOGV("%s: exit", __func__); return ret; error_open: audio_extn_perf_lock_release(); stop_output_stream(out); error_config: return ret; } static int check_input_parameters(uint32_t sample_rate, audio_format_t format, int channel_count) { if ((format != AUDIO_FORMAT_PCM_16_BIT) && (format != AUDIO_FORMAT_PCM_8_24_BIT)) { ALOGE("%s: unsupported AUDIO FORMAT (%d) ", __func__, format); return -EINVAL; } if ((channel_count < MIN_CHANNEL_COUNT) || (channel_count > MAX_CHANNEL_COUNT)) { ALOGE("%s: unsupported channel count (%d) passed Min / Max (%d / %d)", __func__, channel_count, MIN_CHANNEL_COUNT, MAX_CHANNEL_COUNT); return -EINVAL; } switch (sample_rate) { case 8000: case 11025: case 12000: case 16000: case 22050: case 24000: case 32000: case 44100: case 48000: break; default: ALOGE("%s: unsupported (%d) samplerate passed ", __func__, sample_rate); return -EINVAL; } return 0; } static size_t get_input_buffer_size(uint32_t sample_rate, audio_format_t format, int channel_count, bool is_low_latency) { size_t size = 0; if (check_input_parameters(sample_rate, format, channel_count) != 0) return 0; size = (sample_rate * AUDIO_CAPTURE_PERIOD_DURATION_MSEC) / 1000; if (is_low_latency) size = configured_low_latency_capture_period_size; size *= channel_count * audio_bytes_per_sample(format); /* make sure the size is multiple of 32 bytes * At 48 kHz mono 16-bit PCM: * 5.000 ms = 240 frames = 15*16*1*2 = 480, a whole multiple of 32 (15) * 3.333 ms = 160 frames = 10*16*1*2 = 320, a whole multiple of 32 (10) */ size += 0x1f; size &= ~0x1f; return size; } static uint32_t out_get_sample_rate(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; return out->sample_rate; } static int out_set_sample_rate(struct audio_stream *stream __unused, uint32_t rate __unused) { return -ENOSYS; } static size_t out_get_buffer_size(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { return out->compr_config.fragment_size; } return out->config.period_size * out->af_period_multiplier * audio_stream_out_frame_size((const struct audio_stream_out *)stream); } static uint32_t out_get_channels(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; return out->channel_mask; } static audio_format_t out_get_format(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; return out->format; } static int out_set_format(struct audio_stream *stream __unused, audio_format_t format __unused) { return -ENOSYS; } static int out_standby(struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; ALOGV("%s: enter: usecase(%d: %s)", __func__, out->usecase, use_case_table[out->usecase]); lock_output_stream(out); if (!out->standby) { if (adev->adm_deregister_stream) adev->adm_deregister_stream(adev->adm_data, out->handle); pthread_mutex_lock(&adev->lock); out->standby = true; if (out->usecase != USECASE_AUDIO_PLAYBACK_OFFLOAD) { if (out->pcm) { pcm_close(out->pcm); out->pcm = NULL; } } else { stop_compressed_output_l(out); out->gapless_mdata.encoder_delay = 0; out->gapless_mdata.encoder_padding = 0; if (out->compr != NULL) { compress_close(out->compr); out->compr = NULL; } } stop_output_stream(out); pthread_mutex_unlock(&adev->lock); } pthread_mutex_unlock(&out->lock); ALOGV("%s: exit", __func__); return 0; } static int out_on_error(struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; bool do_standby = false; lock_output_stream(out); if (!out->standby) { if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { stop_compressed_output_l(out); send_offload_cmd_l(out, OFFLOAD_CMD_ERROR); } else do_standby = true; } pthread_mutex_unlock(&out->lock); if (do_standby) return out_standby(&out->stream.common); return 0; } static int out_dump(const struct audio_stream *stream, int fd) { struct stream_out *out = (struct stream_out *)stream; // We try to get the lock for consistency, // but it isn't necessary for these variables. // If we're not in standby, we may be blocked on a write. const bool locked = (pthread_mutex_trylock(&out->lock) == 0); dprintf(fd, " Standby: %s\n", out->standby ? "yes" : "no"); dprintf(fd, " Frames written: %lld\n", (long long)out->written); if (locked) { log_dump_l(&out->error_log, fd); pthread_mutex_unlock(&out->lock); } else { // We don't have the lock here, copy for safety. struct error_log log = out->error_log; log_dump_l(&log, fd); } return 0; } static int parse_compress_metadata(struct stream_out *out, struct str_parms *parms) { int ret = 0; char value[32]; struct compr_gapless_mdata tmp_mdata; if (!out || !parms) { return -EINVAL; } ret = str_parms_get_str(parms, AUDIO_OFFLOAD_CODEC_DELAY_SAMPLES, value, sizeof(value)); if (ret >= 0) { tmp_mdata.encoder_delay = atoi(value); //whats a good limit check? } else { return -EINVAL; } ret = str_parms_get_str(parms, AUDIO_OFFLOAD_CODEC_PADDING_SAMPLES, value, sizeof(value)); if (ret >= 0) { tmp_mdata.encoder_padding = atoi(value); } else { return -EINVAL; } out->gapless_mdata = tmp_mdata; out->send_new_metadata = 1; ALOGV("%s new encoder delay %u and padding %u", __func__, out->gapless_mdata.encoder_delay, out->gapless_mdata.encoder_padding); return 0; } static bool output_drives_call(struct audio_device *adev, struct stream_out *out) { return out == adev->primary_output || out == adev->voice_tx_output; } static int out_set_parameters(struct audio_stream *stream, const char *kvpairs) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; struct audio_usecase *usecase; struct listnode *node; struct str_parms *parms; char value[32]; int ret, val = 0; bool select_new_device = false; int status = 0; ALOGD("%s: enter: usecase(%d: %s) kvpairs: %s", __func__, out->usecase, use_case_table[out->usecase], kvpairs); parms = str_parms_create_str(kvpairs); ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value)); if (ret >= 0) { val = atoi(value); lock_output_stream(out); pthread_mutex_lock(&adev->lock); /* * When HDMI cable is unplugged the music playback is paused and * the policy manager sends routing=0. But the audioflinger * continues to write data until standby time (3sec). * As the HDMI core is turned off, the write gets blocked. * Avoid this by routing audio to speaker until standby. */ if (out->devices == AUDIO_DEVICE_OUT_AUX_DIGITAL && val == AUDIO_DEVICE_NONE) { val = AUDIO_DEVICE_OUT_SPEAKER; } /* * select_devices() call below switches all the usecases on the same * backend to the new device. Refer to check_and_route_playback_usecases() in * the select_devices(). But how do we undo this? * * For example, music playback is active on headset (deep-buffer usecase) * and if we go to ringtones and select a ringtone, low-latency usecase * will be started on headset+speaker. As we can't enable headset+speaker * and headset devices at the same time, select_devices() switches the music * playback to headset+speaker while starting low-lateny usecase for ringtone. * So when the ringtone playback is completed, how do we undo the same? * * We are relying on the out_set_parameters() call on deep-buffer output, * once the ringtone playback is ended. * NOTE: We should not check if the current devices are same as new devices. * Because select_devices() must be called to switch back the music * playback to headset. */ audio_devices_t new_dev = val; if (new_dev != AUDIO_DEVICE_NONE) { bool same_dev = out->devices == new_dev; out->devices = new_dev; if (output_drives_call(adev, out)) { if (!voice_is_in_call(adev)) { if (adev->mode == AUDIO_MODE_IN_CALL) { adev->current_call_output = out; ret = voice_start_call(adev); } } else { adev->current_call_output = out; voice_update_devices_for_all_voice_usecases(adev); } } if (!out->standby) { if (!same_dev) { ALOGV("update routing change"); out->routing_change = true; } select_devices(adev, out->usecase); } } pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&out->lock); /*handles device and call state changes*/ audio_extn_extspk_update(adev->extspk); } if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { parse_compress_metadata(out, parms); } str_parms_destroy(parms); ALOGV("%s: exit: code(%d)", __func__, status); return status; } static char* out_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_out *out = (struct stream_out *)stream; struct str_parms *query = str_parms_create_str(keys); char *str; char value[256]; struct str_parms *reply = str_parms_create(); size_t i, j; int ret; bool first = true; ALOGV("%s: enter: keys - %s", __func__, keys); ret = str_parms_get_str(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, value, sizeof(value)); if (ret >= 0) { value[0] = '\0'; i = 0; while (out->supported_channel_masks[i] != 0) { for (j = 0; j < ARRAY_SIZE(out_channels_name_to_enum_table); j++) { if (out_channels_name_to_enum_table[j].value == out->supported_channel_masks[i]) { if (!first) { strcat(value, "|"); } strcat(value, out_channels_name_to_enum_table[j].name); first = false; break; } } i++; } str_parms_add_str(reply, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, value); str = str_parms_to_str(reply); } else { str = strdup(keys); } str_parms_destroy(query); str_parms_destroy(reply); ALOGV("%s: exit: returns - %s", __func__, str); return str; } static uint32_t out_get_latency(const struct audio_stream_out *stream) { uint32_t hw_delay, period_ms; struct stream_out *out = (struct stream_out *)stream; if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) return COMPRESS_OFFLOAD_PLAYBACK_LATENCY; else if (out->realtime) { // since the buffer won't be filled up faster than realtime, // return a smaller number period_ms = (out->af_period_multiplier * out->config.period_size * 1000) / (out->config.rate); hw_delay = platform_render_latency(out->usecase)/1000; return period_ms + hw_delay; } return (out->config.period_count * out->config.period_size * 1000) / (out->config.rate); } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { struct stream_out *out = (struct stream_out *)stream; int volume[2]; if (out->usecase == USECASE_AUDIO_PLAYBACK_MULTI_CH) { /* only take left channel into account: the API is for stereo anyway */ out->muted = (left == 0.0f); return 0; } else if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { const char *mixer_ctl_name = "Compress Playback Volume"; struct audio_device *adev = out->dev; struct mixer_ctl *ctl; ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { /* try with the control based on device id */ int pcm_device_id = platform_get_pcm_device_id(out->usecase, PCM_PLAYBACK); char ctl_name[128] = {0}; snprintf(ctl_name, sizeof(ctl_name), "Compress Playback %d Volume", pcm_device_id); ctl = mixer_get_ctl_by_name(adev->mixer, ctl_name); if (!ctl) { ALOGE("%s: Could not get volume ctl mixer cmd", __func__); return -EINVAL; } } volume[0] = (int)(left * COMPRESS_PLAYBACK_VOLUME_MAX); volume[1] = (int)(right * COMPRESS_PLAYBACK_VOLUME_MAX); mixer_ctl_set_array(ctl, volume, sizeof(volume)/sizeof(volume[0])); return 0; } return -ENOSYS; } // note: this call is safe only if the stream_cb is // removed first in close_output_stream (as is done now). static void out_snd_mon_cb(void * stream, struct str_parms * parms) { if (!stream || !parms) return; struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; card_status_t status; int card; if (parse_snd_card_status(parms, &card, &status) < 0) return; pthread_mutex_lock(&adev->lock); bool valid_cb = (card == adev->snd_card); pthread_mutex_unlock(&adev->lock); if (!valid_cb) return; lock_output_stream(out); if (out->card_status != status) out->card_status = status; pthread_mutex_unlock(&out->lock); ALOGW("out_snd_mon_cb for card %d usecase %s, status %s", card, use_case_table[out->usecase], status == CARD_STATUS_OFFLINE ? "offline" : "online"); if (status == CARD_STATUS_OFFLINE) out_on_error(stream); return; } #ifdef NO_AUDIO_OUT static ssize_t out_write_for_no_output(struct audio_stream_out *stream, const void *buffer, size_t bytes) { struct stream_out *out = (struct stream_out *)stream; /* No Output device supported other than BT for playback. * Sleep for the amount of buffer duration */ lock_output_stream(out); usleep(bytes * 1000000 / audio_stream_out_frame_size(&out->stream.common) / out_get_sample_rate(&out->stream.common)); pthread_mutex_unlock(&out->lock); return bytes; } #endif static ssize_t out_write(struct audio_stream_out *stream, const void *buffer, size_t bytes) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; ssize_t ret = 0; int error_code = ERROR_CODE_STANDBY; lock_output_stream(out); if (out->standby) { out->standby = false; pthread_mutex_lock(&adev->lock); ret = start_output_stream(out); pthread_mutex_unlock(&adev->lock); /* ToDo: If use case is compress offload should return 0 */ if (ret != 0) { out->standby = true; goto exit; } if (last_known_cal_step != -1) { ALOGD("%s: retry previous failed cal level set", __func__); audio_hw_send_gain_dep_calibration(last_known_cal_step); } } if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { ALOGVV("%s: writing buffer (%d bytes) to compress device", __func__, bytes); if (out->send_new_metadata) { ALOGVV("send new gapless metadata"); compress_set_gapless_metadata(out->compr, &out->gapless_mdata); out->send_new_metadata = 0; } unsigned int avail; struct timespec tstamp; ret = compress_get_hpointer(out->compr, &avail, &tstamp); /* Do not limit write size if the available frames count is unknown */ if (ret != 0) { avail = bytes; } if (avail == 0) { ret = 0; } else { if (avail > bytes) { avail = bytes; } ret = compress_write(out->compr, buffer, avail); ALOGVV("%s: writing buffer (%d bytes) to compress device returned %zd", __func__, avail, ret); } if (ret >= 0 && ret < (ssize_t)bytes) { send_offload_cmd_l(out, OFFLOAD_CMD_WAIT_FOR_BUFFER); } if (ret > 0 && !out->playback_started) { compress_start(out->compr); out->playback_started = 1; out->offload_state = OFFLOAD_STATE_PLAYING; } if (ret < 0) { log_error_l(&out->error_log, ERROR_CODE_WRITE); } pthread_mutex_unlock(&out->lock); return ret; } else { error_code = ERROR_CODE_WRITE; if (out->pcm) { if (out->muted) memset((void *)buffer, 0, bytes); ALOGVV("%s: writing buffer (%d bytes) to pcm device", __func__, bytes); long ns = pcm_bytes_to_frames(out->pcm, bytes)*1000000000LL/ out->config.rate; request_out_focus(out, ns); bool use_mmap = is_mmap_usecase(out->usecase) || out->realtime; if (use_mmap) ret = pcm_mmap_write(out->pcm, (void *)buffer, bytes); else ret = pcm_write(out->pcm, (void *)buffer, bytes); release_out_focus(out, ns); } else { LOG_ALWAYS_FATAL("out->pcm is NULL after starting output stream"); } } exit: // For PCM we always consume the buffer and return #bytes regardless of ret. if (out->usecase != USECASE_AUDIO_PLAYBACK_OFFLOAD) { out->written += bytes / (out->config.channels * sizeof(short)); } long long sleeptime_us = 0; if (ret != 0) { log_error_l(&out->error_log, error_code); if (out->usecase != USECASE_AUDIO_PLAYBACK_OFFLOAD) { ALOGE_IF(out->pcm != NULL, "%s: error %zd - %s", __func__, ret, pcm_get_error(out->pcm)); sleeptime_us = bytes * 1000000LL / audio_stream_out_frame_size(stream) / out_get_sample_rate(&out->stream.common); // usleep not guaranteed for values over 1 second but we don't limit here. } } pthread_mutex_unlock(&out->lock); if (ret != 0) { out_on_error(&out->stream.common); if (sleeptime_us != 0) usleep(sleeptime_us); } return bytes; } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { struct stream_out *out = (struct stream_out *)stream; *dsp_frames = 0; if ((out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) && (dsp_frames != NULL)) { lock_output_stream(out); if (out->compr != NULL) { unsigned long frames = 0; // TODO: check return value compress_get_tstamp(out->compr, &frames, &out->sample_rate); *dsp_frames = (uint32_t)frames; ALOGVV("%s rendered frames %d sample_rate %d", __func__, *dsp_frames, out->sample_rate); } pthread_mutex_unlock(&out->lock); return 0; } else return -EINVAL; } static int out_add_audio_effect(const struct audio_stream *stream __unused, effect_handle_t effect __unused) { return 0; } static int out_remove_audio_effect(const struct audio_stream *stream __unused, effect_handle_t effect __unused) { return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream __unused, int64_t *timestamp __unused) { return -EINVAL; } static int out_get_presentation_position(const struct audio_stream_out *stream, uint64_t *frames, struct timespec *timestamp) { struct stream_out *out = (struct stream_out *)stream; int ret = -EINVAL; unsigned long dsp_frames; lock_output_stream(out); if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { if (out->compr != NULL) { // TODO: check return value compress_get_tstamp(out->compr, &dsp_frames, &out->sample_rate); ALOGVV("%s rendered frames %ld sample_rate %d", __func__, dsp_frames, out->sample_rate); *frames = dsp_frames; ret = 0; /* this is the best we can do */ clock_gettime(CLOCK_MONOTONIC, timestamp); } } else { if (out->pcm) { unsigned int avail; if (pcm_get_htimestamp(out->pcm, &avail, timestamp) == 0) { size_t kernel_buffer_size = out->config.period_size * out->config.period_count; int64_t signed_frames = out->written - kernel_buffer_size + avail; // This adjustment accounts for buffering after app processor. // It is based on estimated DSP latency per use case, rather than exact. signed_frames -= (platform_render_latency(out->usecase) * out->sample_rate / 1000000LL); // It would be unusual for this value to be negative, but check just in case ... if (signed_frames >= 0) { *frames = signed_frames; ret = 0; } } } } pthread_mutex_unlock(&out->lock); return ret; } static int out_set_callback(struct audio_stream_out *stream, stream_callback_t callback, void *cookie) { struct stream_out *out = (struct stream_out *)stream; ALOGV("%s", __func__); lock_output_stream(out); out->offload_callback = callback; out->offload_cookie = cookie; pthread_mutex_unlock(&out->lock); return 0; } static int out_pause(struct audio_stream_out* stream) { struct stream_out *out = (struct stream_out *)stream; int status = -ENOSYS; ALOGV("%s", __func__); if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { lock_output_stream(out); if (out->compr != NULL && out->offload_state == OFFLOAD_STATE_PLAYING) { status = compress_pause(out->compr); out->offload_state = OFFLOAD_STATE_PAUSED; } pthread_mutex_unlock(&out->lock); } return status; } static int out_resume(struct audio_stream_out* stream) { struct stream_out *out = (struct stream_out *)stream; int status = -ENOSYS; ALOGV("%s", __func__); if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { status = 0; lock_output_stream(out); if (out->compr != NULL && out->offload_state == OFFLOAD_STATE_PAUSED) { status = compress_resume(out->compr); out->offload_state = OFFLOAD_STATE_PLAYING; } pthread_mutex_unlock(&out->lock); } return status; } static int out_drain(struct audio_stream_out* stream, audio_drain_type_t type ) { struct stream_out *out = (struct stream_out *)stream; int status = -ENOSYS; ALOGV("%s", __func__); if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { lock_output_stream(out); if (type == AUDIO_DRAIN_EARLY_NOTIFY) status = send_offload_cmd_l(out, OFFLOAD_CMD_PARTIAL_DRAIN); else status = send_offload_cmd_l(out, OFFLOAD_CMD_DRAIN); pthread_mutex_unlock(&out->lock); } return status; } static int out_flush(struct audio_stream_out* stream) { struct stream_out *out = (struct stream_out *)stream; ALOGV("%s", __func__); if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { lock_output_stream(out); stop_compressed_output_l(out); pthread_mutex_unlock(&out->lock); return 0; } return -ENOSYS; } /** audio_stream_in implementation **/ static uint32_t in_get_sample_rate(const struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; return in->config.rate; } static int in_set_sample_rate(struct audio_stream *stream __unused, uint32_t rate __unused) { return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; return in->config.period_size * in->af_period_multiplier * audio_stream_in_frame_size((const struct audio_stream_in *)stream); } static uint32_t in_get_channels(const struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; return in->channel_mask; } static audio_format_t in_get_format(const struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; return in->format; } static int in_set_format(struct audio_stream *stream __unused, audio_format_t format __unused) { return -ENOSYS; } static int in_standby(struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; int status = 0; ALOGV("%s: enter", __func__); lock_input_stream(in); if (!in->standby && in->is_st_session) { ALOGV("%s: sound trigger pcm stop lab", __func__); audio_extn_sound_trigger_stop_lab(in); in->standby = true; } if (!in->standby) { if (adev->adm_deregister_stream) adev->adm_deregister_stream(adev->adm_data, in->capture_handle); pthread_mutex_lock(&adev->lock); in->standby = true; if (in->pcm) { pcm_close(in->pcm); in->pcm = NULL; } adev->enable_voicerx = false; platform_set_echo_reference(adev, false, AUDIO_DEVICE_NONE ); status = stop_input_stream(in); pthread_mutex_unlock(&adev->lock); } pthread_mutex_unlock(&in->lock); ALOGV("%s: exit: status(%d)", __func__, status); return status; } static int in_dump(const struct audio_stream *stream __unused, int fd __unused) { return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; struct str_parms *parms; char *str; char value[32]; int ret, val = 0; int status = 0; ALOGV("%s: enter: kvpairs=%s", __func__, kvpairs); parms = str_parms_create_str(kvpairs); ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_INPUT_SOURCE, value, sizeof(value)); lock_input_stream(in); pthread_mutex_lock(&adev->lock); if (ret >= 0) { val = atoi(value); /* no audio source uses val == 0 */ if ((in->source != val) && (val != 0)) { in->source = val; } } ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value)); if (ret >= 0) { val = atoi(value); if (((int)in->device != val) && (val != 0)) { in->device = val; /* If recording is in progress, change the tx device to new device */ if (!in->standby) { ALOGV("update input routing change"); in->routing_change = true; select_devices(adev, in->usecase); } } } pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&in->lock); str_parms_destroy(parms); ALOGV("%s: exit: status(%d)", __func__, status); return status; } static char* in_get_parameters(const struct audio_stream *stream __unused, const char *keys __unused) { return strdup(""); } static int in_set_gain(struct audio_stream_in *stream __unused, float gain __unused) { return 0; } static void in_snd_mon_cb(void * stream, struct str_parms * parms) { if (!stream || !parms) return; struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; card_status_t status; int card; if (parse_snd_card_status(parms, &card, &status) < 0) return; pthread_mutex_lock(&adev->lock); bool valid_cb = (card == adev->snd_card); pthread_mutex_unlock(&adev->lock); if (!valid_cb) return; lock_input_stream(in); if (in->card_status != status) in->card_status = status; pthread_mutex_unlock(&in->lock); ALOGW("in_snd_mon_cb for card %d usecase %s, status %s", card, use_case_table[in->usecase], status == CARD_STATUS_OFFLINE ? "offline" : "online"); // a better solution would be to report error back to AF and let // it put the stream to standby if (status == CARD_STATUS_OFFLINE) in_standby(&in->stream.common); return; } static ssize_t in_read(struct audio_stream_in *stream, void *buffer, size_t bytes) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; int i, ret = -1; int *int_buf_stream = NULL; lock_input_stream(in); if (in->is_st_session) { ALOGVV(" %s: reading on st session bytes=%d", __func__, bytes); /* Read from sound trigger HAL */ audio_extn_sound_trigger_read(in, buffer, bytes); pthread_mutex_unlock(&in->lock); return bytes; } if (in->standby) { pthread_mutex_lock(&adev->lock); ret = start_input_stream(in); pthread_mutex_unlock(&adev->lock); if (ret != 0) { goto exit; } in->standby = 0; } //what's the duration requested by the client? long ns = pcm_bytes_to_frames(in->pcm, bytes)*1000000000LL/ in->config.rate; request_in_focus(in, ns); bool use_mmap = is_mmap_usecase(in->usecase) || in->realtime; if (in->pcm) { if (use_mmap) { ret = pcm_mmap_read(in->pcm, buffer, bytes); } else { ret = pcm_read(in->pcm, buffer, bytes); } if (ret < 0) { ALOGE("Failed to read w/err %s", strerror(errno)); ret = -errno; } if (!ret && bytes > 0 && (in->format == AUDIO_FORMAT_PCM_8_24_BIT)) { if (bytes % 4 == 0) { /* data from DSP comes in 24_8 format, convert it to 8_24 */ int_buf_stream = buffer; for (size_t itt=0; itt < bytes/4 ; itt++) { int_buf_stream[itt] >>= 8; } } else { ALOGE("%s: !!! something wrong !!! ... data not 32 bit aligned ", __func__); ret = -EINVAL; goto exit; } } } release_in_focus(in, ns); /* * Instead of writing zeroes here, we could trust the hardware * to always provide zeroes when muted. * No need to acquire adev->lock to read mic_muted here as we don't change its state. */ if (ret == 0 && adev->mic_muted && in->usecase != USECASE_AUDIO_RECORD_AFE_PROXY) memset(buffer, 0, bytes); exit: pthread_mutex_unlock(&in->lock); if (ret != 0) { in_standby(&in->stream.common); ALOGV("%s: read failed - sleeping for buffer duration", __func__); usleep(bytes * 1000000 / audio_stream_in_frame_size(stream) / in_get_sample_rate(&in->stream.common)); memset(buffer, 0, bytes); // clear return data } if (bytes > 0) { in->frames_read += bytes / audio_stream_in_frame_size(stream); } return bytes; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream __unused) { return 0; } static int in_get_capture_position(const struct audio_stream_in *stream, int64_t *frames, int64_t *time) { if (stream == NULL || frames == NULL || time == NULL) { return -EINVAL; } struct stream_in *in = (struct stream_in *)stream; int ret = -ENOSYS; lock_input_stream(in); if (in->pcm) { struct timespec timestamp; unsigned int avail; if (pcm_get_htimestamp(in->pcm, &avail, ×tamp) == 0) { *frames = in->frames_read + avail; *time = timestamp.tv_sec * 1000000000LL + timestamp.tv_nsec; ret = 0; } } pthread_mutex_unlock(&in->lock); return ret; } static int add_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect, bool enable) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; int status = 0; effect_descriptor_t desc; status = (*effect)->get_descriptor(effect, &desc); if (status != 0) return status; lock_input_stream(in); pthread_mutex_lock(&in->dev->lock); if ((in->source == AUDIO_SOURCE_VOICE_COMMUNICATION || in->source == AUDIO_SOURCE_VOICE_RECOGNITION || adev->mode == AUDIO_MODE_IN_COMMUNICATION) && in->enable_aec != enable && (memcmp(&desc.type, FX_IID_AEC, sizeof(effect_uuid_t)) == 0)) { in->enable_aec = enable; if (!enable) platform_set_echo_reference(in->dev, enable, AUDIO_DEVICE_NONE); if (in->source == AUDIO_SOURCE_VOICE_COMMUNICATION || adev->mode == AUDIO_MODE_IN_COMMUNICATION) { adev->enable_voicerx = enable; struct audio_usecase *usecase; struct listnode *node; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->type == PCM_PLAYBACK) { select_devices(adev, usecase->id); break; } } } if (!in->standby) select_devices(in->dev, in->usecase); } if (in->enable_ns != enable && (memcmp(&desc.type, FX_IID_NS, sizeof(effect_uuid_t)) == 0)) { in->enable_ns = enable; if (!in->standby) select_devices(in->dev, in->usecase); } pthread_mutex_unlock(&in->dev->lock); pthread_mutex_unlock(&in->lock); return 0; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { ALOGV("%s: effect %p", __func__, effect); return add_remove_audio_effect(stream, effect, true); } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { ALOGV("%s: effect %p", __func__, effect); return add_remove_audio_effect(stream, effect, false); } static int adev_open_output_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out, const char *address __unused) { struct audio_device *adev = (struct audio_device *)dev; struct stream_out *out; int i, ret; ALOGV("%s: enter: sample_rate(%d) channel_mask(%#x) devices(%#x) flags(%#x)", __func__, config->sample_rate, config->channel_mask, devices, flags); *stream_out = NULL; out = (struct stream_out *)calloc(1, sizeof(struct stream_out)); if (devices == AUDIO_DEVICE_NONE) devices = AUDIO_DEVICE_OUT_SPEAKER; out->flags = flags; out->devices = devices; out->dev = adev; out->format = config->format; out->sample_rate = config->sample_rate; out->channel_mask = AUDIO_CHANNEL_OUT_STEREO; out->supported_channel_masks[0] = AUDIO_CHANNEL_OUT_STEREO; out->handle = handle; /* Init use case and pcm_config */ if (out->flags & AUDIO_OUTPUT_FLAG_DIRECT && !(out->flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) && out->devices & AUDIO_DEVICE_OUT_AUX_DIGITAL) { pthread_mutex_lock(&adev->lock); ret = read_hdmi_channel_masks(out); pthread_mutex_unlock(&adev->lock); if (ret != 0) goto error_open; if (config->sample_rate == 0) config->sample_rate = DEFAULT_OUTPUT_SAMPLING_RATE; if (config->channel_mask == 0) config->channel_mask = AUDIO_CHANNEL_OUT_5POINT1; if (config->format == AUDIO_FORMAT_DEFAULT) config->format = AUDIO_FORMAT_PCM_16_BIT; out->channel_mask = config->channel_mask; out->sample_rate = config->sample_rate; out->format = config->format; out->usecase = USECASE_AUDIO_PLAYBACK_MULTI_CH; out->config = pcm_config_hdmi_multi; out->config.rate = config->sample_rate; out->config.channels = audio_channel_count_from_out_mask(out->channel_mask); out->config.period_size = HDMI_MULTI_PERIOD_BYTES / (out->config.channels * 2); } else if (out->flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) { pthread_mutex_lock(&adev->lock); bool offline = (adev->card_status == CARD_STATUS_OFFLINE); pthread_mutex_unlock(&adev->lock); // reject offload during card offline to allow // fallback to s/w paths if (offline) { ret = -ENODEV; goto error_open; } if (config->offload_info.version != AUDIO_INFO_INITIALIZER.version || config->offload_info.size != AUDIO_INFO_INITIALIZER.size) { ALOGE("%s: Unsupported Offload information", __func__); ret = -EINVAL; goto error_open; } if (!is_supported_format(config->offload_info.format)) { ALOGE("%s: Unsupported audio format", __func__); ret = -EINVAL; goto error_open; } out->compr_config.codec = (struct snd_codec *) calloc(1, sizeof(struct snd_codec)); out->usecase = USECASE_AUDIO_PLAYBACK_OFFLOAD; if (config->offload_info.channel_mask) out->channel_mask = config->offload_info.channel_mask; else if (config->channel_mask) out->channel_mask = config->channel_mask; out->format = config->offload_info.format; out->sample_rate = config->offload_info.sample_rate; out->stream.set_callback = out_set_callback; out->stream.pause = out_pause; out->stream.resume = out_resume; out->stream.drain = out_drain; out->stream.flush = out_flush; out->compr_config.codec->id = get_snd_codec_id(config->offload_info.format); out->compr_config.fragment_size = COMPRESS_OFFLOAD_FRAGMENT_SIZE; out->compr_config.fragments = COMPRESS_OFFLOAD_NUM_FRAGMENTS; out->compr_config.codec->sample_rate = config->offload_info.sample_rate; out->compr_config.codec->bit_rate = config->offload_info.bit_rate; out->compr_config.codec->ch_in = audio_channel_count_from_out_mask(config->channel_mask); out->compr_config.codec->ch_out = out->compr_config.codec->ch_in; if (flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) out->non_blocking = 1; out->send_new_metadata = 1; create_offload_callback_thread(out); ALOGV("%s: offloaded output offload_info version %04x bit rate %d", __func__, config->offload_info.version, config->offload_info.bit_rate); } else if (out->devices == AUDIO_DEVICE_OUT_TELEPHONY_TX) { if (config->sample_rate == 0) config->sample_rate = AFE_PROXY_SAMPLING_RATE; if (config->sample_rate != 48000 && config->sample_rate != 16000 && config->sample_rate != 8000) { config->sample_rate = AFE_PROXY_SAMPLING_RATE; ret = -EINVAL; goto error_open; } out->sample_rate = config->sample_rate; out->config.rate = config->sample_rate; if (config->format == AUDIO_FORMAT_DEFAULT) config->format = AUDIO_FORMAT_PCM_16_BIT; if (config->format != AUDIO_FORMAT_PCM_16_BIT) { config->format = AUDIO_FORMAT_PCM_16_BIT; ret = -EINVAL; goto error_open; } out->format = config->format; out->usecase = USECASE_AUDIO_PLAYBACK_AFE_PROXY; out->config = pcm_config_afe_proxy_playback; adev->voice_tx_output = out; } else { if (out->flags & AUDIO_OUTPUT_FLAG_DEEP_BUFFER) { out->usecase = USECASE_AUDIO_PLAYBACK_DEEP_BUFFER; out->config = pcm_config_deep_buffer; } else if (out->flags & AUDIO_OUTPUT_FLAG_TTS) { out->usecase = USECASE_AUDIO_PLAYBACK_TTS; out->config = pcm_config_deep_buffer; } else if (out->flags & AUDIO_OUTPUT_FLAG_RAW) { out->usecase = USECASE_AUDIO_PLAYBACK_ULL; out->realtime = may_use_noirq_mode(adev, USECASE_AUDIO_PLAYBACK_ULL, out->flags); out->usecase = USECASE_AUDIO_PLAYBACK_ULL; out->config = out->realtime ? pcm_config_rt : pcm_config_low_latency; } else { out->usecase = USECASE_AUDIO_PLAYBACK_LOW_LATENCY; out->config = pcm_config_low_latency; } if (config->format != audio_format_from_pcm_format(out->config.format)) { if (k_enable_extended_precision && pcm_params_format_test(adev->use_case_table[out->usecase], pcm_format_from_audio_format(config->format))) { out->config.format = pcm_format_from_audio_format(config->format); /* out->format already set to config->format */ } else { /* deny the externally proposed config format * and use the one specified in audio_hw layer configuration. * Note: out->format is returned by out->stream.common.get_format() * and is used to set config->format in the code several lines below. */ out->format = audio_format_from_pcm_format(out->config.format); } } out->sample_rate = out->config.rate; } ALOGV("%s: Usecase(%s) config->format %#x out->config.format %#x\n", __func__, use_case_table[out->usecase], config->format, out->config.format); if (flags & AUDIO_OUTPUT_FLAG_PRIMARY) { if (adev->primary_output == NULL) adev->primary_output = out; else { ALOGE("%s: Primary output is already opened", __func__); ret = -EEXIST; goto error_open; } } /* Check if this usecase is already existing */ pthread_mutex_lock(&adev->lock); if (get_usecase_from_list(adev, out->usecase) != NULL) { ALOGE("%s: Usecase (%d) is already present", __func__, out->usecase); pthread_mutex_unlock(&adev->lock); ret = -EEXIST; goto error_open; } pthread_mutex_unlock(&adev->lock); out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; #ifdef NO_AUDIO_OUT out->stream.write = out_write_for_no_output; #else out->stream.write = out_write; #endif out->stream.get_render_position = out_get_render_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; out->stream.get_presentation_position = out_get_presentation_position; out->af_period_multiplier = out->realtime ? af_period_multiplier : 1; out->standby = 1; /* out->muted = false; by calloc() */ /* out->written = 0; by calloc() */ pthread_mutex_init(&out->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&out->pre_lock, (const pthread_mutexattr_t *) NULL); pthread_cond_init(&out->cond, (const pthread_condattr_t *) NULL); config->format = out->stream.common.get_format(&out->stream.common); config->channel_mask = out->stream.common.get_channels(&out->stream.common); config->sample_rate = out->stream.common.get_sample_rate(&out->stream.common); /* By locking output stream before registering, we allow the callback to update stream's state only after stream's initial state is set to adev state. */ lock_output_stream(out); audio_extn_snd_mon_register_listener(out, out_snd_mon_cb); pthread_mutex_lock(&adev->lock); out->card_status = adev->card_status; pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&out->lock); *stream_out = &out->stream; ALOGV("%s: exit", __func__); return 0; error_open: free(out); *stream_out = NULL; ALOGW("%s: exit: ret %d", __func__, ret); return ret; } static void adev_close_output_stream(struct audio_hw_device *dev __unused, struct audio_stream_out *stream) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; ALOGV("%s: enter", __func__); // must deregister from sndmonitor first to prevent races // between the callback and close_stream audio_extn_snd_mon_unregister_listener(out); out_standby(&stream->common); if (out->usecase == USECASE_AUDIO_PLAYBACK_OFFLOAD) { destroy_offload_callback_thread(out); if (out->compr_config.codec != NULL) free(out->compr_config.codec); } if (adev->voice_tx_output == out) adev->voice_tx_output = NULL; pthread_cond_destroy(&out->cond); pthread_mutex_destroy(&out->lock); free(stream); ALOGV("%s: exit", __func__); } static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs) { struct audio_device *adev = (struct audio_device *)dev; struct str_parms *parms; char *str; char value[32]; int val; int ret; int status = 0; ALOGV("%s: enter: %s", __func__, kvpairs); pthread_mutex_lock(&adev->lock); parms = str_parms_create_str(kvpairs); status = voice_set_parameters(adev, parms); if (status != 0) { goto done; } ret = str_parms_get_str(parms, AUDIO_PARAMETER_KEY_BT_NREC, value, sizeof(value)); if (ret >= 0) { /* When set to false, HAL should disable EC and NS */ if (strcmp(value, AUDIO_PARAMETER_VALUE_ON) == 0) adev->bluetooth_nrec = true; else adev->bluetooth_nrec = false; } ret = str_parms_get_str(parms, "screen_state", value, sizeof(value)); if (ret >= 0) { if (strcmp(value, AUDIO_PARAMETER_VALUE_ON) == 0) adev->screen_off = false; else adev->screen_off = true; } ret = str_parms_get_int(parms, "rotation", &val); if (ret >= 0) { bool reverse_speakers = false; switch(val) { // FIXME: note that the code below assumes that the speakers are in the correct placement // relative to the user when the device is rotated 90deg from its default rotation. This // assumption is device-specific, not platform-specific like this code. case 270: reverse_speakers = true; break; case 0: case 90: case 180: break; default: ALOGE("%s: unexpected rotation of %d", __func__, val); status = -EINVAL; } if (status == 0) { platform_swap_lr_channels(adev, reverse_speakers); } } ret = str_parms_get_str(parms, AUDIO_PARAMETER_KEY_BT_SCO_WB, value, sizeof(value)); if (ret >= 0) { adev->bt_wb_speech_enabled = !strcmp(value, AUDIO_PARAMETER_VALUE_ON); } audio_extn_hfp_set_parameters(adev, parms); done: str_parms_destroy(parms); pthread_mutex_unlock(&adev->lock); ALOGV("%s: exit with code(%d)", __func__, status); return status; } static char* adev_get_parameters(const struct audio_hw_device *dev, const char *keys) { struct audio_device *adev = (struct audio_device *)dev; struct str_parms *reply = str_parms_create(); struct str_parms *query = str_parms_create_str(keys); char *str; pthread_mutex_lock(&adev->lock); voice_get_parameters(adev, query, reply); str = str_parms_to_str(reply); str_parms_destroy(query); str_parms_destroy(reply); pthread_mutex_unlock(&adev->lock); ALOGV("%s: exit: returns - %s", __func__, str); return str; } static int adev_init_check(const struct audio_hw_device *dev __unused) { return 0; } static int adev_set_voice_volume(struct audio_hw_device *dev, float volume) { int ret; struct audio_device *adev = (struct audio_device *)dev; audio_extn_extspk_set_voice_vol(adev->extspk, volume); pthread_mutex_lock(&adev->lock); ret = voice_set_volume(adev, volume); pthread_mutex_unlock(&adev->lock); return ret; } static int adev_set_master_volume(struct audio_hw_device *dev __unused, float volume __unused) { return -ENOSYS; } static int adev_get_master_volume(struct audio_hw_device *dev __unused, float *volume __unused) { return -ENOSYS; } static int adev_set_master_mute(struct audio_hw_device *dev __unused, bool muted __unused) { return -ENOSYS; } static int adev_get_master_mute(struct audio_hw_device *dev __unused, bool *muted __unused) { return -ENOSYS; } static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode) { struct audio_device *adev = (struct audio_device *)dev; pthread_mutex_lock(&adev->lock); if (adev->mode != mode) { ALOGD("%s: mode %d", __func__, (int)mode); adev->mode = mode; if ((mode == AUDIO_MODE_NORMAL || mode == AUDIO_MODE_IN_COMMUNICATION) && voice_is_in_call(adev)) { voice_stop_call(adev); adev->current_call_output = NULL; } } pthread_mutex_unlock(&adev->lock); audio_extn_extspk_set_mode(adev->extspk, mode); return 0; } static int adev_set_mic_mute(struct audio_hw_device *dev, bool state) { int ret; struct audio_device *adev = (struct audio_device *)dev; ALOGD("%s: state %d", __func__, (int)state); pthread_mutex_lock(&adev->lock); ret = voice_set_mic_mute(adev, state); adev->mic_muted = state; pthread_mutex_unlock(&adev->lock); return ret; } static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state) { *state = voice_get_mic_mute((struct audio_device *)dev); return 0; } static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev __unused, const struct audio_config *config) { int channel_count = audio_channel_count_from_in_mask(config->channel_mask); return get_input_buffer_size(config->sample_rate, config->format, channel_count, false /* is_low_latency: since we don't know, be conservative */); } static int adev_open_input_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, struct audio_config *config, struct audio_stream_in **stream_in, audio_input_flags_t flags, const char *address __unused, audio_source_t source ) { struct audio_device *adev = (struct audio_device *)dev; struct stream_in *in; int ret = 0, buffer_size, frame_size; int channel_count = audio_channel_count_from_in_mask(config->channel_mask); bool is_low_latency = false; ALOGV("%s: enter", __func__); *stream_in = NULL; if (check_input_parameters(config->sample_rate, config->format, channel_count) != 0) return -EINVAL; in = (struct stream_in *)calloc(1, sizeof(struct stream_in)); pthread_mutex_init(&in->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&in->pre_lock, (const pthread_mutexattr_t *) NULL); in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; in->stream.get_capture_position = in_get_capture_position; in->device = devices; in->source = source; in->dev = adev; in->standby = 1; in->channel_mask = config->channel_mask; in->capture_handle = handle; in->flags = flags; // restrict 24 bit capture for unprocessed source only // for other sources if 24 bit requested reject 24 and set 16 bit capture only if (config->format == AUDIO_FORMAT_DEFAULT) { config->format = AUDIO_FORMAT_PCM_16_BIT; } else if (config->format == AUDIO_FORMAT_PCM_FLOAT || config->format == AUDIO_FORMAT_PCM_24_BIT_PACKED || config->format == AUDIO_FORMAT_PCM_8_24_BIT) { bool ret_error = false; /* 24 bit is restricted to UNPROCESSED source only,also format supported from HAL is 8_24 *> In case of UNPROCESSED source, for 24 bit, if format requested is other than 8_24 return error indicating supported format is 8_24 *> In case of any other source requesting 24 bit or float return error indicating format supported is 16 bit only. on error flinger will retry with supported format passed */ if (source != AUDIO_SOURCE_UNPROCESSED) { config->format = AUDIO_FORMAT_PCM_16_BIT; ret_error = true; } else if (config->format != AUDIO_FORMAT_PCM_8_24_BIT) { config->format = AUDIO_FORMAT_PCM_8_24_BIT; ret_error = true; } if (ret_error) { ret = -EINVAL; goto err_open; } } in->format = config->format; /* Update config params with the requested sample rate and channels */ if (in->device == AUDIO_DEVICE_IN_TELEPHONY_RX) { if (config->sample_rate == 0) config->sample_rate = AFE_PROXY_SAMPLING_RATE; if (config->sample_rate != 48000 && config->sample_rate != 16000 && config->sample_rate != 8000) { config->sample_rate = AFE_PROXY_SAMPLING_RATE; ret = -EINVAL; goto err_open; } if (config->format != AUDIO_FORMAT_PCM_16_BIT) { config->format = AUDIO_FORMAT_PCM_16_BIT; ret = -EINVAL; goto err_open; } in->usecase = USECASE_AUDIO_RECORD_AFE_PROXY; in->config = pcm_config_afe_proxy_record; } else { in->usecase = USECASE_AUDIO_RECORD; if (config->sample_rate == LOW_LATENCY_CAPTURE_SAMPLE_RATE && (flags & AUDIO_INPUT_FLAG_FAST) != 0) { is_low_latency = true; #if LOW_LATENCY_CAPTURE_USE_CASE in->usecase = USECASE_AUDIO_RECORD_LOW_LATENCY; #endif in->realtime = may_use_noirq_mode(adev, in->usecase, in->flags); } in->config = in->realtime ? pcm_config_audio_capture_rt : pcm_config_audio_capture; if (config->format == AUDIO_FORMAT_PCM_8_24_BIT) in->config.format = PCM_FORMAT_S24_LE; if (!in->realtime) { frame_size = audio_stream_in_frame_size(&in->stream); buffer_size = get_input_buffer_size(config->sample_rate, config->format, channel_count, is_low_latency); in->config.period_size = buffer_size / frame_size; } // period size is left untouched for rt mode playback } in->config.channels = channel_count; if (in->realtime) { in->af_period_multiplier = af_period_multiplier; } else { in->config.rate = config->sample_rate; in->af_period_multiplier = 1; } /* This stream could be for sound trigger lab, get sound trigger pcm if present */ audio_extn_sound_trigger_check_and_get_session(in); lock_input_stream(in); audio_extn_snd_mon_register_listener(in, in_snd_mon_cb); pthread_mutex_lock(&adev->lock); in->card_status = adev->card_status; pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&in->lock); *stream_in = &in->stream; ALOGV("%s: exit", __func__); return 0; err_open: free(in); *stream_in = NULL; return ret; } static void adev_close_input_stream(struct audio_hw_device *dev __unused, struct audio_stream_in *stream) { ALOGV("%s", __func__); // must deregister from sndmonitor first to prevent races // between the callback and close_stream audio_extn_snd_mon_unregister_listener(stream); in_standby(&stream->common); free(stream); return; } static int adev_dump(const audio_hw_device_t *device __unused, int fd __unused) { return 0; } /* verifies input and output devices and their capabilities. * * This verification is required when enabling extended bit-depth or * sampling rates, as not all qcom products support it. * * Suitable for calling only on initialization such as adev_open(). * It fills the audio_device use_case_table[] array. * * Has a side-effect that it needs to configure audio routing / devices * in order to power up the devices and read the device parameters. * It does not acquire any hw device lock. Should restore the devices * back to "normal state" upon completion. */ static int adev_verify_devices(struct audio_device *adev) { /* enumeration is a bit difficult because one really wants to pull * the use_case, device id, etc from the hidden pcm_device_table[]. * In this case there are the following use cases and device ids. * * [USECASE_AUDIO_PLAYBACK_DEEP_BUFFER] = {0, 0}, * [USECASE_AUDIO_PLAYBACK_LOW_LATENCY] = {15, 15}, * [USECASE_AUDIO_PLAYBACK_MULTI_CH] = {1, 1}, * [USECASE_AUDIO_PLAYBACK_OFFLOAD] = {9, 9}, * [USECASE_AUDIO_RECORD] = {0, 0}, * [USECASE_AUDIO_RECORD_LOW_LATENCY] = {15, 15}, * [USECASE_VOICE_CALL] = {2, 2}, * * USECASE_AUDIO_PLAYBACK_OFFLOAD, USECASE_AUDIO_PLAYBACK_MULTI_CH omitted. * USECASE_VOICE_CALL omitted, but possible for either input or output. */ /* should be the usecases enabled in adev_open_input_stream() */ static const int test_in_usecases[] = { USECASE_AUDIO_RECORD, USECASE_AUDIO_RECORD_LOW_LATENCY, /* does not appear to be used */ }; /* should be the usecases enabled in adev_open_output_stream()*/ static const int test_out_usecases[] = { USECASE_AUDIO_PLAYBACK_DEEP_BUFFER, USECASE_AUDIO_PLAYBACK_LOW_LATENCY, }; static const usecase_type_t usecase_type_by_dir[] = { PCM_PLAYBACK, PCM_CAPTURE, }; static const unsigned flags_by_dir[] = { PCM_OUT, PCM_IN, }; size_t i; unsigned dir; const unsigned card_id = adev->snd_card; char info[512]; /* for possible debug info */ for (dir = 0; dir < 2; ++dir) { const usecase_type_t usecase_type = usecase_type_by_dir[dir]; const unsigned flags_dir = flags_by_dir[dir]; const size_t testsize = dir ? ARRAY_SIZE(test_in_usecases) : ARRAY_SIZE(test_out_usecases); const int *testcases = dir ? test_in_usecases : test_out_usecases; const audio_devices_t audio_device = dir ? AUDIO_DEVICE_IN_BUILTIN_MIC : AUDIO_DEVICE_OUT_SPEAKER; for (i = 0; i < testsize; ++i) { const audio_usecase_t audio_usecase = testcases[i]; int device_id; snd_device_t snd_device; struct pcm_params **pparams; struct stream_out out; struct stream_in in; struct audio_usecase uc_info; int retval; pparams = &adev->use_case_table[audio_usecase]; pcm_params_free(*pparams); /* can accept null input */ *pparams = NULL; /* find the device ID for the use case (signed, for error) */ device_id = platform_get_pcm_device_id(audio_usecase, usecase_type); if (device_id < 0) continue; /* prepare structures for device probing */ memset(&uc_info, 0, sizeof(uc_info)); uc_info.id = audio_usecase; uc_info.type = usecase_type; if (dir) { adev->active_input = ∈ memset(&in, 0, sizeof(in)); in.device = audio_device; in.source = AUDIO_SOURCE_VOICE_COMMUNICATION; uc_info.stream.in = ∈ } else { adev->active_input = NULL; } memset(&out, 0, sizeof(out)); out.devices = audio_device; /* only field needed in select_devices */ uc_info.stream.out = &out; uc_info.devices = audio_device; uc_info.in_snd_device = SND_DEVICE_NONE; uc_info.out_snd_device = SND_DEVICE_NONE; list_add_tail(&adev->usecase_list, &uc_info.list); /* select device - similar to start_(in/out)put_stream() */ retval = select_devices(adev, audio_usecase); if (retval >= 0) { *pparams = pcm_params_get(card_id, device_id, flags_dir); #if LOG_NDEBUG == 0 if (*pparams) { ALOGV("%s: (%s) card %d device %d", __func__, dir ? "input" : "output", card_id, device_id); pcm_params_to_string(*pparams, info, ARRAY_SIZE(info)); } else { ALOGV("%s: cannot locate card %d device %d", __func__, card_id, device_id); } #endif } /* deselect device - similar to stop_(in/out)put_stream() */ /* 1. Get and set stream specific mixer controls */ retval = disable_audio_route(adev, &uc_info); /* 2. Disable the rx device */ retval = disable_snd_device(adev, dir ? uc_info.in_snd_device : uc_info.out_snd_device); list_remove(&uc_info.list); } } adev->active_input = NULL; /* restore adev state */ return 0; } static int adev_close(hw_device_t *device) { size_t i; struct audio_device *adev = (struct audio_device *)device; if (!adev) return 0; audio_extn_snd_mon_unregister_listener(adev); pthread_mutex_lock(&adev_init_lock); if ((--audio_device_ref_count) == 0) { audio_route_free(adev->audio_route); free(adev->snd_dev_ref_cnt); platform_deinit(adev->platform); audio_extn_extspk_deinit(adev->extspk); audio_extn_sound_trigger_deinit(adev); for (i = 0; i < ARRAY_SIZE(adev->use_case_table); ++i) { pcm_params_free(adev->use_case_table[i]); } if (adev->adm_deinit) adev->adm_deinit(adev->adm_data); free(device); } pthread_mutex_unlock(&adev_init_lock); return 0; } /* This returns 1 if the input parameter looks at all plausible as a low latency period size, * or 0 otherwise. A return value of 1 doesn't mean the value is guaranteed to work, * just that it _might_ work. */ static int period_size_is_plausible_for_low_latency(int period_size) { switch (period_size) { case 48: case 96: case 144: case 160: case 192: case 240: case 320: case 480: return 1; default: return 0; } } static void adev_snd_mon_cb(void * stream __unused, struct str_parms * parms) { int card; card_status_t status; if (!parms) return; if (parse_snd_card_status(parms, &card, &status) < 0) return; pthread_mutex_lock(&adev->lock); bool valid_cb = (card == adev->snd_card); if (valid_cb) { if (adev->card_status != status) { adev->card_status = status; platform_snd_card_update(adev->platform, status); } } pthread_mutex_unlock(&adev->lock); return; } static int adev_open(const hw_module_t *module, const char *name, hw_device_t **device) { int i, ret; ALOGD("%s: enter", __func__); if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL; pthread_mutex_lock(&adev_init_lock); if (audio_device_ref_count != 0) { *device = &adev->device.common; audio_device_ref_count++; ALOGV("%s: returning existing instance of adev", __func__); ALOGV("%s: exit", __func__); pthread_mutex_unlock(&adev_init_lock); return 0; } adev = calloc(1, sizeof(struct audio_device)); pthread_mutex_init(&adev->lock, (const pthread_mutexattr_t *) NULL); adev->device.common.tag = HARDWARE_DEVICE_TAG; adev->device.common.version = AUDIO_DEVICE_API_VERSION_2_0; adev->device.common.module = (struct hw_module_t *)module; adev->device.common.close = adev_close; adev->device.init_check = adev_init_check; adev->device.set_voice_volume = adev_set_voice_volume; adev->device.set_master_volume = adev_set_master_volume; adev->device.get_master_volume = adev_get_master_volume; adev->device.set_master_mute = adev_set_master_mute; adev->device.get_master_mute = adev_get_master_mute; adev->device.set_mode = adev_set_mode; adev->device.set_mic_mute = adev_set_mic_mute; adev->device.get_mic_mute = adev_get_mic_mute; adev->device.set_parameters = adev_set_parameters; adev->device.get_parameters = adev_get_parameters; adev->device.get_input_buffer_size = adev_get_input_buffer_size; adev->device.open_output_stream = adev_open_output_stream; adev->device.close_output_stream = adev_close_output_stream; adev->device.open_input_stream = adev_open_input_stream; adev->device.close_input_stream = adev_close_input_stream; adev->device.dump = adev_dump; /* Set the default route before the PCM stream is opened */ pthread_mutex_lock(&adev->lock); adev->mode = AUDIO_MODE_NORMAL; adev->active_input = NULL; adev->primary_output = NULL; adev->bluetooth_nrec = true; adev->acdb_settings = TTY_MODE_OFF; /* adev->cur_hdmi_channels = 0; by calloc() */ adev->snd_dev_ref_cnt = calloc(SND_DEVICE_MAX, sizeof(int)); voice_init(adev); list_init(&adev->usecase_list); pthread_mutex_unlock(&adev->lock); /* Loads platform specific libraries dynamically */ adev->platform = platform_init(adev); if (!adev->platform) { free(adev->snd_dev_ref_cnt); free(adev); ALOGE("%s: Failed to init platform data, aborting.", __func__); *device = NULL; pthread_mutex_unlock(&adev_init_lock); return -EINVAL; } adev->extspk = audio_extn_extspk_init(adev); audio_extn_sound_trigger_init(adev); adev->visualizer_lib = dlopen(VISUALIZER_LIBRARY_PATH, RTLD_NOW); if (adev->visualizer_lib == NULL) { ALOGW("%s: DLOPEN failed for %s", __func__, VISUALIZER_LIBRARY_PATH); } else { ALOGV("%s: DLOPEN successful for %s", __func__, VISUALIZER_LIBRARY_PATH); adev->visualizer_start_output = (int (*)(audio_io_handle_t, int))dlsym(adev->visualizer_lib, "visualizer_hal_start_output"); adev->visualizer_stop_output = (int (*)(audio_io_handle_t, int))dlsym(adev->visualizer_lib, "visualizer_hal_stop_output"); } adev->offload_effects_lib = dlopen(OFFLOAD_EFFECTS_BUNDLE_LIBRARY_PATH, RTLD_NOW); if (adev->offload_effects_lib == NULL) { ALOGW("%s: DLOPEN failed for %s", __func__, OFFLOAD_EFFECTS_BUNDLE_LIBRARY_PATH); } else { ALOGV("%s: DLOPEN successful for %s", __func__, OFFLOAD_EFFECTS_BUNDLE_LIBRARY_PATH); adev->offload_effects_start_output = (int (*)(audio_io_handle_t, int))dlsym(adev->offload_effects_lib, "offload_effects_bundle_hal_start_output"); adev->offload_effects_stop_output = (int (*)(audio_io_handle_t, int))dlsym(adev->offload_effects_lib, "offload_effects_bundle_hal_stop_output"); } adev->adm_lib = dlopen(ADM_LIBRARY_PATH, RTLD_NOW); if (adev->adm_lib == NULL) { ALOGW("%s: DLOPEN failed for %s", __func__, ADM_LIBRARY_PATH); } else { ALOGV("%s: DLOPEN successful for %s", __func__, ADM_LIBRARY_PATH); adev->adm_init = (adm_init_t) dlsym(adev->adm_lib, "adm_init"); adev->adm_deinit = (adm_deinit_t) dlsym(adev->adm_lib, "adm_deinit"); adev->adm_register_input_stream = (adm_register_input_stream_t) dlsym(adev->adm_lib, "adm_register_input_stream"); adev->adm_register_output_stream = (adm_register_output_stream_t) dlsym(adev->adm_lib, "adm_register_output_stream"); adev->adm_deregister_stream = (adm_deregister_stream_t) dlsym(adev->adm_lib, "adm_deregister_stream"); adev->adm_request_focus = (adm_request_focus_t) dlsym(adev->adm_lib, "adm_request_focus"); adev->adm_abandon_focus = (adm_abandon_focus_t) dlsym(adev->adm_lib, "adm_abandon_focus"); adev->adm_set_config = (adm_set_config_t) dlsym(adev->adm_lib, "adm_set_config"); adev->adm_request_focus_v2 = (adm_request_focus_v2_t) dlsym(adev->adm_lib, "adm_request_focus_v2"); adev->adm_is_noirq_avail = (adm_is_noirq_avail_t) dlsym(adev->adm_lib, "adm_is_noirq_avail"); adev->adm_on_routing_change = (adm_on_routing_change_t) dlsym(adev->adm_lib, "adm_on_routing_change"); } adev->bt_wb_speech_enabled = false; adev->enable_voicerx = false; *device = &adev->device.common; if (k_enable_extended_precision) adev_verify_devices(adev); char value[PROPERTY_VALUE_MAX]; int trial; if (property_get("audio_hal.period_size", value, NULL) > 0) { trial = atoi(value); if (period_size_is_plausible_for_low_latency(trial)) { pcm_config_low_latency.period_size = trial; pcm_config_low_latency.start_threshold = trial / 4; pcm_config_low_latency.avail_min = trial / 4; configured_low_latency_capture_period_size = trial; } } if (property_get("audio_hal.in_period_size", value, NULL) > 0) { trial = atoi(value); if (period_size_is_plausible_for_low_latency(trial)) { configured_low_latency_capture_period_size = trial; } } audio_device_ref_count++; if (property_get("audio_hal.period_multiplier", value, NULL) > 0) { af_period_multiplier = atoi(value); if (af_period_multiplier < 0) { af_period_multiplier = 2; } else if (af_period_multiplier > 4) { af_period_multiplier = 4; } ALOGV("new period_multiplier = %d", af_period_multiplier); } pthread_mutex_unlock(&adev_init_lock); if (adev->adm_init) adev->adm_data = adev->adm_init(); audio_extn_perf_lock_init(); audio_extn_snd_mon_init(); pthread_mutex_lock(&adev->lock); audio_extn_snd_mon_register_listener(NULL, adev_snd_mon_cb); adev->card_status = CARD_STATUS_ONLINE; pthread_mutex_unlock(&adev->lock); ALOGD("%s: exit", __func__); return 0; } static struct hw_module_methods_t hal_module_methods = { .open = adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = AUDIO_HARDWARE_MODULE_ID, .name = "QCOM Audio HAL", .author = "Code Aurora Forum", .methods = &hal_module_methods, }, };