/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <jni.h> #include <math.h> #include <android/bitmap.h> #ifdef __cplusplus extern "C" { #endif #define PI_F 3.141592653589f class ImageRGBA { public: ImageRGBA(unsigned char* image, int width, int height) : image_(image), width_(width), height_(height) { width_step_ = width * 4; } int Width() const { return width_; } int Height() const { return height_; } // Pixel accessor. unsigned char* operator()(int x, int y) { return image_ + y * width_step_ + x * 4; } const unsigned char* operator()(int x, int y) const { return image_ + y * width_step_ + x * 4; } private: unsigned char* image_; int width_; int height_; int width_step_; }; // Interpolate a pixel in a 3 channel image. inline void InterpolatePixel(const ImageRGBA &image, float x, float y, unsigned char* dest) { // Get pointers and scale factors for the source pixels. float ax = x - floor(x); float ay = y - floor(y); float axn = 1.0f - ax; float ayn = 1.0f - ay; const unsigned char *p = image(x, y); const unsigned char *p2 = image(x, y + 1); // Interpolate each image color plane. dest[0] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] + ax * ay * p2[4] + axn * ay * p2[0] + 0.5f); p++; p2++; dest[1] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] + ax * ay * p2[4] + axn * ay * p2[0] + 0.5f); p++; p2++; dest[2] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] + ax * ay * p2[4] + axn * ay * p2[0] + 0.5f); p++; p2++; dest[3] = 0xFF; } // Wrap circular coordinates around the globe inline float wrap(float value, float dimension) { return value - (dimension * floor(value/dimension)); } void StereographicProjection(float scale, float angle, unsigned char* input_image, int input_width, int input_height, unsigned char* output_image, int output_width, int output_height) { ImageRGBA input(input_image, input_width, input_height); ImageRGBA output(output_image, output_width, output_height); const float image_scale = output_width * scale; for (int x = 0; x < output_width; x++) { // Center and scale x float xf = (x - output_width / 2.0f) / image_scale; for (int y = 0; y < output_height; y++) { // Center and scale y float yf = (y - output_height / 2.0f) / image_scale; // Convert to polar float r = hypotf(xf, yf); float theta = angle+atan2(yf, xf); if (theta>PI_F) theta-=2*PI_F; // Project onto plane float phi = 2 * atan(1 / r); // (theta stays the same) // Map to panorama image float px = (theta / (2 * PI_F)) * input_width; float py = (phi / PI_F) * input_height; // Wrap around the globe px = wrap(px, input_width); py = wrap(py, input_height); // Write the interpolated pixel InterpolatePixel(input, px, py, output(x, y)); } } } JNIEXPORT void JNICALL Java_com_android_camera_tinyplanet_TinyPlanetNative_process(JNIEnv* env, jobject obj, jobject bitmap_in, jint width, jint height, jobject bitmap_out, jint output_size, jfloat scale, jfloat angle) { char* source = 0; char* destination = 0; AndroidBitmap_lockPixels(env, bitmap_in, (void**) &source); AndroidBitmap_lockPixels(env, bitmap_out, (void**) &destination); unsigned char * rgb_in = (unsigned char * )source; unsigned char * rgb_out = (unsigned char * )destination; StereographicProjection(scale, angle, rgb_in, width, height, rgb_out, output_size, output_size); AndroidBitmap_unlockPixels(env, bitmap_in); AndroidBitmap_unlockPixels(env, bitmap_out); } #ifdef __cplusplus } #endif