// Inferno utils/5l/span.c // http://code.google.com/p/inferno-os/source/browse/utils/5l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package arm import ( "cmd/internal/obj" "fmt" "log" "math" "sort" ) type Optab struct { as uint16 a1 uint8 a2 int8 a3 uint8 type_ uint8 size int8 param int16 flag int8 pcrelsiz uint8 } type Oprang struct { start []Optab stop []Optab } type Opcross [32][2][32]uint8 const ( LFROM = 1 << 0 LTO = 1 << 1 LPOOL = 1 << 2 LPCREL = 1 << 3 ) var optab = []Optab{ /* struct Optab: OPCODE, from, prog->reg, to, type,size,param,flag */ Optab{obj.ATEXT, C_ADDR, C_NONE, C_TEXTSIZE, 0, 0, 0, 0, 0}, Optab{AADD, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0}, Optab{AADD, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0}, Optab{AMVN, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0}, Optab{ACMP, C_REG, C_REG, C_NONE, 1, 4, 0, 0, 0}, Optab{AADD, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0}, Optab{AADD, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0}, Optab{AMOVW, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0}, Optab{AMVN, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0}, Optab{ACMP, C_RCON, C_REG, C_NONE, 2, 4, 0, 0, 0}, Optab{AADD, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0}, Optab{AADD, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0}, Optab{AMVN, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0}, Optab{ACMP, C_SHIFT, C_REG, C_NONE, 3, 4, 0, 0, 0}, Optab{AMOVW, C_RACON, C_NONE, C_REG, 4, 4, REGSP, 0, 0}, Optab{AB, C_NONE, C_NONE, C_SBRA, 5, 4, 0, LPOOL, 0}, Optab{ABL, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, Optab{ABX, C_NONE, C_NONE, C_SBRA, 74, 20, 0, 0, 0}, Optab{ABEQ, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, Optab{ABEQ, C_RCON, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, // prediction hinted form, hint ignored Optab{AB, C_NONE, C_NONE, C_ROREG, 6, 4, 0, LPOOL, 0}, Optab{ABL, C_NONE, C_NONE, C_ROREG, 7, 4, 0, 0, 0}, Optab{ABL, C_REG, C_NONE, C_ROREG, 7, 4, 0, 0, 0}, Optab{ABX, C_NONE, C_NONE, C_ROREG, 75, 12, 0, 0, 0}, Optab{ABXRET, C_NONE, C_NONE, C_ROREG, 76, 4, 0, 0, 0}, Optab{ASLL, C_RCON, C_REG, C_REG, 8, 4, 0, 0, 0}, Optab{ASLL, C_RCON, C_NONE, C_REG, 8, 4, 0, 0, 0}, Optab{ASLL, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0}, Optab{ASLL, C_REG, C_REG, C_REG, 9, 4, 0, 0, 0}, Optab{ASWI, C_NONE, C_NONE, C_NONE, 10, 4, 0, 0, 0}, Optab{ASWI, C_NONE, C_NONE, C_LOREG, 10, 4, 0, 0, 0}, Optab{ASWI, C_NONE, C_NONE, C_LCON, 10, 4, 0, 0, 0}, Optab{AWORD, C_NONE, C_NONE, C_LCON, 11, 4, 0, 0, 0}, Optab{AWORD, C_NONE, C_NONE, C_LCONADDR, 11, 4, 0, 0, 0}, Optab{AWORD, C_NONE, C_NONE, C_ADDR, 11, 4, 0, 0, 0}, Optab{AMOVW, C_NCON, C_NONE, C_REG, 12, 4, 0, 0, 0}, Optab{AMOVW, C_LCON, C_NONE, C_REG, 12, 4, 0, LFROM, 0}, Optab{AMOVW, C_LCONADDR, C_NONE, C_REG, 12, 4, 0, LFROM | LPCREL, 4}, Optab{AADD, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0}, Optab{AADD, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0}, Optab{AMVN, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0}, Optab{ACMP, C_NCON, C_REG, C_NONE, 13, 8, 0, 0, 0}, Optab{AADD, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0}, Optab{AADD, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0}, Optab{AMVN, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0}, Optab{ACMP, C_LCON, C_REG, C_NONE, 13, 8, 0, LFROM, 0}, Optab{AMOVB, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0}, Optab{AMOVBS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0}, Optab{AMOVBU, C_REG, C_NONE, C_REG, 58, 4, 0, 0, 0}, Optab{AMOVH, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0}, Optab{AMOVHS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0}, Optab{AMOVHU, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0}, Optab{AMUL, C_REG, C_REG, C_REG, 15, 4, 0, 0, 0}, Optab{AMUL, C_REG, C_NONE, C_REG, 15, 4, 0, 0, 0}, Optab{ADIV, C_REG, C_REG, C_REG, 16, 4, 0, 0, 0}, Optab{ADIV, C_REG, C_NONE, C_REG, 16, 4, 0, 0, 0}, Optab{AMULL, C_REG, C_REG, C_REGREG, 17, 4, 0, 0, 0}, Optab{AMULA, C_REG, C_REG, C_REGREG2, 17, 4, 0, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0}, Optab{AMOVB, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0}, Optab{AMOVB, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0}, Optab{AMOVBS, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0}, Optab{AMOVBS, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0}, Optab{AMOVBU, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0}, Optab{AMOVBU, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0}, Optab{AMOVW, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0}, Optab{AMOVW, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0}, Optab{AMOVBU, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0}, Optab{AMOVBU, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0}, Optab{AMOVW, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0}, Optab{AMOVW, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4}, Optab{AMOVB, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0}, Optab{AMOVB, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0}, Optab{AMOVB, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4}, Optab{AMOVBS, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0}, Optab{AMOVBS, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0}, Optab{AMOVBS, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4}, Optab{AMOVBU, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0}, Optab{AMOVBU, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0}, Optab{AMOVBU, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4}, Optab{AMOVW, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0}, Optab{AMOVW, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0}, Optab{AMOVW, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4}, Optab{AMOVBU, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0}, Optab{AMOVBU, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0}, Optab{AMOVBU, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4}, Optab{AMOVW, C_LACON, C_NONE, C_REG, 34, 8, REGSP, LFROM, 0}, Optab{AMOVW, C_PSR, C_NONE, C_REG, 35, 4, 0, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_PSR, 36, 4, 0, 0, 0}, Optab{AMOVW, C_RCON, C_NONE, C_PSR, 37, 4, 0, 0, 0}, Optab{AMOVM, C_REGLIST, C_NONE, C_SOREG, 38, 4, 0, 0, 0}, Optab{AMOVM, C_SOREG, C_NONE, C_REGLIST, 39, 4, 0, 0, 0}, Optab{ASWPW, C_SOREG, C_REG, C_REG, 40, 4, 0, 0, 0}, Optab{ARFE, C_NONE, C_NONE, C_NONE, 41, 4, 0, 0, 0}, Optab{AMOVF, C_FREG, C_NONE, C_FAUTO, 50, 4, REGSP, 0, 0}, Optab{AMOVF, C_FREG, C_NONE, C_FOREG, 50, 4, 0, 0, 0}, Optab{AMOVF, C_FAUTO, C_NONE, C_FREG, 51, 4, REGSP, 0, 0}, Optab{AMOVF, C_FOREG, C_NONE, C_FREG, 51, 4, 0, 0, 0}, Optab{AMOVF, C_FREG, C_NONE, C_LAUTO, 52, 12, REGSP, LTO, 0}, Optab{AMOVF, C_FREG, C_NONE, C_LOREG, 52, 12, 0, LTO, 0}, Optab{AMOVF, C_LAUTO, C_NONE, C_FREG, 53, 12, REGSP, LFROM, 0}, Optab{AMOVF, C_LOREG, C_NONE, C_FREG, 53, 12, 0, LFROM, 0}, Optab{AMOVF, C_FREG, C_NONE, C_ADDR, 68, 8, 0, LTO | LPCREL, 4}, Optab{AMOVF, C_ADDR, C_NONE, C_FREG, 69, 8, 0, LFROM | LPCREL, 4}, Optab{AADDF, C_FREG, C_NONE, C_FREG, 54, 4, 0, 0, 0}, Optab{AADDF, C_FREG, C_REG, C_FREG, 54, 4, 0, 0, 0}, Optab{AMOVF, C_FREG, C_NONE, C_FREG, 54, 4, 0, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_FCR, 56, 4, 0, 0, 0}, Optab{AMOVW, C_FCR, C_NONE, C_REG, 57, 4, 0, 0, 0}, Optab{AMOVW, C_SHIFT, C_NONE, C_REG, 59, 4, 0, 0, 0}, Optab{AMOVBU, C_SHIFT, C_NONE, C_REG, 59, 4, 0, 0, 0}, Optab{AMOVB, C_SHIFT, C_NONE, C_REG, 60, 4, 0, 0, 0}, Optab{AMOVBS, C_SHIFT, C_NONE, C_REG, 60, 4, 0, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0}, Optab{AMOVB, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0}, Optab{AMOVBS, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0}, Optab{AMOVBU, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0}, Optab{ACASE, C_REG, C_NONE, C_NONE, 62, 4, 0, LPCREL, 8}, Optab{ABCASE, C_NONE, C_NONE, C_SBRA, 63, 4, 0, LPCREL, 0}, Optab{AMOVH, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0}, Optab{AMOVH, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0}, Optab{AMOVHS, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0}, Optab{AMOVHS, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0}, Optab{AMOVHU, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0}, Optab{AMOVHU, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0}, Optab{AMOVB, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0}, Optab{AMOVB, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0}, Optab{AMOVBS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0}, Optab{AMOVBS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0}, Optab{AMOVH, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0}, Optab{AMOVH, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0}, Optab{AMOVHS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0}, Optab{AMOVHS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0}, Optab{AMOVHU, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0}, Optab{AMOVHU, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0}, Optab{AMOVH, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0}, Optab{AMOVH, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0}, Optab{AMOVH, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4}, Optab{AMOVHS, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0}, Optab{AMOVHS, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0}, Optab{AMOVHS, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4}, Optab{AMOVHU, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0}, Optab{AMOVHU, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0}, Optab{AMOVHU, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4}, Optab{AMOVB, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0}, Optab{AMOVB, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0}, Optab{AMOVB, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4}, Optab{AMOVBS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0}, Optab{AMOVBS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0}, Optab{AMOVBS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4}, Optab{AMOVH, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0}, Optab{AMOVH, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0}, Optab{AMOVH, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4}, Optab{AMOVHS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0}, Optab{AMOVHS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0}, Optab{AMOVHS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4}, Optab{AMOVHU, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0}, Optab{AMOVHU, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0}, Optab{AMOVHU, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4}, Optab{ALDREX, C_SOREG, C_NONE, C_REG, 77, 4, 0, 0, 0}, Optab{ASTREX, C_SOREG, C_REG, C_REG, 78, 4, 0, 0, 0}, Optab{AMOVF, C_ZFCON, C_NONE, C_FREG, 80, 8, 0, 0, 0}, Optab{AMOVF, C_SFCON, C_NONE, C_FREG, 81, 4, 0, 0, 0}, Optab{ACMPF, C_FREG, C_REG, C_NONE, 82, 8, 0, 0, 0}, Optab{ACMPF, C_FREG, C_NONE, C_NONE, 83, 8, 0, 0, 0}, Optab{AMOVFW, C_FREG, C_NONE, C_FREG, 84, 4, 0, 0, 0}, Optab{AMOVWF, C_FREG, C_NONE, C_FREG, 85, 4, 0, 0, 0}, Optab{AMOVFW, C_FREG, C_NONE, C_REG, 86, 8, 0, 0, 0}, Optab{AMOVWF, C_REG, C_NONE, C_FREG, 87, 8, 0, 0, 0}, Optab{AMOVW, C_REG, C_NONE, C_FREG, 88, 4, 0, 0, 0}, Optab{AMOVW, C_FREG, C_NONE, C_REG, 89, 4, 0, 0, 0}, Optab{ATST, C_REG, C_NONE, C_NONE, 90, 4, 0, 0, 0}, Optab{ALDREXD, C_SOREG, C_NONE, C_REG, 91, 4, 0, 0, 0}, Optab{ASTREXD, C_SOREG, C_REG, C_REG, 92, 4, 0, 0, 0}, Optab{APLD, C_SOREG, C_NONE, C_NONE, 95, 4, 0, 0, 0}, Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, 96, 4, 0, 0, 0}, Optab{ACLZ, C_REG, C_NONE, C_REG, 97, 4, 0, 0, 0}, Optab{AMULWT, C_REG, C_REG, C_REG, 98, 4, 0, 0, 0}, Optab{AMULAWT, C_REG, C_REG, C_REGREG2, 99, 4, 0, 0, 0}, Optab{obj.AUSEFIELD, C_ADDR, C_NONE, C_NONE, 0, 0, 0, 0, 0}, Optab{obj.APCDATA, C_LCON, C_NONE, C_LCON, 0, 0, 0, 0, 0}, Optab{obj.AFUNCDATA, C_LCON, C_NONE, C_ADDR, 0, 0, 0, 0, 0}, Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0}, Optab{obj.ADUFFZERO, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, // same as ABL Optab{obj.ADUFFCOPY, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, // same as ABL Optab{ADATABUNDLE, C_NONE, C_NONE, C_NONE, 100, 4, 0, 0, 0}, Optab{ADATABUNDLEEND, C_NONE, C_NONE, C_NONE, 100, 0, 0, 0, 0}, Optab{obj.AXXX, C_NONE, C_NONE, C_NONE, 0, 4, 0, 0, 0}, } var pool struct { start uint32 size uint32 extra uint32 } var oprange [ALAST & obj.AMask]Oprang var xcmp [C_GOK + 1][C_GOK + 1]uint8 var deferreturn *obj.LSym /* size of a case statement including jump table */ func casesz(ctxt *obj.Link, p *obj.Prog) int32 { var jt int = 0 var n int32 = 0 var o *Optab for ; p != nil; p = p.Link { if p.As == ABCASE { jt = 1 } else if jt != 0 { break } o = oplook(ctxt, p) n += int32(o.size) } return n } // Note about encoding: Prog.scond holds the condition encoding, // but XOR'ed with C_SCOND_XOR, so that C_SCOND_NONE == 0. // The code that shifts the value << 28 has the responsibility // for XORing with C_SCOND_XOR too. // asmoutnacl assembles the instruction p. It replaces asmout for NaCl. // It returns the total number of bytes put in out, and it can change // p->pc if extra padding is necessary. // In rare cases, asmoutnacl might split p into two instructions. // origPC is the PC for this Prog (no padding is taken into account). func asmoutnacl(ctxt *obj.Link, origPC int32, p *obj.Prog, o *Optab, out []uint32) int { size := int(o.size) // instruction specific switch p.As { default: if out != nil { asmout(ctxt, p, o, out) } case ADATABUNDLE, // align to 16-byte boundary ADATABUNDLEEND: // zero width instruction, just to align next instruction to 16-byte boundary p.Pc = (p.Pc + 15) &^ 15 if out != nil { asmout(ctxt, p, o, out) } case obj.AUNDEF, APLD: size = 4 if out != nil { switch p.As { case obj.AUNDEF: out[0] = 0xe7fedef0 // NACL_INSTR_ARM_ABORT_NOW (UDF #0xEDE0) case APLD: out[0] = 0xe1a01001 // (MOVW R1, R1) } } case AB, ABL: if p.To.Type != obj.TYPE_MEM { if out != nil { asmout(ctxt, p, o, out) } } else { if p.To.Offset != 0 || size != 4 || p.To.Reg > REG_R15 || p.To.Reg < REG_R0 { ctxt.Diag("unsupported instruction: %v", p) } if p.Pc&15 == 12 { p.Pc += 4 } if out != nil { out[0] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03c0013f | (uint32(p.To.Reg)&15)<<12 | (uint32(p.To.Reg)&15)<<16 // BIC $0xc000000f, Rx if p.As == AB { out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff10 | (uint32(p.To.Reg)&15)<<0 // BX Rx } else { // ABL out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff30 | (uint32(p.To.Reg)&15)<<0 // BLX Rx } } size = 8 } // align the last instruction (the actual BL) to the last instruction in a bundle if p.As == ABL { if deferreturn == nil { deferreturn = obj.Linklookup(ctxt, "runtime.deferreturn", 0) } if p.To.Sym == deferreturn { p.Pc = ((int64(origPC) + 15) &^ 15) + 16 - int64(size) } else { p.Pc += (16 - ((p.Pc + int64(size)) & 15)) & 15 } } case ALDREX, ALDREXD, AMOVB, AMOVBS, AMOVBU, AMOVD, AMOVF, AMOVH, AMOVHS, AMOVHU, AMOVM, AMOVW, ASTREX, ASTREXD: if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_R15 && p.From.Reg == REG_R13 { // MOVW.W x(R13), PC if out != nil { asmout(ctxt, p, o, out) } if size == 4 { if out != nil { // Note: 5c and 5g reg.c know that DIV/MOD smashes R12 // so that this return instruction expansion is valid. out[0] = out[0] &^ 0x3000 // change PC to R12 out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03ccc13f // BIC $0xc000000f, R12 out[2] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff1c // BX R12 } size += 8 if (p.Pc+int64(size))&15 == 4 { p.Pc += 4 } break } else { // if the instruction used more than 4 bytes, then it must have used a very large // offset to update R13, so we need to additionally mask R13. if out != nil { out[size/4-1] &^= 0x3000 // change PC to R12 out[size/4] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03cdd103 // BIC $0xc0000000, R13 out[size/4+1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03ccc13f // BIC $0xc000000f, R12 out[size/4+2] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff1c // BX R12 } // p->pc+size is only ok at 4 or 12 mod 16. if (p.Pc+int64(size))%8 == 0 { p.Pc += 4 } size += 12 break } } if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_R15 { ctxt.Diag("unsupported instruction (move to another register and use indirect jump instead): %v", p) } if p.To.Type == obj.TYPE_MEM && p.To.Reg == REG_R13 && (p.Scond&C_WBIT != 0) && size > 4 { // function prolog with very large frame size: MOVW.W R14,-100004(R13) // split it into two instructions: // ADD $-100004, R13 // MOVW R14, 0(R13) q := ctxt.NewProg() p.Scond &^= C_WBIT *q = *p a := &p.To var a2 *obj.Addr if p.To.Type == obj.TYPE_MEM { a2 = &q.To } else { a2 = &q.From } obj.Nocache(q) obj.Nocache(p) // insert q after p q.Link = p.Link p.Link = q q.Pcond = nil // make p into ADD $X, R13 p.As = AADD p.From = *a p.From.Reg = 0 p.From.Type = obj.TYPE_CONST p.To = obj.Addr{} p.To.Type = obj.TYPE_REG p.To.Reg = REG_R13 // make q into p but load/store from 0(R13) q.Spadj = 0 *a2 = obj.Addr{} a2.Type = obj.TYPE_MEM a2.Reg = REG_R13 a2.Sym = nil a2.Offset = 0 size = int(oplook(ctxt, p).size) break } if (p.To.Type == obj.TYPE_MEM && p.To.Reg != REG_R9) || // MOVW Rx, X(Ry), y != 9 (p.From.Type == obj.TYPE_MEM && p.From.Reg != REG_R9) { // MOVW X(Rx), Ry, x != 9 var a *obj.Addr if p.To.Type == obj.TYPE_MEM { a = &p.To } else { a = &p.From } reg := int(a.Reg) if size == 4 { // if addr.reg == 0, then it is probably load from x(FP) with small x, no need to modify. if reg == 0 { if out != nil { asmout(ctxt, p, o, out) } } else { if out != nil { out[0] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03c00103 | (uint32(reg)&15)<<16 | (uint32(reg)&15)<<12 // BIC $0xc0000000, Rx } if p.Pc&15 == 12 { p.Pc += 4 } size += 4 if out != nil { asmout(ctxt, p, o, out[1:]) } } break } else { // if a load/store instruction takes more than 1 word to implement, then // we need to separate the instruction into two: // 1. explicitly load the address into R11. // 2. load/store from R11. // This won't handle .W/.P, so we should reject such code. if p.Scond&(C_PBIT|C_WBIT) != 0 { ctxt.Diag("unsupported instruction (.P/.W): %v", p) } q := ctxt.NewProg() *q = *p var a2 *obj.Addr if p.To.Type == obj.TYPE_MEM { a2 = &q.To } else { a2 = &q.From } obj.Nocache(q) obj.Nocache(p) // insert q after p q.Link = p.Link p.Link = q q.Pcond = nil // make p into MOVW $X(R), R11 p.As = AMOVW p.From = *a p.From.Type = obj.TYPE_ADDR p.To = obj.Addr{} p.To.Type = obj.TYPE_REG p.To.Reg = REG_R11 // make q into p but load/store from 0(R11) *a2 = obj.Addr{} a2.Type = obj.TYPE_MEM a2.Reg = REG_R11 a2.Sym = nil a2.Offset = 0 size = int(oplook(ctxt, p).size) break } } else if out != nil { asmout(ctxt, p, o, out) } } // destination register specific if p.To.Type == obj.TYPE_REG { switch p.To.Reg { case REG_R9: ctxt.Diag("invalid instruction, cannot write to R9: %v", p) case REG_R13: if out != nil { out[size/4] = 0xe3cdd103 // BIC $0xc0000000, R13 } if (p.Pc+int64(size))&15 == 0 { p.Pc += 4 } size += 4 } } return size } func span5(ctxt *obj.Link, cursym *obj.LSym) { var p *obj.Prog var op *obj.Prog p = cursym.Text if p == nil || p.Link == nil { // handle external functions and ELF section symbols return } if oprange[AAND&obj.AMask].start == nil { buildop(ctxt) } ctxt.Cursym = cursym ctxt.Autosize = int32(p.To.Offset + 4) c := int32(0) op = p p = p.Link var i int var m int var o *Optab for ; p != nil || ctxt.Blitrl != nil; op, p = p, p.Link { if p == nil { if checkpool(ctxt, op, 0) { p = op continue } // can't happen: blitrl is not nil, but checkpool didn't flushpool ctxt.Diag("internal inconsistency") break } ctxt.Curp = p p.Pc = int64(c) o = oplook(ctxt, p) if ctxt.Headtype != obj.Hnacl { m = int(o.size) } else { m = asmoutnacl(ctxt, c, p, o, nil) c = int32(p.Pc) // asmoutnacl might change pc for alignment o = oplook(ctxt, p) // asmoutnacl might change p in rare cases } if m%4 != 0 || p.Pc%4 != 0 { ctxt.Diag("!pc invalid: %v size=%d", p, m) } // must check literal pool here in case p generates many instructions if ctxt.Blitrl != nil { i = m if p.As == ACASE { i = int(casesz(ctxt, p)) } if checkpool(ctxt, op, i) { p = op continue } } if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != ADATABUNDLEEND && p.As != obj.ANOP) { ctxt.Diag("zero-width instruction\n%v", p) continue } switch o.flag & (LFROM | LTO | LPOOL) { case LFROM: addpool(ctxt, p, &p.From) case LTO: addpool(ctxt, p, &p.To) case LPOOL: if p.Scond&C_SCOND == C_SCOND_NONE { flushpool(ctxt, p, 0, 0) } } if p.As == AMOVW && p.To.Type == obj.TYPE_REG && p.To.Reg == REGPC && p.Scond&C_SCOND == C_SCOND_NONE { flushpool(ctxt, p, 0, 0) } c += int32(m) } cursym.Size = int64(c) /* * if any procedure is large enough to * generate a large SBRA branch, then * generate extra passes putting branches * around jmps to fix. this is rare. */ times := 0 var bflag int var opc int32 var out [6 + 3]uint32 for { if ctxt.Debugvlog != 0 { fmt.Fprintf(ctxt.Bso, "%5.2f span1\n", obj.Cputime()) } bflag = 0 c = 0 times++ cursym.Text.Pc = 0 // force re-layout the code. for p = cursym.Text; p != nil; p = p.Link { ctxt.Curp = p o = oplook(ctxt, p) if int64(c) > p.Pc { p.Pc = int64(c) } /* very large branches if(o->type == 6 && p->pcond) { otxt = p->pcond->pc - c; if(otxt < 0) otxt = -otxt; if(otxt >= (1L<<17) - 10) { q = emallocz(sizeof(Prog)); q->link = p->link; p->link = q; q->as = AB; q->to.type = TYPE_BRANCH; q->pcond = p->pcond; p->pcond = q; q = emallocz(sizeof(Prog)); q->link = p->link; p->link = q; q->as = AB; q->to.type = TYPE_BRANCH; q->pcond = q->link->link; bflag = 1; } } */ opc = int32(p.Pc) if ctxt.Headtype != obj.Hnacl { m = int(o.size) } else { m = asmoutnacl(ctxt, c, p, o, nil) } if p.Pc != int64(opc) { bflag = 1 } //print("%v pc changed %d to %d in iter. %d\n", p, opc, (int32)p->pc, times); c = int32(p.Pc + int64(m)) if m%4 != 0 || p.Pc%4 != 0 { ctxt.Diag("pc invalid: %v size=%d", p, m) } if m/4 > len(out) { ctxt.Diag("instruction size too large: %d > %d", m/4, len(out)) } if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != ADATABUNDLEEND && p.As != obj.ANOP) { if p.As == obj.ATEXT { ctxt.Autosize = int32(p.To.Offset + 4) continue } ctxt.Diag("zero-width instruction\n%v", p) continue } } cursym.Size = int64(c) if bflag == 0 { break } } if c%4 != 0 { ctxt.Diag("sym->size=%d, invalid", c) } /* * lay out the code. all the pc-relative code references, * even cross-function, are resolved now; * only data references need to be relocated. * with more work we could leave cross-function * code references to be relocated too, and then * perhaps we'd be able to parallelize the span loop above. */ if ctxt.Tlsg == nil { ctxt.Tlsg = obj.Linklookup(ctxt, "runtime.tlsg", 0) } p = cursym.Text ctxt.Autosize = int32(p.To.Offset + 4) obj.Symgrow(ctxt, cursym, cursym.Size) bp := cursym.P c = int32(p.Pc) // even p->link might need extra padding var v int for p = p.Link; p != nil; p = p.Link { ctxt.Pc = p.Pc ctxt.Curp = p o = oplook(ctxt, p) opc = int32(p.Pc) if ctxt.Headtype != obj.Hnacl { asmout(ctxt, p, o, out[:]) m = int(o.size) } else { m = asmoutnacl(ctxt, c, p, o, out[:]) if int64(opc) != p.Pc { ctxt.Diag("asmoutnacl broken: pc changed (%d->%d) in last stage: %v", opc, int32(p.Pc), p) } } if m%4 != 0 || p.Pc%4 != 0 { ctxt.Diag("final stage: pc invalid: %v size=%d", p, m) } if int64(c) > p.Pc { ctxt.Diag("PC padding invalid: want %#d, has %#d: %v", p.Pc, c, p) } for int64(c) != p.Pc { // emit 0xe1a00000 (MOVW R0, R0) bp[0] = 0x00 bp = bp[1:] bp[0] = 0x00 bp = bp[1:] bp[0] = 0xa0 bp = bp[1:] bp[0] = 0xe1 bp = bp[1:] c += 4 } for i = 0; i < m/4; i++ { v = int(out[i]) bp[0] = byte(v) bp = bp[1:] bp[0] = byte(v >> 8) bp = bp[1:] bp[0] = byte(v >> 16) bp = bp[1:] bp[0] = byte(v >> 24) bp = bp[1:] } c += int32(m) } } /* * when the first reference to the literal pool threatens * to go out of range of a 12-bit PC-relative offset, * drop the pool now, and branch round it. * this happens only in extended basic blocks that exceed 4k. */ func checkpool(ctxt *obj.Link, p *obj.Prog, sz int) bool { if pool.size >= 0xff0 || immaddr(int32((p.Pc+int64(sz)+4)+4+int64(12+pool.size)-int64(pool.start+8))) == 0 { return flushpool(ctxt, p, 1, 0) } else if p.Link == nil { return flushpool(ctxt, p, 2, 0) } return false } func flushpool(ctxt *obj.Link, p *obj.Prog, skip int, force int) bool { if ctxt.Blitrl != nil { if skip != 0 { if false && skip == 1 { fmt.Printf("note: flush literal pool at %x: len=%d ref=%x\n", uint64(p.Pc+4), pool.size, pool.start) } q := ctxt.NewProg() q.As = AB q.To.Type = obj.TYPE_BRANCH q.Pcond = p.Link q.Link = ctxt.Blitrl q.Lineno = p.Lineno ctxt.Blitrl = q } else if force == 0 && (p.Pc+int64(12+pool.size)-int64(pool.start) < 2048) { // 12 take into account the maximum nacl literal pool alignment padding size return false } if ctxt.Headtype == obj.Hnacl && pool.size%16 != 0 { // if pool is not multiple of 16 bytes, add an alignment marker q := ctxt.NewProg() q.As = ADATABUNDLEEND ctxt.Elitrl.Link = q ctxt.Elitrl = q } // The line number for constant pool entries doesn't really matter. // We set it to the line number of the preceding instruction so that // there are no deltas to encode in the pc-line tables. for q := ctxt.Blitrl; q != nil; q = q.Link { q.Lineno = p.Lineno } ctxt.Elitrl.Link = p.Link p.Link = ctxt.Blitrl ctxt.Blitrl = nil /* BUG: should refer back to values until out-of-range */ ctxt.Elitrl = nil pool.size = 0 pool.start = 0 pool.extra = 0 return true } return false } func addpool(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { var t obj.Prog c := aclass(ctxt, a) t.Ctxt = ctxt t.As = AWORD switch c { default: t.To.Offset = a.Offset t.To.Sym = a.Sym t.To.Type = a.Type t.To.Name = a.Name if ctxt.Flag_shared != 0 && t.To.Sym != nil { t.Rel = p } case C_SROREG, C_LOREG, C_ROREG, C_FOREG, C_SOREG, C_HOREG, C_FAUTO, C_SAUTO, C_LAUTO, C_LACON: t.To.Type = obj.TYPE_CONST t.To.Offset = ctxt.Instoffset } if t.Rel == nil { for q := ctxt.Blitrl; q != nil; q = q.Link { /* could hash on t.t0.offset */ if q.Rel == nil && q.To == t.To { p.Pcond = q return } } } if ctxt.Headtype == obj.Hnacl && pool.size%16 == 0 { // start a new data bundle q := ctxt.NewProg() q.As = ADATABUNDLE q.Pc = int64(pool.size) pool.size += 4 if ctxt.Blitrl == nil { ctxt.Blitrl = q pool.start = uint32(p.Pc) } else { ctxt.Elitrl.Link = q } ctxt.Elitrl = q } q := ctxt.NewProg() *q = t q.Pc = int64(pool.size) if ctxt.Blitrl == nil { ctxt.Blitrl = q pool.start = uint32(p.Pc) } else { ctxt.Elitrl.Link = q } ctxt.Elitrl = q pool.size += 4 p.Pcond = q } func regoff(ctxt *obj.Link, a *obj.Addr) int32 { ctxt.Instoffset = 0 aclass(ctxt, a) return int32(ctxt.Instoffset) } func immrot(v uint32) int32 { for i := 0; i < 16; i++ { if v&^0xff == 0 { return int32(uint32(int32(i)<<8) | v | 1<<25) } v = v<<2 | v>>30 } return 0 } func immaddr(v int32) int32 { if v >= 0 && v <= 0xfff { return v&0xfff | 1<<24 | 1<<23 /* pre indexing */ /* pre indexing, up */ } if v >= -0xfff && v < 0 { return -v&0xfff | 1<<24 /* pre indexing */ } return 0 } func immfloat(v int32) bool { return v&0xC03 == 0 /* offset will fit in floating-point load/store */ } func immhalf(v int32) bool { if v >= 0 && v <= 0xff { return v|1<<24|1<<23 != 0 /* pre indexing */ /* pre indexing, up */ } if v >= -0xff && v < 0 { return -v&0xff|1<<24 != 0 /* pre indexing */ } return false } func aclass(ctxt *obj.Link, a *obj.Addr) int { switch a.Type { case obj.TYPE_NONE: return C_NONE case obj.TYPE_REG: if REG_R0 <= a.Reg && a.Reg <= REG_R15 { return C_REG } if REG_F0 <= a.Reg && a.Reg <= REG_F15 { return C_FREG } if a.Reg == REG_FPSR || a.Reg == REG_FPCR { return C_FCR } if a.Reg == REG_CPSR || a.Reg == REG_SPSR { return C_PSR } return C_GOK case obj.TYPE_REGREG: return C_REGREG case obj.TYPE_REGREG2: return C_REGREG2 case obj.TYPE_REGLIST: return C_REGLIST case obj.TYPE_SHIFT: return C_SHIFT case obj.TYPE_MEM: switch a.Name { case obj.NAME_EXTERN, obj.NAME_STATIC: if a.Sym == nil || a.Sym.Name == "" { fmt.Printf("null sym external\n") return C_GOK } ctxt.Instoffset = 0 // s.b. unused but just in case return C_ADDR case obj.NAME_AUTO: ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset t := int(immaddr(int32(ctxt.Instoffset))) if t != 0 { if immhalf(int32(ctxt.Instoffset)) { if immfloat(int32(t)) { return C_HFAUTO } return C_HAUTO } if immfloat(int32(t)) { return C_FAUTO } return C_SAUTO } return C_LAUTO case obj.NAME_PARAM: ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + 4 t := int(immaddr(int32(ctxt.Instoffset))) if t != 0 { if immhalf(int32(ctxt.Instoffset)) { if immfloat(int32(t)) { return C_HFAUTO } return C_HAUTO } if immfloat(int32(t)) { return C_FAUTO } return C_SAUTO } return C_LAUTO case obj.TYPE_NONE: ctxt.Instoffset = a.Offset t := int(immaddr(int32(ctxt.Instoffset))) if t != 0 { if immhalf(int32(ctxt.Instoffset)) { /* n.b. that it will also satisfy immrot */ if immfloat(int32(t)) { return C_HFOREG } return C_HOREG } if immfloat(int32(t)) { return C_FOREG /* n.b. that it will also satisfy immrot */ } t := int(immrot(uint32(ctxt.Instoffset))) if t != 0 { return C_SROREG } if immhalf(int32(ctxt.Instoffset)) { return C_HOREG } return C_SOREG } t = int(immrot(uint32(ctxt.Instoffset))) if t != 0 { return C_ROREG } return C_LOREG } return C_GOK case obj.TYPE_FCONST: if chipzero5(ctxt, a.Val.(float64)) >= 0 { return C_ZFCON } if chipfloat5(ctxt, a.Val.(float64)) >= 0 { return C_SFCON } return C_LFCON case obj.TYPE_TEXTSIZE: return C_TEXTSIZE case obj.TYPE_CONST, obj.TYPE_ADDR: switch a.Name { case obj.TYPE_NONE: ctxt.Instoffset = a.Offset if a.Reg != 0 { return aconsize(ctxt) } t := int(immrot(uint32(ctxt.Instoffset))) if t != 0 { return C_RCON } t = int(immrot(^uint32(ctxt.Instoffset))) if t != 0 { return C_NCON } return C_LCON case obj.NAME_EXTERN, obj.NAME_STATIC: s := a.Sym if s == nil { break } ctxt.Instoffset = 0 // s.b. unused but just in case return C_LCONADDR case obj.NAME_AUTO: ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset return aconsize(ctxt) case obj.NAME_PARAM: ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + 4 return aconsize(ctxt) } return C_GOK case obj.TYPE_BRANCH: return C_SBRA } return C_GOK } func aconsize(ctxt *obj.Link) int { t := int(immrot(uint32(ctxt.Instoffset))) if t != 0 { return C_RACON } return C_LACON } func prasm(p *obj.Prog) { fmt.Printf("%v\n", p) } func oplook(ctxt *obj.Link, p *obj.Prog) *Optab { a1 := int(p.Optab) if a1 != 0 { return &optab[a1-1:][0] } a1 = int(p.From.Class) if a1 == 0 { a1 = aclass(ctxt, &p.From) + 1 p.From.Class = int8(a1) } a1-- a3 := int(p.To.Class) if a3 == 0 { a3 = aclass(ctxt, &p.To) + 1 p.To.Class = int8(a3) } a3-- a2 := C_NONE if p.Reg != 0 { a2 = C_REG } r := p.As & obj.AMask o := oprange[r].start if o == nil { o = oprange[r].stop /* just generate an error */ } if false { /*debug['O']*/ fmt.Printf("oplook %v %v %v %v\n", obj.Aconv(int(p.As)), DRconv(a1), DRconv(a2), DRconv(a3)) fmt.Printf("\t\t%d %d\n", p.From.Type, p.To.Type) } e := oprange[r].stop c1 := xcmp[a1][:] c3 := xcmp[a3][:] for ; -cap(o) < -cap(e); o = o[1:] { if int(o[0].a2) == a2 { if c1[o[0].a1] != 0 { if c3[o[0].a3] != 0 { p.Optab = uint16((-cap(o) + cap(optab)) + 1) return &o[0] } } } } ctxt.Diag("illegal combination %v; %v %v %v, %d %d", p, DRconv(a1), DRconv(a2), DRconv(a3), p.From.Type, p.To.Type) ctxt.Diag("from %d %d to %d %d\n", p.From.Type, p.From.Name, p.To.Type, p.To.Name) prasm(p) if o == nil { o = optab } return &o[0] } func cmp(a int, b int) bool { if a == b { return true } switch a { case C_LCON: if b == C_RCON || b == C_NCON { return true } case C_LACON: if b == C_RACON { return true } case C_LFCON: if b == C_ZFCON || b == C_SFCON { return true } case C_HFAUTO: return b == C_HAUTO || b == C_FAUTO case C_FAUTO, C_HAUTO: return b == C_HFAUTO case C_SAUTO: return cmp(C_HFAUTO, b) case C_LAUTO: return cmp(C_SAUTO, b) case C_HFOREG: return b == C_HOREG || b == C_FOREG case C_FOREG, C_HOREG: return b == C_HFOREG case C_SROREG: return cmp(C_SOREG, b) || cmp(C_ROREG, b) case C_SOREG, C_ROREG: return b == C_SROREG || cmp(C_HFOREG, b) case C_LOREG: return cmp(C_SROREG, b) case C_LBRA: if b == C_SBRA { return true } case C_HREG: return cmp(C_SP, b) || cmp(C_PC, b) } return false } type ocmp []Optab func (x ocmp) Len() int { return len(x) } func (x ocmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x ocmp) Less(i, j int) bool { p1 := &x[i] p2 := &x[j] n := int(p1.as) - int(p2.as) if n != 0 { return n < 0 } n = int(p1.a1) - int(p2.a1) if n != 0 { return n < 0 } n = int(p1.a2) - int(p2.a2) if n != 0 { return n < 0 } n = int(p1.a3) - int(p2.a3) if n != 0 { return n < 0 } return false } func opset(a, b0 uint16) { oprange[a&obj.AMask] = oprange[b0] } func buildop(ctxt *obj.Link) { var n int for i := 0; i < C_GOK; i++ { for n = 0; n < C_GOK; n++ { if cmp(n, i) { xcmp[i][n] = 1 } } } for n = 0; optab[n].as != obj.AXXX; n++ { if optab[n].flag&LPCREL != 0 { if ctxt.Flag_shared != 0 { optab[n].size += int8(optab[n].pcrelsiz) } else { optab[n].flag &^= LPCREL } } } sort.Sort(ocmp(optab[:n])) for i := 0; i < n; i++ { r := optab[i].as r0 := r & obj.AMask oprange[r0].start = optab[i:] for optab[i].as == r { i++ } oprange[r0].stop = optab[i:] i-- switch r { default: ctxt.Diag("unknown op in build: %v", obj.Aconv(int(r))) log.Fatalf("bad code") case AADD: opset(AAND, r0) opset(AEOR, r0) opset(ASUB, r0) opset(ARSB, r0) opset(AADC, r0) opset(ASBC, r0) opset(ARSC, r0) opset(AORR, r0) opset(ABIC, r0) case ACMP: opset(ATEQ, r0) opset(ACMN, r0) case AMVN: break case ABEQ: opset(ABNE, r0) opset(ABCS, r0) opset(ABHS, r0) opset(ABCC, r0) opset(ABLO, r0) opset(ABMI, r0) opset(ABPL, r0) opset(ABVS, r0) opset(ABVC, r0) opset(ABHI, r0) opset(ABLS, r0) opset(ABGE, r0) opset(ABLT, r0) opset(ABGT, r0) opset(ABLE, r0) case ASLL: opset(ASRL, r0) opset(ASRA, r0) case AMUL: opset(AMULU, r0) case ADIV: opset(AMOD, r0) opset(AMODU, r0) opset(ADIVU, r0) case AMOVW, AMOVB, AMOVBS, AMOVBU, AMOVH, AMOVHS, AMOVHU: break case ASWPW: opset(ASWPBU, r0) case AB, ABL, ABX, ABXRET, obj.ADUFFZERO, obj.ADUFFCOPY, ASWI, AWORD, AMOVM, ARFE, obj.ATEXT, obj.AUSEFIELD, ACASE, ABCASE, obj.ATYPE: break case AADDF: opset(AADDD, r0) opset(ASUBF, r0) opset(ASUBD, r0) opset(AMULF, r0) opset(AMULD, r0) opset(ADIVF, r0) opset(ADIVD, r0) opset(ASQRTF, r0) opset(ASQRTD, r0) opset(AMOVFD, r0) opset(AMOVDF, r0) opset(AABSF, r0) opset(AABSD, r0) case ACMPF: opset(ACMPD, r0) case AMOVF: opset(AMOVD, r0) case AMOVFW: opset(AMOVDW, r0) case AMOVWF: opset(AMOVWD, r0) case AMULL: opset(AMULAL, r0) opset(AMULLU, r0) opset(AMULALU, r0) case AMULWT: opset(AMULWB, r0) case AMULAWT: opset(AMULAWB, r0) case AMULA, ALDREX, ASTREX, ALDREXD, ASTREXD, ATST, APLD, obj.AUNDEF, ACLZ, obj.AFUNCDATA, obj.APCDATA, obj.ANOP, ADATABUNDLE, ADATABUNDLEEND: break } } } func asmout(ctxt *obj.Link, p *obj.Prog, o *Optab, out []uint32) { ctxt.Printp = p o1 := uint32(0) o2 := uint32(0) o3 := uint32(0) o4 := uint32(0) o5 := uint32(0) o6 := uint32(0) ctxt.Armsize += int32(o.size) if false { /*debug['P']*/ fmt.Printf("%x: %v\ttype %d\n", uint32(p.Pc), p, o.type_) } switch o.type_ { default: ctxt.Diag("unknown asm %d", o.type_) prasm(p) case 0: /* pseudo ops */ if false { /*debug['G']*/ fmt.Printf("%x: %s: arm\n", uint32(p.Pc), p.From.Sym.Name) } case 1: /* op R,[R],R */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } if p.As == AMOVB || p.As == AMOVH || p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = rt } o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 2: /* movbu $I,[R],R */ aclass(ctxt, &p.From) o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= uint32(immrot(uint32(ctxt.Instoffset))) rt := int(p.To.Reg) r := int(p.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } if p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = rt } o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 3: /* add R<<[IR],[R],R */ o1 = mov(ctxt, p) case 4: /* add $I,[R],R */ aclass(ctxt, &p.From) o1 = oprrr(ctxt, AADD, int(p.Scond)) o1 |= uint32(immrot(uint32(ctxt.Instoffset))) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 |= (uint32(r) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 case 5: /* bra s */ o1 = opbra(ctxt, int(p.As), int(p.Scond)) v := int32(-8) if p.To.Sym != nil { rel := obj.Addrel(ctxt.Cursym) rel.Off = int32(ctxt.Pc) rel.Siz = 4 rel.Sym = p.To.Sym v += int32(p.To.Offset) rel.Add = int64(o1) | (int64(v)>>2)&0xffffff rel.Type = obj.R_CALLARM break } if p.Pcond != nil { v = int32((p.Pcond.Pc - ctxt.Pc) - 8) } o1 |= (uint32(v) >> 2) & 0xffffff case 6: /* b ,O(R) -> add $O,R,PC */ aclass(ctxt, &p.To) o1 = oprrr(ctxt, AADD, int(p.Scond)) o1 |= uint32(immrot(uint32(ctxt.Instoffset))) o1 |= (uint32(p.To.Reg) & 15) << 16 o1 |= (REGPC & 15) << 12 case 7: /* bl (R) -> blx R */ aclass(ctxt, &p.To) if ctxt.Instoffset != 0 { ctxt.Diag("%v: doesn't support BL offset(REG) where offset != 0", p) } o1 = oprrr(ctxt, ABL, int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 0 rel := obj.Addrel(ctxt.Cursym) rel.Off = int32(ctxt.Pc) rel.Siz = 0 rel.Type = obj.R_CALLIND case 8: /* sll $c,[R],R -> mov (R<<$c),R */ aclass(ctxt, &p.From) o1 = oprrr(ctxt, int(p.As), int(p.Scond)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o1 |= (uint32(r) & 15) << 0 o1 |= uint32((ctxt.Instoffset & 31) << 7) o1 |= (uint32(p.To.Reg) & 15) << 12 case 9: /* sll R,[R],R -> mov (R<<R),R */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o1 |= (uint32(r) & 15) << 0 o1 |= (uint32(p.From.Reg)&15)<<8 | 1<<4 o1 |= (uint32(p.To.Reg) & 15) << 12 case 10: /* swi [$con] */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) if p.To.Type != obj.TYPE_NONE { aclass(ctxt, &p.To) o1 |= uint32(ctxt.Instoffset & 0xffffff) } case 11: /* word */ aclass(ctxt, &p.To) o1 = uint32(ctxt.Instoffset) if p.To.Sym != nil { // This case happens with words generated // in the PC stream as part of the literal pool. rel := obj.Addrel(ctxt.Cursym) rel.Off = int32(ctxt.Pc) rel.Siz = 4 rel.Sym = p.To.Sym rel.Add = p.To.Offset // runtime.tlsg is special. // Its "address" is the offset from the TLS thread pointer // to the thread-local g and m pointers. // Emit a TLS relocation instead of a standard one if its // type is not explicitly set by runtime. This assumes that // all references to runtime.tlsg should be accompanied with // its type declaration if necessary. if rel.Sym == ctxt.Tlsg && ctxt.Tlsg.Type == 0 { rel.Type = obj.R_TLS if ctxt.Flag_shared != 0 { rel.Add += ctxt.Pc - p.Rel.Pc - 8 - int64(rel.Siz) } } else if ctxt.Flag_shared != 0 { rel.Type = obj.R_PCREL rel.Add += ctxt.Pc - p.Rel.Pc - 8 } else { rel.Type = obj.R_ADDR } o1 = 0 } case 12: /* movw $lcon, reg */ o1 = omvl(ctxt, p, &p.From, int(p.To.Reg)) if o.flag&LPCREL != 0 { o2 = oprrr(ctxt, AADD, int(p.Scond)) | (uint32(p.To.Reg)&15)<<0 | (REGPC&15)<<16 | (uint32(p.To.Reg)&15)<<12 } case 13: /* op $lcon, [R], R */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } o2 = oprrr(ctxt, int(p.As), int(p.Scond)) o2 |= REGTMP & 15 r := int(p.Reg) if p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = int(p.To.Reg) } o2 |= (uint32(r) & 15) << 16 if p.To.Type != obj.TYPE_NONE { o2 |= (uint32(p.To.Reg) & 15) << 12 } case 14: /* movb/movbu/movh/movhu R,R */ o1 = oprrr(ctxt, ASLL, int(p.Scond)) if p.As == AMOVBU || p.As == AMOVHU { o2 = oprrr(ctxt, ASRL, int(p.Scond)) } else { o2 = oprrr(ctxt, ASRA, int(p.Scond)) } r := int(p.To.Reg) o1 |= (uint32(p.From.Reg)&15)<<0 | (uint32(r)&15)<<12 o2 |= uint32(r)&15 | (uint32(r)&15)<<12 if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU { o1 |= 24 << 7 o2 |= 24 << 7 } else { o1 |= 16 << 7 o2 |= 16 << 7 } case 15: /* mul r,[r,]r */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if r == 0 { r = rt } if rt == r { r = rf rf = rt } if false { if rt == r || rf == REGPC&15 || r == REGPC&15 || rt == REGPC&15 { ctxt.Diag("bad registers in MUL") prasm(p) } } o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16 case 16: /* div r,[r,]r */ o1 = 0xf << 28 o2 = 0 case 17: o1 = oprrr(ctxt, int(p.As), int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) rt2 := int(p.To.Offset) r := int(p.Reg) o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16 | (uint32(rt2)&15)<<12 case 20: /* mov/movb/movbu R,O(R) */ aclass(ctxt, &p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } o1 = osr(ctxt, int(p.As), int(p.From.Reg), int32(ctxt.Instoffset), r, int(p.Scond)) case 21: /* mov/movbu O(R),R -> lr */ aclass(ctxt, &p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 = olr(ctxt, int32(ctxt.Instoffset), r, int(p.To.Reg), int(p.Scond)) if p.As != AMOVW { o1 |= 1 << 22 } case 30: /* mov/movb/movbu R,L(R) */ o1 = omvl(ctxt, p, &p.To, REGTMP) if o1 == 0 { break } r := int(p.To.Reg) if r == 0 { r = int(o.param) } o2 = osrr(ctxt, int(p.From.Reg), REGTMP&15, r, int(p.Scond)) if p.As != AMOVW { o2 |= 1 << 22 } case 31: /* mov/movbu L(R),R -> lr[b] */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 = olrr(ctxt, REGTMP&15, r, int(p.To.Reg), int(p.Scond)) if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB { o2 |= 1 << 22 } case 34: /* mov $lacon,R */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } o2 = oprrr(ctxt, AADD, int(p.Scond)) o2 |= REGTMP & 15 r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 |= (uint32(r) & 15) << 16 if p.To.Type != obj.TYPE_NONE { o2 |= (uint32(p.To.Reg) & 15) << 12 } case 35: /* mov PSR,R */ o1 = 2<<23 | 0xf<<16 | 0<<0 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(p.From.Reg) & 1) << 22 o1 |= (uint32(p.To.Reg) & 15) << 12 case 36: /* mov R,PSR */ o1 = 2<<23 | 0x29f<<12 | 0<<4 if p.Scond&C_FBIT != 0 { o1 ^= 0x010 << 12 } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(p.To.Reg) & 1) << 22 o1 |= (uint32(p.From.Reg) & 15) << 0 case 37: /* mov $con,PSR */ aclass(ctxt, &p.From) o1 = 2<<23 | 0x29f<<12 | 0<<4 if p.Scond&C_FBIT != 0 { o1 ^= 0x010 << 12 } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= uint32(immrot(uint32(ctxt.Instoffset))) o1 |= (uint32(p.To.Reg) & 1) << 22 o1 |= (uint32(p.From.Reg) & 15) << 0 case 38, 39: switch o.type_ { case 38: /* movm $con,oreg -> stm */ o1 = 0x4 << 25 o1 |= uint32(p.From.Offset & 0xffff) o1 |= (uint32(p.To.Reg) & 15) << 16 aclass(ctxt, &p.To) case 39: /* movm oreg,$con -> ldm */ o1 = 0x4<<25 | 1<<20 o1 |= uint32(p.To.Offset & 0xffff) o1 |= (uint32(p.From.Reg) & 15) << 16 aclass(ctxt, &p.From) } if ctxt.Instoffset != 0 { ctxt.Diag("offset must be zero in MOVM; %v", p) } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 if p.Scond&C_PBIT != 0 { o1 |= 1 << 24 } if p.Scond&C_UBIT != 0 { o1 |= 1 << 23 } if p.Scond&C_SBIT != 0 { o1 |= 1 << 22 } if p.Scond&C_WBIT != 0 { o1 |= 1 << 21 } case 40: /* swp oreg,reg,reg */ aclass(ctxt, &p.From) if ctxt.Instoffset != 0 { ctxt.Diag("offset must be zero in SWP") } o1 = 0x2<<23 | 0x9<<4 if p.As != ASWPW { o1 |= 1 << 22 } o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 41: /* rfe -> movm.s.w.u 0(r13),[r15] */ o1 = 0xe8fd8000 case 50: /* floating point store */ v := regoff(ctxt, &p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } o1 = ofsr(ctxt, int(p.As), int(p.From.Reg), v, r, int(p.Scond), p) case 51: /* floating point load */ v := regoff(ctxt, &p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 = ofsr(ctxt, int(p.As), int(p.To.Reg), v, r, int(p.Scond), p) | 1<<20 case 52: /* floating point store, int32 offset UGLY */ o1 = omvl(ctxt, p, &p.To, REGTMP) if o1 == 0 { break } r := int(p.To.Reg) if r == 0 { r = int(o.param) } o2 = oprrr(ctxt, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0 o3 = ofsr(ctxt, int(p.As), int(p.From.Reg), 0, REGTMP, int(p.Scond), p) case 53: /* floating point load, int32 offset UGLY */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 = oprrr(ctxt, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0 o3 = ofsr(ctxt, int(p.As), int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20 case 54: /* floating point arith */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if r == 0 { r = rt if p.As == AMOVF || p.As == AMOVD || p.As == AMOVFD || p.As == AMOVDF || p.As == ASQRTF || p.As == ASQRTD || p.As == AABSF || p.As == AABSD { r = 0 } } o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 56: /* move to FP[CS]R */ o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xe<<24 | 1<<8 | 1<<4 o1 |= ((uint32(p.To.Reg)&1)+1)<<21 | (uint32(p.From.Reg)&15)<<12 case 57: /* move from FP[CS]R */ o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xe<<24 | 1<<8 | 1<<4 o1 |= ((uint32(p.From.Reg)&1)+1)<<21 | (uint32(p.To.Reg)&15)<<12 | 1<<20 case 58: /* movbu R,R */ o1 = oprrr(ctxt, AAND, int(p.Scond)) o1 |= uint32(immrot(0xff)) rt := int(p.To.Reg) r := int(p.From.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } if r == 0 { r = rt } o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 59: /* movw/bu R<<I(R),R -> ldr indexed */ if p.From.Reg == 0 { if p.As != AMOVW { ctxt.Diag("byte MOV from shifter operand") } o1 = mov(ctxt, p) break } if p.From.Offset&(1<<4) != 0 { ctxt.Diag("bad shift in LDR") } o1 = olrr(ctxt, int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond)) if p.As == AMOVBU { o1 |= 1 << 22 } case 60: /* movb R(R),R -> ldrsb indexed */ if p.From.Reg == 0 { ctxt.Diag("byte MOV from shifter operand") o1 = mov(ctxt, p) break } if p.From.Offset&(^0xf) != 0 { ctxt.Diag("bad shift in LDRSB") } o1 = olhrr(ctxt, int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond)) o1 ^= 1<<5 | 1<<6 case 61: /* movw/b/bu R,R<<[IR](R) -> str indexed */ if p.To.Reg == 0 { ctxt.Diag("MOV to shifter operand") } o1 = osrr(ctxt, int(p.From.Reg), int(p.To.Offset), int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU { o1 |= 1 << 22 } case 62: /* case R -> movw R<<2(PC),PC */ if o.flag&LPCREL != 0 { o1 = oprrr(ctxt, AADD, int(p.Scond)) | uint32(immrot(1)) | (uint32(p.From.Reg)&15)<<16 | (REGTMP&15)<<12 o2 = olrr(ctxt, REGTMP&15, REGPC, REGTMP, int(p.Scond)) o2 |= 2 << 7 o3 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGPC&15)<<12 } else { o1 = olrr(ctxt, int(p.From.Reg)&15, REGPC, REGPC, int(p.Scond)) o1 |= 2 << 7 } case 63: /* bcase */ if p.Pcond != nil { rel := obj.Addrel(ctxt.Cursym) rel.Off = int32(ctxt.Pc) rel.Siz = 4 if p.To.Sym != nil && p.To.Sym.Type != 0 { rel.Sym = p.To.Sym rel.Add = p.To.Offset } else { rel.Sym = ctxt.Cursym rel.Add = p.Pcond.Pc } if o.flag&LPCREL != 0 { rel.Type = obj.R_PCREL rel.Add += ctxt.Pc - p.Rel.Pc - 16 + int64(rel.Siz) } else { rel.Type = obj.R_ADDR } o1 = 0 } /* reloc ops */ case 64: /* mov/movb/movbu R,addr */ o1 = omvl(ctxt, p, &p.To, REGTMP) if o1 == 0 { break } o2 = osr(ctxt, int(p.As), int(p.From.Reg), 0, REGTMP, int(p.Scond)) if o.flag&LPCREL != 0 { o3 = o2 o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 65: /* mov/movbu addr,R */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } o2 = olr(ctxt, 0, REGTMP, int(p.To.Reg), int(p.Scond)) if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB { o2 |= 1 << 22 } if o.flag&LPCREL != 0 { o3 = o2 o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 68: /* floating point store -> ADDR */ o1 = omvl(ctxt, p, &p.To, REGTMP) if o1 == 0 { break } o2 = ofsr(ctxt, int(p.As), int(p.From.Reg), 0, REGTMP, int(p.Scond), p) if o.flag&LPCREL != 0 { o3 = o2 o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 69: /* floating point load <- ADDR */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } o2 = ofsr(ctxt, int(p.As), int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20 if o.flag&LPCREL != 0 { o3 = o2 o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } /* ArmV4 ops: */ case 70: /* movh/movhu R,O(R) -> strh */ aclass(ctxt, &p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } o1 = oshr(ctxt, int(p.From.Reg), int32(ctxt.Instoffset), r, int(p.Scond)) case 71: /* movb/movh/movhu O(R),R -> ldrsb/ldrsh/ldrh */ aclass(ctxt, &p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 = olhr(ctxt, int32(ctxt.Instoffset), r, int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS { o1 ^= 1<<5 | 1<<6 } else if p.As == AMOVH || p.As == AMOVHS { o1 ^= (1 << 6) } case 72: /* movh/movhu R,L(R) -> strh */ o1 = omvl(ctxt, p, &p.To, REGTMP) if o1 == 0 { break } r := int(p.To.Reg) if r == 0 { r = int(o.param) } o2 = oshrr(ctxt, int(p.From.Reg), REGTMP&15, r, int(p.Scond)) case 73: /* movb/movh/movhu L(R),R -> ldrsb/ldrsh/ldrh */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 = olhrr(ctxt, REGTMP&15, r, int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS { o2 ^= 1<<5 | 1<<6 } else if p.As == AMOVH || p.As == AMOVHS { o2 ^= (1 << 6) } case 74: /* bx $I */ ctxt.Diag("ABX $I") case 75: /* bx O(R) */ aclass(ctxt, &p.To) if ctxt.Instoffset != 0 { ctxt.Diag("non-zero offset in ABX") } /* o1 = oprrr(ctxt, AADD, p->scond) | immrot(0) | ((REGPC&15)<<16) | ((REGLINK&15)<<12); // mov PC, LR o2 = (((p->scond&C_SCOND) ^ C_SCOND_XOR)<<28) | (0x12fff<<8) | (1<<4) | ((p->to.reg&15) << 0); // BX R */ // p->to.reg may be REGLINK o1 = oprrr(ctxt, AADD, int(p.Scond)) o1 |= uint32(immrot(uint32(ctxt.Instoffset))) o1 |= (uint32(p.To.Reg) & 15) << 16 o1 |= (REGTMP & 15) << 12 o2 = oprrr(ctxt, AADD, int(p.Scond)) | uint32(immrot(0)) | (REGPC&15)<<16 | (REGLINK&15)<<12 // mov PC, LR o3 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x12fff<<8 | 1<<4 | REGTMP&15 // BX Rtmp case 76: /* bx O(R) when returning from fn*/ ctxt.Diag("ABXRET") case 77: /* ldrex oreg,reg */ aclass(ctxt, &p.From) if ctxt.Instoffset != 0 { ctxt.Diag("offset must be zero in LDREX") } o1 = 0x19<<20 | 0xf9f o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 78: /* strex reg,oreg,reg */ aclass(ctxt, &p.From) if ctxt.Instoffset != 0 { ctxt.Diag("offset must be zero in STREX") } o1 = 0x18<<20 | 0xf90 o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 80: /* fmov zfcon,freg */ if p.As == AMOVD { o1 = 0xeeb00b00 // VMOV imm 64 o2 = oprrr(ctxt, ASUBD, int(p.Scond)) } else { o1 = 0x0eb00a00 // VMOV imm 32 o2 = oprrr(ctxt, ASUBF, int(p.Scond)) } v := int32(0x70) // 1.0 r := (int(p.To.Reg) & 15) << 0 // movf $1.0, r o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(r) & 15) << 12 o1 |= (uint32(v) & 0xf) << 0 o1 |= (uint32(v) & 0xf0) << 12 // subf r,r,r o2 |= (uint32(r)&15)<<0 | (uint32(r)&15)<<16 | (uint32(r)&15)<<12 case 81: /* fmov sfcon,freg */ o1 = 0x0eb00a00 // VMOV imm 32 if p.As == AMOVD { o1 = 0xeeb00b00 // VMOV imm 64 } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(p.To.Reg) & 15) << 12 v := int32(chipfloat5(ctxt, p.From.Val.(float64))) o1 |= (uint32(v) & 0xf) << 0 o1 |= (uint32(v) & 0xf0) << 12 case 82: /* fcmp freg,freg, */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.Reg)&15)<<12 | (uint32(p.From.Reg)&15)<<0 o2 = 0x0ef1fa10 // VMRS R15 o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 83: /* fcmp freg,, */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.From.Reg)&15)<<12 | 1<<16 o2 = 0x0ef1fa10 // VMRS R15 o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 84: /* movfw freg,freg - truncate float-to-fix */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 case 85: /* movwf freg,freg - fix-to-float */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 // macro for movfw freg,FTMP; movw FTMP,reg case 86: /* movfw freg,reg - truncate float-to-fix */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 0 o1 |= (FREGTMP & 15) << 12 o2 = oprrr(ctxt, AMOVFW+ALAST, int(p.Scond)) o2 |= (FREGTMP & 15) << 16 o2 |= (uint32(p.To.Reg) & 15) << 12 // macro for movw reg,FTMP; movwf FTMP,freg case 87: /* movwf reg,freg - fix-to-float */ o1 = oprrr(ctxt, AMOVWF+ALAST, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 12 o1 |= (FREGTMP & 15) << 16 o2 = oprrr(ctxt, int(p.As), int(p.Scond)) o2 |= (FREGTMP & 15) << 0 o2 |= (uint32(p.To.Reg) & 15) << 12 case 88: /* movw reg,freg */ o1 = oprrr(ctxt, AMOVWF+ALAST, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 12 o1 |= (uint32(p.To.Reg) & 15) << 16 case 89: /* movw freg,reg */ o1 = oprrr(ctxt, AMOVFW+ALAST, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 case 90: /* tst reg */ o1 = oprrr(ctxt, ACMP+ALAST, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 16 case 91: /* ldrexd oreg,reg */ aclass(ctxt, &p.From) if ctxt.Instoffset != 0 { ctxt.Diag("offset must be zero in LDREX") } o1 = 0x1b<<20 | 0xf9f o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 92: /* strexd reg,oreg,reg */ aclass(ctxt, &p.From) if ctxt.Instoffset != 0 { ctxt.Diag("offset must be zero in STREX") } o1 = 0x1a<<20 | 0xf90 o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 93: /* movb/movh/movhu addr,R -> ldrsb/ldrsh/ldrh */ o1 = omvl(ctxt, p, &p.From, REGTMP) if o1 == 0 { break } o2 = olhr(ctxt, 0, REGTMP, int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS { o2 ^= 1<<5 | 1<<6 } else if p.As == AMOVH || p.As == AMOVHS { o2 ^= (1 << 6) } if o.flag&LPCREL != 0 { o3 = o2 o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 94: /* movh/movhu R,addr -> strh */ o1 = omvl(ctxt, p, &p.To, REGTMP) if o1 == 0 { break } o2 = oshr(ctxt, int(p.From.Reg), 0, REGTMP, int(p.Scond)) if o.flag&LPCREL != 0 { o3 = o2 o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 95: /* PLD off(reg) */ o1 = 0xf5d0f000 o1 |= (uint32(p.From.Reg) & 15) << 16 if p.From.Offset < 0 { o1 &^= (1 << 23) o1 |= uint32((-p.From.Offset) & 0xfff) } else { o1 |= uint32(p.From.Offset & 0xfff) } // This is supposed to be something that stops execution. // It's not supposed to be reached, ever, but if it is, we'd // like to be able to tell how we got there. Assemble as // 0xf7fabcfd which is guaranteed to raise undefined instruction // exception. case 96: /* UNDEF */ o1 = 0xf7fabcfd case 97: /* CLZ Rm, Rd */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= (uint32(p.From.Reg) & 15) << 0 case 98: /* MULW{T,B} Rs, Rm, Rd */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 16 o1 |= (uint32(p.From.Reg) & 15) << 8 o1 |= (uint32(p.Reg) & 15) << 0 case 99: /* MULAW{T,B} Rs, Rm, Rn, Rd */ o1 = oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= (uint32(p.From.Reg) & 15) << 8 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= uint32((p.To.Offset & 15) << 16) // DATABUNDLE: BKPT $0x5be0, signify the start of NaCl data bundle; // DATABUNDLEEND: zero width alignment marker case 100: if p.As == ADATABUNDLE { o1 = 0xe125be70 } } out[0] = o1 out[1] = o2 out[2] = o3 out[3] = o4 out[4] = o5 out[5] = o6 return } func mov(ctxt *obj.Link, p *obj.Prog) uint32 { aclass(ctxt, &p.From) o1 := oprrr(ctxt, int(p.As), int(p.Scond)) o1 |= uint32(p.From.Offset) rt := int(p.To.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } r := int(p.Reg) if p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = rt } o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 return o1 } func oprrr(ctxt *obj.Link, a int, sc int) uint32 { o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_SBIT != 0 { o |= 1 << 20 } if sc&(C_PBIT|C_WBIT) != 0 { ctxt.Diag(".nil/.W on dp instruction") } switch a { case AMULU, AMUL: return o | 0x0<<21 | 0x9<<4 case AMULA: return o | 0x1<<21 | 0x9<<4 case AMULLU: return o | 0x4<<21 | 0x9<<4 case AMULL: return o | 0x6<<21 | 0x9<<4 case AMULALU: return o | 0x5<<21 | 0x9<<4 case AMULAL: return o | 0x7<<21 | 0x9<<4 case AAND: return o | 0x0<<21 case AEOR: return o | 0x1<<21 case ASUB: return o | 0x2<<21 case ARSB: return o | 0x3<<21 case AADD: return o | 0x4<<21 case AADC: return o | 0x5<<21 case ASBC: return o | 0x6<<21 case ARSC: return o | 0x7<<21 case ATST: return o | 0x8<<21 | 1<<20 case ATEQ: return o | 0x9<<21 | 1<<20 case ACMP: return o | 0xa<<21 | 1<<20 case ACMN: return o | 0xb<<21 | 1<<20 case AORR: return o | 0xc<<21 case AMOVB, AMOVH, AMOVW: return o | 0xd<<21 case ABIC: return o | 0xe<<21 case AMVN: return o | 0xf<<21 case ASLL: return o | 0xd<<21 | 0<<5 case ASRL: return o | 0xd<<21 | 1<<5 case ASRA: return o | 0xd<<21 | 2<<5 case ASWI: return o | 0xf<<24 case AADDD: return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 0<<4 case AADDF: return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 0<<4 case ASUBD: return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 4<<4 case ASUBF: return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 4<<4 case AMULD: return o | 0xe<<24 | 0x2<<20 | 0xb<<8 | 0<<4 case AMULF: return o | 0xe<<24 | 0x2<<20 | 0xa<<8 | 0<<4 case ADIVD: return o | 0xe<<24 | 0x8<<20 | 0xb<<8 | 0<<4 case ADIVF: return o | 0xe<<24 | 0x8<<20 | 0xa<<8 | 0<<4 case ASQRTD: return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xb<<8 | 0xc<<4 case ASQRTF: return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xa<<8 | 0xc<<4 case AABSD: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 0xc<<4 case AABSF: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 0xc<<4 case ACMPD: return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xb<<8 | 0xc<<4 case ACMPF: return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xa<<8 | 0xc<<4 case AMOVF: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 4<<4 case AMOVD: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 4<<4 case AMOVDF: return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 1<<8 // dtof case AMOVFD: return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 0<<8 // dtof case AMOVWF: if sc&C_UBIT == 0 { o |= 1 << 7 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 0<<8 // toint, double case AMOVWD: if sc&C_UBIT == 0 { o |= 1 << 7 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 1<<8 // toint, double case AMOVFW: if sc&C_UBIT == 0 { o |= 1 << 16 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 0<<8 | 1<<7 // toint, double, trunc case AMOVDW: if sc&C_UBIT == 0 { o |= 1 << 16 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 1<<8 | 1<<7 // toint, double, trunc case AMOVWF + ALAST: // copy WtoF return o | 0xe<<24 | 0x0<<20 | 0xb<<8 | 1<<4 case AMOVFW + ALAST: // copy FtoW return o | 0xe<<24 | 0x1<<20 | 0xb<<8 | 1<<4 case ACMP + ALAST: // cmp imm return o | 0x3<<24 | 0x5<<20 // CLZ doesn't support .nil case ACLZ: return o&(0xf<<28) | 0x16f<<16 | 0xf1<<4 case AMULWT: return o&(0xf<<28) | 0x12<<20 | 0xe<<4 case AMULWB: return o&(0xf<<28) | 0x12<<20 | 0xa<<4 case AMULAWT: return o&(0xf<<28) | 0x12<<20 | 0xc<<4 case AMULAWB: return o&(0xf<<28) | 0x12<<20 | 0x8<<4 case ABL: // BLX REG return o&(0xf<<28) | 0x12fff3<<4 } ctxt.Diag("bad rrr %d", a) prasm(ctxt.Curp) return 0 } func opbra(ctxt *obj.Link, a int, sc int) uint32 { if sc&(C_SBIT|C_PBIT|C_WBIT) != 0 { ctxt.Diag(".nil/.nil/.W on bra instruction") } sc &= C_SCOND sc ^= C_SCOND_XOR if a == ABL || a == obj.ADUFFZERO || a == obj.ADUFFCOPY { return uint32(sc)<<28 | 0x5<<25 | 0x1<<24 } if sc != 0xe { ctxt.Diag(".COND on bcond instruction") } switch a { case ABEQ: return 0x0<<28 | 0x5<<25 case ABNE: return 0x1<<28 | 0x5<<25 case ABCS: return 0x2<<28 | 0x5<<25 case ABHS: return 0x2<<28 | 0x5<<25 case ABCC: return 0x3<<28 | 0x5<<25 case ABLO: return 0x3<<28 | 0x5<<25 case ABMI: return 0x4<<28 | 0x5<<25 case ABPL: return 0x5<<28 | 0x5<<25 case ABVS: return 0x6<<28 | 0x5<<25 case ABVC: return 0x7<<28 | 0x5<<25 case ABHI: return 0x8<<28 | 0x5<<25 case ABLS: return 0x9<<28 | 0x5<<25 case ABGE: return 0xa<<28 | 0x5<<25 case ABLT: return 0xb<<28 | 0x5<<25 case ABGT: return 0xc<<28 | 0x5<<25 case ABLE: return 0xd<<28 | 0x5<<25 case AB: return 0xe<<28 | 0x5<<25 } ctxt.Diag("bad bra %v", obj.Aconv(a)) prasm(ctxt.Curp) return 0 } func olr(ctxt *obj.Link, v int32, b int, r int, sc int) uint32 { if sc&C_SBIT != 0 { ctxt.Diag(".nil on LDR/STR instruction") } o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_PBIT == 0 { o |= 1 << 24 } if sc&C_UBIT == 0 { o |= 1 << 23 } if sc&C_WBIT != 0 { o |= 1 << 21 } o |= 1<<26 | 1<<20 if v < 0 { if sc&C_UBIT != 0 { ctxt.Diag(".U on neg offset") } v = -v o ^= 1 << 23 } if v >= 1<<12 || v < 0 { ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, ctxt.Printp) } o |= uint32(v) o |= (uint32(b) & 15) << 16 o |= (uint32(r) & 15) << 12 return o } func olhr(ctxt *obj.Link, v int32, b int, r int, sc int) uint32 { if sc&C_SBIT != 0 { ctxt.Diag(".nil on LDRH/STRH instruction") } o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_PBIT == 0 { o |= 1 << 24 } if sc&C_WBIT != 0 { o |= 1 << 21 } o |= 1<<23 | 1<<20 | 0xb<<4 if v < 0 { v = -v o ^= 1 << 23 } if v >= 1<<8 || v < 0 { ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, ctxt.Printp) } o |= uint32(v)&0xf | (uint32(v)>>4)<<8 | 1<<22 o |= (uint32(b) & 15) << 16 o |= (uint32(r) & 15) << 12 return o } func osr(ctxt *obj.Link, a int, r int, v int32, b int, sc int) uint32 { o := olr(ctxt, v, b, r, sc) ^ (1 << 20) if a != AMOVW { o |= 1 << 22 } return o } func oshr(ctxt *obj.Link, r int, v int32, b int, sc int) uint32 { o := olhr(ctxt, v, b, r, sc) ^ (1 << 20) return o } func osrr(ctxt *obj.Link, r int, i int, b int, sc int) uint32 { return olr(ctxt, int32(i), b, r, sc) ^ (1<<25 | 1<<20) } func oshrr(ctxt *obj.Link, r int, i int, b int, sc int) uint32 { return olhr(ctxt, int32(i), b, r, sc) ^ (1<<22 | 1<<20) } func olrr(ctxt *obj.Link, i int, b int, r int, sc int) uint32 { return olr(ctxt, int32(i), b, r, sc) ^ (1 << 25) } func olhrr(ctxt *obj.Link, i int, b int, r int, sc int) uint32 { return olhr(ctxt, int32(i), b, r, sc) ^ (1 << 22) } func ofsr(ctxt *obj.Link, a int, r int, v int32, b int, sc int, p *obj.Prog) uint32 { if sc&C_SBIT != 0 { ctxt.Diag(".nil on FLDR/FSTR instruction") } o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_PBIT == 0 { o |= 1 << 24 } if sc&C_WBIT != 0 { o |= 1 << 21 } o |= 6<<25 | 1<<24 | 1<<23 | 10<<8 if v < 0 { v = -v o ^= 1 << 23 } if v&3 != 0 { ctxt.Diag("odd offset for floating point op: %d\n%v", v, p) } else if v >= 1<<10 || v < 0 { ctxt.Diag("literal span too large: %d\n%v", v, p) } o |= (uint32(v) >> 2) & 0xFF o |= (uint32(b) & 15) << 16 o |= (uint32(r) & 15) << 12 switch a { default: ctxt.Diag("bad fst %v", obj.Aconv(a)) fallthrough case AMOVD: o |= 1 << 8 fallthrough case AMOVF: break } return o } func omvl(ctxt *obj.Link, p *obj.Prog, a *obj.Addr, dr int) uint32 { var o1 uint32 if p.Pcond == nil { aclass(ctxt, a) v := immrot(^uint32(ctxt.Instoffset)) if v == 0 { ctxt.Diag("missing literal") prasm(p) return 0 } o1 = oprrr(ctxt, AMVN, int(p.Scond)&C_SCOND) o1 |= uint32(v) o1 |= (uint32(dr) & 15) << 12 } else { v := int32(p.Pcond.Pc - p.Pc - 8) o1 = olr(ctxt, v, REGPC, dr, int(p.Scond)&C_SCOND) } return o1 } func chipzero5(ctxt *obj.Link, e float64) int { // We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions. if ctxt.Goarm < 7 || e != 0 { return -1 } return 0 } func chipfloat5(ctxt *obj.Link, e float64) int { // We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions. if ctxt.Goarm < 7 { return -1 } ei := math.Float64bits(e) l := uint32(ei) h := uint32(ei >> 32) if l != 0 || h&0xffff != 0 { return -1 } h1 := h & 0x7fc00000 if h1 != 0x40000000 && h1 != 0x3fc00000 { return -1 } n := 0 // sign bit (a) if h&0x80000000 != 0 { n |= 1 << 7 } // exp sign bit (b) if h1 == 0x3fc00000 { n |= 1 << 6 } // rest of exp and mantissa (cd-efgh) n |= int((h >> 16) & 0x3f) //print("match %.8lux %.8lux %d\n", l, h, n); return n }