// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package big implements multi-precision arithmetic (big numbers). // The following numeric types are supported: // // Int signed integers // Rat rational numbers // Float floating-point numbers // // Methods are typically of the form: // // func (z *T) Unary(x *T) *T // z = op x // func (z *T) Binary(x, y *T) *T // z = x op y // func (x *T) M() T1 // v = x.M() // // with T one of Int, Rat, or Float. For unary and binary operations, the // result is the receiver (usually named z in that case); if it is one of // the operands x or y it may be overwritten (and its memory reused). // To enable chaining of operations, the result is also returned. Methods // returning a result other than *Int, *Rat, or *Float take an operand as // the receiver (usually named x in that case). // package big // This file contains operations on unsigned multi-precision integers. // These are the building blocks for the operations on signed integers // and rationals. import "math/rand" // An unsigned integer x of the form // // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] // // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, // with the digits x[i] as the slice elements. // // A number is normalized if the slice contains no leading 0 digits. // During arithmetic operations, denormalized values may occur but are // always normalized before returning the final result. The normalized // representation of 0 is the empty or nil slice (length = 0). // type nat []Word var ( natOne = nat{1} natTwo = nat{2} natTen = nat{10} ) func (z nat) clear() { for i := range z { z[i] = 0 } } func (z nat) norm() nat { i := len(z) for i > 0 && z[i-1] == 0 { i-- } return z[0:i] } func (z nat) make(n int) nat { if n <= cap(z) { return z[:n] // reuse z } // Choosing a good value for e has significant performance impact // because it increases the chance that a value can be reused. const e = 4 // extra capacity return make(nat, n, n+e) } func (z nat) setWord(x Word) nat { if x == 0 { return z[:0] } z = z.make(1) z[0] = x return z } func (z nat) setUint64(x uint64) nat { // single-digit values if w := Word(x); uint64(w) == x { return z.setWord(w) } // compute number of words n required to represent x n := 0 for t := x; t > 0; t >>= _W { n++ } // split x into n words z = z.make(n) for i := range z { z[i] = Word(x & _M) x >>= _W } return z } func (z nat) set(x nat) nat { z = z.make(len(x)) copy(z, x) return z } func (z nat) add(x, y nat) nat { m := len(x) n := len(y) switch { case m < n: return z.add(y, x) case m == 0: // n == 0 because m >= n; result is 0 return z[:0] case n == 0: // result is x return z.set(x) } // m > 0 z = z.make(m + 1) c := addVV(z[0:n], x, y) if m > n { c = addVW(z[n:m], x[n:], c) } z[m] = c return z.norm() } func (z nat) sub(x, y nat) nat { m := len(x) n := len(y) switch { case m < n: panic("underflow") case m == 0: // n == 0 because m >= n; result is 0 return z[:0] case n == 0: // result is x return z.set(x) } // m > 0 z = z.make(m) c := subVV(z[0:n], x, y) if m > n { c = subVW(z[n:], x[n:], c) } if c != 0 { panic("underflow") } return z.norm() } func (x nat) cmp(y nat) (r int) { m := len(x) n := len(y) if m != n || m == 0 { switch { case m < n: r = -1 case m > n: r = 1 } return } i := m - 1 for i > 0 && x[i] == y[i] { i-- } switch { case x[i] < y[i]: r = -1 case x[i] > y[i]: r = 1 } return } func (z nat) mulAddWW(x nat, y, r Word) nat { m := len(x) if m == 0 || y == 0 { return z.setWord(r) // result is r } // m > 0 z = z.make(m + 1) z[m] = mulAddVWW(z[0:m], x, y, r) return z.norm() } // basicMul multiplies x and y and leaves the result in z. // The (non-normalized) result is placed in z[0 : len(x) + len(y)]. func basicMul(z, x, y nat) { z[0 : len(x)+len(y)].clear() // initialize z for i, d := range y { if d != 0 { z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) } } } // montgomery computes x*y*2^(-n*_W) mod m, // assuming k = -1/m mod 2^_W. // z is used for storing the result which is returned; // z must not alias x, y or m. func (z nat) montgomery(x, y, m nat, k Word, n int) nat { var c1, c2 Word z = z.make(n) z.clear() for i := 0; i < n; i++ { d := y[i] c1 += addMulVVW(z, x, d) t := z[0] * k c2 = addMulVVW(z, m, t) copy(z, z[1:]) z[n-1] = c1 + c2 if z[n-1] < c1 { c1 = 1 } else { c1 = 0 } } if c1 != 0 { subVV(z, z, m) } return z } // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. // Factored out for readability - do not use outside karatsuba. func karatsubaAdd(z, x nat, n int) { if c := addVV(z[0:n], z, x); c != 0 { addVW(z[n:n+n>>1], z[n:], c) } } // Like karatsubaAdd, but does subtract. func karatsubaSub(z, x nat, n int) { if c := subVV(z[0:n], z, x); c != 0 { subVW(z[n:n+n>>1], z[n:], c) } } // Operands that are shorter than karatsubaThreshold are multiplied using // "grade school" multiplication; for longer operands the Karatsuba algorithm // is used. var karatsubaThreshold int = 40 // computed by calibrate.go // karatsuba multiplies x and y and leaves the result in z. // Both x and y must have the same length n and n must be a // power of 2. The result vector z must have len(z) >= 6*n. // The (non-normalized) result is placed in z[0 : 2*n]. func karatsuba(z, x, y nat) { n := len(y) // Switch to basic multiplication if numbers are odd or small. // (n is always even if karatsubaThreshold is even, but be // conservative) if n&1 != 0 || n < karatsubaThreshold || n < 2 { basicMul(z, x, y) return } // n&1 == 0 && n >= karatsubaThreshold && n >= 2 // Karatsuba multiplication is based on the observation that // for two numbers x and y with: // // x = x1*b + x0 // y = y1*b + y0 // // the product x*y can be obtained with 3 products z2, z1, z0 // instead of 4: // // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 // = z2*b*b + z1*b + z0 // // with: // // xd = x1 - x0 // yd = y0 - y1 // // z1 = xd*yd + z2 + z0 // = (x1-x0)*(y0 - y1) + z2 + z0 // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0 // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0 // = x1*y0 + x0*y1 // split x, y into "digits" n2 := n >> 1 // n2 >= 1 x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 // z is used for the result and temporary storage: // // 6*n 5*n 4*n 3*n 2*n 1*n 0*n // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] // // For each recursive call of karatsuba, an unused slice of // z is passed in that has (at least) half the length of the // caller's z. // compute z0 and z2 with the result "in place" in z karatsuba(z, x0, y0) // z0 = x0*y0 karatsuba(z[n:], x1, y1) // z2 = x1*y1 // compute xd (or the negative value if underflow occurs) s := 1 // sign of product xd*yd xd := z[2*n : 2*n+n2] if subVV(xd, x1, x0) != 0 { // x1-x0 s = -s subVV(xd, x0, x1) // x0-x1 } // compute yd (or the negative value if underflow occurs) yd := z[2*n+n2 : 3*n] if subVV(yd, y0, y1) != 0 { // y0-y1 s = -s subVV(yd, y1, y0) // y1-y0 } // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 p := z[n*3:] karatsuba(p, xd, yd) // save original z2:z0 // (ok to use upper half of z since we're done recursing) r := z[n*4:] copy(r, z[:n*2]) // add up all partial products // // 2*n n 0 // z = [ z2 | z0 ] // + [ z0 ] // + [ z2 ] // + [ p ] // karatsubaAdd(z[n2:], r, n) karatsubaAdd(z[n2:], r[n:], n) if s > 0 { karatsubaAdd(z[n2:], p, n) } else { karatsubaSub(z[n2:], p, n) } } // alias reports whether x and y share the same base array. func alias(x, y nat) bool { return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] } // addAt implements z += x<<(_W*i); z must be long enough. // (we don't use nat.add because we need z to stay the same // slice, and we don't need to normalize z after each addition) func addAt(z, x nat, i int) { if n := len(x); n > 0 { if c := addVV(z[i:i+n], z[i:], x); c != 0 { j := i + n if j < len(z) { addVW(z[j:], z[j:], c) } } } } func max(x, y int) int { if x > y { return x } return y } // karatsubaLen computes an approximation to the maximum k <= n such that // k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the // result is the largest number that can be divided repeatedly by 2 before // becoming about the value of karatsubaThreshold. func karatsubaLen(n int) int { i := uint(0) for n > karatsubaThreshold { n >>= 1 i++ } return n << i } func (z nat) mul(x, y nat) nat { m := len(x) n := len(y) switch { case m < n: return z.mul(y, x) case m == 0 || n == 0: return z[:0] case n == 1: return z.mulAddWW(x, y[0], 0) } // m >= n > 1 // determine if z can be reused if alias(z, x) || alias(z, y) { z = nil // z is an alias for x or y - cannot reuse } // use basic multiplication if the numbers are small if n < karatsubaThreshold { z = z.make(m + n) basicMul(z, x, y) return z.norm() } // m >= n && n >= karatsubaThreshold && n >= 2 // determine Karatsuba length k such that // // x = xh*b + x0 (0 <= x0 < b) // y = yh*b + y0 (0 <= y0 < b) // b = 1<<(_W*k) ("base" of digits xi, yi) // k := karatsubaLen(n) // k <= n // multiply x0 and y0 via Karatsuba x0 := x[0:k] // x0 is not normalized y0 := y[0:k] // y0 is not normalized z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y karatsuba(z, x0, y0) z = z[0 : m+n] // z has final length but may be incomplete z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m) // If xh != 0 or yh != 0, add the missing terms to z. For // // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b) // yh = y1*b (0 <= y1 < b) // // the missing terms are // // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0 // // since all the yi for i > 1 are 0 by choice of k: If any of them // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would // be a larger valid threshold contradicting the assumption about k. // if k < n || m != n { var t nat // add x0*y1*b x0 := x0.norm() y1 := y[k:] // y1 is normalized because y is t = t.mul(x0, y1) // update t so we don't lose t's underlying array addAt(z, t, k) // add xi*y0<<i, xi*y1*b<<(i+k) y0 := y0.norm() for i := k; i < len(x); i += k { xi := x[i:] if len(xi) > k { xi = xi[:k] } xi = xi.norm() t = t.mul(xi, y0) addAt(z, t, i) t = t.mul(xi, y1) addAt(z, t, i+k) } } return z.norm() } // mulRange computes the product of all the unsigned integers in the // range [a, b] inclusively. If a > b (empty range), the result is 1. func (z nat) mulRange(a, b uint64) nat { switch { case a == 0: // cut long ranges short (optimization) return z.setUint64(0) case a > b: return z.setUint64(1) case a == b: return z.setUint64(a) case a+1 == b: return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) } m := (a + b) / 2 return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) } // q = (x-r)/y, with 0 <= r < y func (z nat) divW(x nat, y Word) (q nat, r Word) { m := len(x) switch { case y == 0: panic("division by zero") case y == 1: q = z.set(x) // result is x return case m == 0: q = z[:0] // result is 0 return } // m > 0 z = z.make(m) r = divWVW(z, 0, x, y) q = z.norm() return } func (z nat) div(z2, u, v nat) (q, r nat) { if len(v) == 0 { panic("division by zero") } if u.cmp(v) < 0 { q = z[:0] r = z2.set(u) return } if len(v) == 1 { var r2 Word q, r2 = z.divW(u, v[0]) r = z2.setWord(r2) return } q, r = z.divLarge(z2, u, v) return } // q = (uIn-r)/v, with 0 <= r < y // Uses z as storage for q, and u as storage for r if possible. // See Knuth, Volume 2, section 4.3.1, Algorithm D. // Preconditions: // len(v) >= 2 // len(uIn) >= len(v) func (z nat) divLarge(u, uIn, v nat) (q, r nat) { n := len(v) m := len(uIn) - n // determine if z can be reused // TODO(gri) should find a better solution - this if statement // is very costly (see e.g. time pidigits -s -n 10000) if alias(z, uIn) || alias(z, v) { z = nil // z is an alias for uIn or v - cannot reuse } q = z.make(m + 1) qhatv := make(nat, n+1) if alias(u, uIn) || alias(u, v) { u = nil // u is an alias for uIn or v - cannot reuse } u = u.make(len(uIn) + 1) u.clear() // TODO(gri) no need to clear if we allocated a new u // D1. shift := nlz(v[n-1]) if shift > 0 { // do not modify v, it may be used by another goroutine simultaneously v1 := make(nat, n) shlVU(v1, v, shift) v = v1 } u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift) // D2. for j := m; j >= 0; j-- { // D3. qhat := Word(_M) if u[j+n] != v[n-1] { var rhat Word qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1]) // x1 | x2 = q̂v_{n-2} x1, x2 := mulWW(qhat, v[n-2]) // test if q̂v_{n-2} > br̂ + u_{j+n-2} for greaterThan(x1, x2, rhat, u[j+n-2]) { qhat-- prevRhat := rhat rhat += v[n-1] // v[n-1] >= 0, so this tests for overflow. if rhat < prevRhat { break } x1, x2 = mulWW(qhat, v[n-2]) } } // D4. qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0) c := subVV(u[j:j+len(qhatv)], u[j:], qhatv) if c != 0 { c := addVV(u[j:j+n], u[j:], v) u[j+n] += c qhat-- } q[j] = qhat } q = q.norm() shrVU(u, u, shift) r = u.norm() return q, r } // Length of x in bits. x must be normalized. func (x nat) bitLen() int { if i := len(x) - 1; i >= 0 { return i*_W + bitLen(x[i]) } return 0 } const deBruijn32 = 0x077CB531 var deBruijn32Lookup = []byte{ 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, } const deBruijn64 = 0x03f79d71b4ca8b09 var deBruijn64Lookup = []byte{ 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, } // trailingZeroBits returns the number of consecutive least significant zero // bits of x. func trailingZeroBits(x Word) uint { // x & -x leaves only the right-most bit set in the word. Let k be the // index of that bit. Since only a single bit is set, the value is two // to the power of k. Multiplying by a power of two is equivalent to // left shifting, in this case by k bits. The de Bruijn constant is // such that all six bit, consecutive substrings are distinct. // Therefore, if we have a left shifted version of this constant we can // find by how many bits it was shifted by looking at which six bit // substring ended up at the top of the word. // (Knuth, volume 4, section 7.3.1) switch _W { case 32: return uint(deBruijn32Lookup[((x&-x)*deBruijn32)>>27]) case 64: return uint(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58]) default: panic("unknown word size") } } // trailingZeroBits returns the number of consecutive least significant zero // bits of x. func (x nat) trailingZeroBits() uint { if len(x) == 0 { return 0 } var i uint for x[i] == 0 { i++ } // x[i] != 0 return i*_W + trailingZeroBits(x[i]) } // z = x << s func (z nat) shl(x nat, s uint) nat { m := len(x) if m == 0 { return z[:0] } // m > 0 n := m + int(s/_W) z = z.make(n + 1) z[n] = shlVU(z[n-m:n], x, s%_W) z[0 : n-m].clear() return z.norm() } // z = x >> s func (z nat) shr(x nat, s uint) nat { m := len(x) n := m - int(s/_W) if n <= 0 { return z[:0] } // n > 0 z = z.make(n) shrVU(z, x[m-n:], s%_W) return z.norm() } func (z nat) setBit(x nat, i uint, b uint) nat { j := int(i / _W) m := Word(1) << (i % _W) n := len(x) switch b { case 0: z = z.make(n) copy(z, x) if j >= n { // no need to grow return z } z[j] &^= m return z.norm() case 1: if j >= n { z = z.make(j + 1) z[n:].clear() } else { z = z.make(n) } copy(z, x) z[j] |= m // no need to normalize return z } panic("set bit is not 0 or 1") } // bit returns the value of the i'th bit, with lsb == bit 0. func (x nat) bit(i uint) uint { j := i / _W if j >= uint(len(x)) { return 0 } // 0 <= j < len(x) return uint(x[j] >> (i % _W) & 1) } // sticky returns 1 if there's a 1 bit within the // i least significant bits, otherwise it returns 0. func (x nat) sticky(i uint) uint { j := i / _W if j >= uint(len(x)) { if len(x) == 0 { return 0 } return 1 } // 0 <= j < len(x) for _, x := range x[:j] { if x != 0 { return 1 } } if x[j]<<(_W-i%_W) != 0 { return 1 } return 0 } func (z nat) and(x, y nat) nat { m := len(x) n := len(y) if m > n { m = n } // m <= n z = z.make(m) for i := 0; i < m; i++ { z[i] = x[i] & y[i] } return z.norm() } func (z nat) andNot(x, y nat) nat { m := len(x) n := len(y) if n > m { n = m } // m >= n z = z.make(m) for i := 0; i < n; i++ { z[i] = x[i] &^ y[i] } copy(z[n:m], x[n:m]) return z.norm() } func (z nat) or(x, y nat) nat { m := len(x) n := len(y) s := x if m < n { n, m = m, n s = y } // m >= n z = z.make(m) for i := 0; i < n; i++ { z[i] = x[i] | y[i] } copy(z[n:m], s[n:m]) return z.norm() } func (z nat) xor(x, y nat) nat { m := len(x) n := len(y) s := x if m < n { n, m = m, n s = y } // m >= n z = z.make(m) for i := 0; i < n; i++ { z[i] = x[i] ^ y[i] } copy(z[n:m], s[n:m]) return z.norm() } // greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2) func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 } // modW returns x % d. func (x nat) modW(d Word) (r Word) { // TODO(agl): we don't actually need to store the q value. var q nat q = q.make(len(x)) return divWVW(q, 0, x, d) } // random creates a random integer in [0..limit), using the space in z if // possible. n is the bit length of limit. func (z nat) random(rand *rand.Rand, limit nat, n int) nat { if alias(z, limit) { z = nil // z is an alias for limit - cannot reuse } z = z.make(len(limit)) bitLengthOfMSW := uint(n % _W) if bitLengthOfMSW == 0 { bitLengthOfMSW = _W } mask := Word((1 << bitLengthOfMSW) - 1) for { switch _W { case 32: for i := range z { z[i] = Word(rand.Uint32()) } case 64: for i := range z { z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 } default: panic("unknown word size") } z[len(limit)-1] &= mask if z.cmp(limit) < 0 { break } } return z.norm() } // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; // otherwise it sets z to x**y. The result is the value of z. func (z nat) expNN(x, y, m nat) nat { if alias(z, x) || alias(z, y) { // We cannot allow in-place modification of x or y. z = nil } // x**y mod 1 == 0 if len(m) == 1 && m[0] == 1 { return z.setWord(0) } // m == 0 || m > 1 // x**0 == 1 if len(y) == 0 { return z.setWord(1) } // y > 0 // x**1 mod m == x mod m if len(y) == 1 && y[0] == 1 && len(m) != 0 { _, z = z.div(z, x, m) return z } // y > 1 if len(m) != 0 { // We likely end up being as long as the modulus. z = z.make(len(m)) } z = z.set(x) // If the base is non-trivial and the exponent is large, we use // 4-bit, windowed exponentiation. This involves precomputing 14 values // (x^2...x^15) but then reduces the number of multiply-reduces by a // third. Even for a 32-bit exponent, this reduces the number of // operations. Uses Montgomery method for odd moduli. if len(x) > 1 && len(y) > 1 && len(m) > 0 { if m[0]&1 == 1 { return z.expNNMontgomery(x, y, m) } return z.expNNWindowed(x, y, m) } v := y[len(y)-1] // v > 0 because y is normalized and y > 0 shift := nlz(v) + 1 v <<= shift var q nat const mask = 1 << (_W - 1) // We walk through the bits of the exponent one by one. Each time we // see a bit, we square, thus doubling the power. If the bit is a one, // we also multiply by x, thus adding one to the power. w := _W - int(shift) // zz and r are used to avoid allocating in mul and div as // otherwise the arguments would alias. var zz, r nat for j := 0; j < w; j++ { zz = zz.mul(z, z) zz, z = z, zz if v&mask != 0 { zz = zz.mul(z, x) zz, z = z, zz } if len(m) != 0 { zz, r = zz.div(r, z, m) zz, r, q, z = q, z, zz, r } v <<= 1 } for i := len(y) - 2; i >= 0; i-- { v = y[i] for j := 0; j < _W; j++ { zz = zz.mul(z, z) zz, z = z, zz if v&mask != 0 { zz = zz.mul(z, x) zz, z = z, zz } if len(m) != 0 { zz, r = zz.div(r, z, m) zz, r, q, z = q, z, zz, r } v <<= 1 } } return z.norm() } // expNNWindowed calculates x**y mod m using a fixed, 4-bit window. func (z nat) expNNWindowed(x, y, m nat) nat { // zz and r are used to avoid allocating in mul and div as otherwise // the arguments would alias. var zz, r nat const n = 4 // powers[i] contains x^i. var powers [1 << n]nat powers[0] = natOne powers[1] = x for i := 2; i < 1<<n; i += 2 { p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1] *p = p.mul(*p2, *p2) zz, r = zz.div(r, *p, m) *p, r = r, *p *p1 = p1.mul(*p, x) zz, r = zz.div(r, *p1, m) *p1, r = r, *p1 } z = z.setWord(1) for i := len(y) - 1; i >= 0; i-- { yi := y[i] for j := 0; j < _W; j += n { if i != len(y)-1 || j != 0 { // Unrolled loop for significant performance // gain. Use go test -bench=".*" in crypto/rsa // to check performance before making changes. zz = zz.mul(z, z) zz, z = z, zz zz, r = zz.div(r, z, m) z, r = r, z zz = zz.mul(z, z) zz, z = z, zz zz, r = zz.div(r, z, m) z, r = r, z zz = zz.mul(z, z) zz, z = z, zz zz, r = zz.div(r, z, m) z, r = r, z zz = zz.mul(z, z) zz, z = z, zz zz, r = zz.div(r, z, m) z, r = r, z } zz = zz.mul(z, powers[yi>>(_W-n)]) zz, z = z, zz zz, r = zz.div(r, z, m) z, r = r, z yi <<= n } } return z.norm() } // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window. // Uses Montgomery representation. func (z nat) expNNMontgomery(x, y, m nat) nat { var zz, one, rr, RR nat numWords := len(m) // We want the lengths of x and m to be equal. if len(x) > numWords { _, rr = rr.div(rr, x, m) } else if len(x) < numWords { rr = rr.make(numWords) rr.clear() for i := range x { rr[i] = x[i] } } else { rr = x } x = rr // Ideally the precomputations would be performed outside, and reused // k0 = -mˆ-1 mod 2ˆ_W. Algorithm from: Dumas, J.G. "On Newton–Raphson // Iteration for Multiplicative Inverses Modulo Prime Powers". k0 := 2 - m[0] t := m[0] - 1 for i := 1; i < _W; i <<= 1 { t *= t k0 *= (t + 1) } k0 = -k0 // RR = 2ˆ(2*_W*len(m)) mod m RR = RR.setWord(1) zz = zz.shl(RR, uint(2*numWords*_W)) _, RR = RR.div(RR, zz, m) if len(RR) < numWords { zz = zz.make(numWords) copy(zz, RR) RR = zz } // one = 1, with equal length to that of m one = one.make(numWords) one.clear() one[0] = 1 const n = 4 // powers[i] contains x^i var powers [1 << n]nat powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) for i := 2; i < 1<<n; i++ { powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) } // initialize z = 1 (Montgomery 1) z = z.make(numWords) copy(z, powers[0]) zz = zz.make(numWords) // same windowed exponent, but with Montgomery multiplications for i := len(y) - 1; i >= 0; i-- { yi := y[i] for j := 0; j < _W; j += n { if i != len(y)-1 || j != 0 { zz = zz.montgomery(z, z, m, k0, numWords) z = z.montgomery(zz, zz, m, k0, numWords) zz = zz.montgomery(z, z, m, k0, numWords) z = z.montgomery(zz, zz, m, k0, numWords) } zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords) z, zz = zz, z yi <<= n } } // convert to regular number zz = zz.montgomery(z, one, m, k0, numWords) return zz.norm() } // probablyPrime performs reps Miller-Rabin tests to check whether n is prime. // If it returns true, n is prime with probability 1 - 1/4^reps. // If it returns false, n is not prime. func (n nat) probablyPrime(reps int) bool { if len(n) == 0 { return false } if len(n) == 1 { if n[0] < 2 { return false } if n[0]%2 == 0 { return n[0] == 2 } // We have to exclude these cases because we reject all // multiples of these numbers below. switch n[0] { case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53: return true } } if n[0]&1 == 0 { return false // n is even } const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29} const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53} var r Word switch _W { case 32: r = n.modW(primesProduct32) case 64: r = n.modW(primesProduct64 & _M) default: panic("Unknown word size") } if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 || r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 { return false } if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 || r%43 == 0 || r%47 == 0 || r%53 == 0) { return false } nm1 := nat(nil).sub(n, natOne) // determine q, k such that nm1 = q << k k := nm1.trailingZeroBits() q := nat(nil).shr(nm1, k) nm3 := nat(nil).sub(nm1, natTwo) rand := rand.New(rand.NewSource(int64(n[0]))) var x, y, quotient nat nm3Len := nm3.bitLen() NextRandom: for i := 0; i < reps; i++ { x = x.random(rand, nm3, nm3Len) x = x.add(x, natTwo) y = y.expNN(x, q, n) if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 { continue } for j := uint(1); j < k; j++ { y = y.mul(y, y) quotient, y = quotient.div(y, y, n) if y.cmp(nm1) == 0 { continue NextRandom } if y.cmp(natOne) == 0 { return false } } return false } return true } // bytes writes the value of z into buf using big-endian encoding. // len(buf) must be >= len(z)*_S. The value of z is encoded in the // slice buf[i:]. The number i of unused bytes at the beginning of // buf is returned as result. func (z nat) bytes(buf []byte) (i int) { i = len(buf) for _, d := range z { for j := 0; j < _S; j++ { i-- buf[i] = byte(d) d >>= 8 } } for i < len(buf) && buf[i] == 0 { i++ } return } // setBytes interprets buf as the bytes of a big-endian unsigned // integer, sets z to that value, and returns z. func (z nat) setBytes(buf []byte) nat { z = z.make((len(buf) + _S - 1) / _S) k := 0 s := uint(0) var d Word for i := len(buf); i > 0; i-- { d |= Word(buf[i-1]) << s if s += 8; s == _S*8 { z[k] = d k++ s = 0 d = 0 } } if k < len(z) { z[k] = d } return z.norm() }