// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math // The original C code and the long comment below are // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and // came with this notice. The go code is a simplified // version of the original C. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // __ieee754_sqrt(x) // Return correctly rounded sqrt. // ----------------------------------------- // | Use the hardware sqrt if you have one | // ----------------------------------------- // Method: // Bit by bit method using integer arithmetic. (Slow, but portable) // 1. Normalization // Scale x to y in [1,4) with even powers of 2: // find an integer k such that 1 <= (y=x*2**(2k)) < 4, then // sqrt(x) = 2**k * sqrt(y) // 2. Bit by bit computation // Let q = sqrt(y) truncated to i bit after binary point (q = 1), // i 0 // i+1 2 // s = 2*q , and y = 2 * ( y - q ). (1) // i i i i // // To compute q from q , one checks whether // i+1 i // // -(i+1) 2 // (q + 2 ) <= y. (2) // i // -(i+1) // If (2) is false, then q = q ; otherwise q = q + 2 . // i+1 i i+1 i // // With some algebraic manipulation, it is not difficult to see // that (2) is equivalent to // -(i+1) // s + 2 <= y (3) // i i // // The advantage of (3) is that s and y can be computed by // i i // the following recurrence formula: // if (3) is false // // s = s , y = y ; (4) // i+1 i i+1 i // // otherwise, // -i -(i+1) // s = s + 2 , y = y - s - 2 (5) // i+1 i i+1 i i // // One may easily use induction to prove (4) and (5). // Note. Since the left hand side of (3) contain only i+2 bits, // it does not necessary to do a full (53-bit) comparison // in (3). // 3. Final rounding // After generating the 53 bits result, we compute one more bit. // Together with the remainder, we can decide whether the // result is exact, bigger than 1/2ulp, or less than 1/2ulp // (it will never equal to 1/2ulp). // The rounding mode can be detected by checking whether // huge + tiny is equal to huge, and whether huge - tiny is // equal to huge for some floating point number "huge" and "tiny". // // // Notes: Rounding mode detection omitted. The constants "mask", "shift", // and "bias" are found in src/math/bits.go // Sqrt returns the square root of x. // // Special cases are: // Sqrt(+Inf) = +Inf // Sqrt(±0) = ±0 // Sqrt(x < 0) = NaN // Sqrt(NaN) = NaN func Sqrt(x float64) float64 // Note: Sqrt is implemented in assembly on some systems. // Others have assembly stubs that jump to func sqrt below. // On systems where Sqrt is a single instruction, the compiler // may turn a direct call into a direct use of that instruction instead. func sqrt(x float64) float64 { // special cases switch { case x == 0 || IsNaN(x) || IsInf(x, 1): return x case x < 0: return NaN() } ix := Float64bits(x) // normalize x exp := int((ix >> shift) & mask) if exp == 0 { // subnormal x for ix&1<<shift == 0 { ix <<= 1 exp-- } exp++ } exp -= bias // unbias exponent ix &^= mask << shift ix |= 1 << shift if exp&1 == 1 { // odd exp, double x to make it even ix <<= 1 } exp >>= 1 // exp = exp/2, exponent of square root // generate sqrt(x) bit by bit ix <<= 1 var q, s uint64 // q = sqrt(x) r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB for r != 0 { t := s + r if t <= ix { s = t + r ix -= t q += r } ix <<= 1 r >>= 1 } // final rounding if ix != 0 { // remainder, result not exact q += q & 1 // round according to extra bit } ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent return Float64frombits(ix) } func sqrtC(f float64, r *float64) { *r = sqrt(f) }