// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: marking and scanning package runtime import "unsafe" // Scan all of the stacks, greying (or graying if in America) the referents // but not blackening them since the mark write barrier isn't installed. //go:nowritebarrier func gcscan_m() { _g_ := getg() // Grab the g that called us and potentially allow rescheduling. // This allows it to be scanned like other goroutines. mastergp := _g_.m.curg casgstatus(mastergp, _Grunning, _Gwaiting) mastergp.waitreason = "garbage collection scan" // Span sweeping has been done by finishsweep_m. // Long term we will want to make this goroutine runnable // by placing it onto a scanenqueue state and then calling // runtime·restartg(mastergp) to make it Grunnable. // At the bottom we will want to return this p back to the scheduler. // Prepare flag indicating that the scan has not been completed. local_allglen := gcResetGState() work.ndone = 0 useOneP := uint32(1) // For now do not do this in parallel. // ackgcphase is not needed since we are not scanning running goroutines. parforsetup(work.markfor, useOneP, uint32(_RootCount+local_allglen), false, markroot) parfordo(work.markfor) lock(&allglock) // Check that gc work is done. for i := 0; i < local_allglen; i++ { gp := allgs[i] if !gp.gcscandone { throw("scan missed a g") } } unlock(&allglock) casgstatus(mastergp, _Gwaiting, _Grunning) // Let the g that called us continue to run. } // ptrmask for an allocation containing a single pointer. var oneptrmask = [...]uint8{1} //go:nowritebarrier func markroot(desc *parfor, i uint32) { // TODO: Consider using getg().m.p.ptr().gcw. var gcw gcWork // Note: if you add a case here, please also update heapdump.go:dumproots. switch i { case _RootData: for datap := &firstmoduledata; datap != nil; datap = datap.next { scanblock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, &gcw) } case _RootBss: for datap := &firstmoduledata; datap != nil; datap = datap.next { scanblock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, &gcw) } case _RootFinalizers: for fb := allfin; fb != nil; fb = fb.alllink { scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), uintptr(fb.cnt)*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], &gcw) } case _RootSpans: // mark MSpan.specials sg := mheap_.sweepgen for spanidx := uint32(0); spanidx < uint32(len(work.spans)); spanidx++ { s := work.spans[spanidx] if s.state != mSpanInUse { continue } if !useCheckmark && s.sweepgen != sg { // sweepgen was updated (+2) during non-checkmark GC pass print("sweep ", s.sweepgen, " ", sg, "\n") throw("gc: unswept span") } for sp := s.specials; sp != nil; sp = sp.next { if sp.kind != _KindSpecialFinalizer { continue } // don't mark finalized object, but scan it so we // retain everything it points to. spf := (*specialfinalizer)(unsafe.Pointer(sp)) // A finalizer can be set for an inner byte of an object, find object beginning. p := uintptr(s.start<<_PageShift) + uintptr(spf.special.offset)/s.elemsize*s.elemsize if gcphase != _GCscan { scanobject(p, &gcw) // scanned during mark termination } scanblock(uintptr(unsafe.Pointer(&spf.fn)), ptrSize, &oneptrmask[0], &gcw) } } case _RootFlushCaches: if gcphase != _GCscan { // Do not flush mcaches during GCscan phase. flushallmcaches() } default: // the rest is scanning goroutine stacks if uintptr(i-_RootCount) >= allglen { throw("markroot: bad index") } gp := allgs[i-_RootCount] // remember when we've first observed the G blocked // needed only to output in traceback status := readgstatus(gp) // We are not in a scan state if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 { gp.waitsince = work.tstart } // Shrink a stack if not much of it is being used but not in the scan phase. if gcphase == _GCmarktermination { // Shrink during STW GCmarktermination phase thus avoiding // complications introduced by shrinking during // non-STW phases. shrinkstack(gp) } scang(gp) } gcw.dispose() } // gcAssistAlloc records and allocation of size bytes and, if // allowAssist is true, may assist GC scanning in proportion to the // allocations performed by this mutator since the last assist. // // It should only be called if gcAssistAlloc != 0. // // This must be called with preemption disabled. //go:nowritebarrier func gcAssistAlloc(size uintptr, allowAssist bool) { // Find the G responsible for this assist. gp := getg() if gp.m.curg != nil { gp = gp.m.curg } // Record allocation. gp.gcalloc += size if !allowAssist { return } // Don't assist in non-preemptible contexts. These are // generally fragile and won't allow the assist to block. if getg() == gp.m.g0 { return } if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" { return } // Compute the amount of assist scan work we need to do. scanWork := int64(gcController.assistRatio*float64(gp.gcalloc)) - gp.gcscanwork // scanWork can be negative if the last assist scanned a large // object and we're still ahead of our assist goal. if scanWork <= 0 { return } retry: // Steal as much credit as we can from the background GC's // scan credit. This is racy and may drop the background // credit below 0 if two mutators steal at the same time. This // will just cause steals to fail until credit is accumulated // again, so in the long run it doesn't really matter, but we // do have to handle the negative credit case. bgScanCredit := atomicloadint64(&gcController.bgScanCredit) stolen := int64(0) if bgScanCredit > 0 { if bgScanCredit < scanWork { stolen = bgScanCredit } else { stolen = scanWork } xaddint64(&gcController.bgScanCredit, -stolen) scanWork -= stolen gp.gcscanwork += stolen if scanWork == 0 { return } } // Perform assist work completed := false systemstack(func() { if atomicload(&gcBlackenEnabled) == 0 { // The gcBlackenEnabled check in malloc races with the // store that clears it but an atomic check in every malloc // would be a performance hit. // Instead we recheck it here on the non-preemptable system // stack to determine if we should preform an assist. // GC is done, so ignore any remaining debt. scanWork = 0 return } // Track time spent in this assist. Since we're on the // system stack, this is non-preemptible, so we can // just measure start and end time. startTime := nanotime() decnwait := xadd(&work.nwait, -1) if decnwait == work.nproc { println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc) throw("nwait > work.nprocs") } // drain own cached work first in the hopes that it // will be more cache friendly. gcw := &getg().m.p.ptr().gcw startScanWork := gcw.scanWork gcDrainN(gcw, scanWork) // Record that we did this much scan work. workDone := gcw.scanWork - startScanWork gp.gcscanwork += workDone scanWork -= workDone // If we are near the end of the mark phase // dispose of the gcw. if gcBlackenPromptly { gcw.dispose() } // If this is the last worker and we ran out of work, // signal a completion point. incnwait := xadd(&work.nwait, +1) if incnwait > work.nproc { println("runtime: work.nwait=", incnwait, "work.nproc=", work.nproc, "gcBlackenPromptly=", gcBlackenPromptly) throw("work.nwait > work.nproc") } if incnwait == work.nproc && work.full == 0 && work.partial == 0 { // This has reached a background completion // point. if gcBlackenPromptly { if work.bgMark1.done == 0 { throw("completing mark 2, but bgMark1.done == 0") } work.bgMark2.complete() } else { work.bgMark1.complete() } completed = true } duration := nanotime() - startTime _p_ := gp.m.p.ptr() _p_.gcAssistTime += duration if _p_.gcAssistTime > gcAssistTimeSlack { xaddint64(&gcController.assistTime, _p_.gcAssistTime) _p_.gcAssistTime = 0 } }) if completed { // We called complete() above, so we should yield to // the now-runnable GC coordinator. Gosched() // It's likely that this assist wasn't able to pay off // its debt, but it's also likely that the Gosched let // the GC finish this cycle and there's no point in // waiting. If the GC finished, skip the delay below. if atomicload(&gcBlackenEnabled) == 0 { scanWork = 0 } } if scanWork > 0 { // We were unable steal enough credit or perform // enough work to pay off the assist debt. We need to // do one of these before letting the mutator allocate // more, so go around again after performing an // interruptible sleep for 100 us (the same as the // getfull barrier) to let other mutators run. timeSleep(100 * 1000) goto retry } } //go:nowritebarrier func scanstack(gp *g) { if gp.gcscanvalid { if gcphase == _GCmarktermination { gcRemoveStackBarriers(gp) } return } if readgstatus(gp)&_Gscan == 0 { print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n") throw("scanstack - bad status") } switch readgstatus(gp) &^ _Gscan { default: print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") throw("mark - bad status") case _Gdead: return case _Grunning: print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") throw("scanstack: goroutine not stopped") case _Grunnable, _Gsyscall, _Gwaiting: // ok } if gp == getg() { throw("can't scan our own stack") } mp := gp.m if mp != nil && mp.helpgc != 0 { throw("can't scan gchelper stack") } var sp, barrierOffset, nextBarrier uintptr if gp.syscallsp != 0 { sp = gp.syscallsp } else { sp = gp.sched.sp } switch gcphase { case _GCscan: // Install stack barriers during stack scan. barrierOffset = uintptr(firstStackBarrierOffset) nextBarrier = sp + barrierOffset if debug.gcstackbarrieroff > 0 { nextBarrier = ^uintptr(0) } if gp.stkbarPos != 0 || len(gp.stkbar) != 0 { // If this happens, it's probably because we // scanned a stack twice in the same phase. print("stkbarPos=", gp.stkbarPos, " len(stkbar)=", len(gp.stkbar), " goid=", gp.goid, " gcphase=", gcphase, "\n") throw("g already has stack barriers") } case _GCmarktermination: if int(gp.stkbarPos) == len(gp.stkbar) { // gp hit all of the stack barriers (or there // were none). Re-scan the whole stack. nextBarrier = ^uintptr(0) } else { // Only re-scan up to the lowest un-hit // barrier. Any frames above this have not // executed since the _GCscan scan of gp and // any writes through up-pointers to above // this barrier had write barriers. nextBarrier = gp.stkbar[gp.stkbarPos].savedLRPtr if debugStackBarrier { print("rescan below ", hex(nextBarrier), " in [", hex(sp), ",", hex(gp.stack.hi), ") goid=", gp.goid, "\n") } } gcRemoveStackBarriers(gp) default: throw("scanstack in wrong phase") } gcw := &getg().m.p.ptr().gcw n := 0 scanframe := func(frame *stkframe, unused unsafe.Pointer) bool { scanframeworker(frame, unused, gcw) if frame.fp > nextBarrier { // We skip installing a barrier on bottom-most // frame because on LR machines this LR is not // on the stack. if gcphase == _GCscan && n != 0 { if gcInstallStackBarrier(gp, frame) { barrierOffset *= 2 nextBarrier = sp + barrierOffset } } else if gcphase == _GCmarktermination { // We just scanned a frame containing // a return to a stack barrier. Since // this frame never returned, we can // stop scanning. return false } } n++ return true } gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0) tracebackdefers(gp, scanframe, nil) if gcphase == _GCmarktermination { gcw.dispose() } gp.gcscanvalid = true } // Scan a stack frame: local variables and function arguments/results. //go:nowritebarrier func scanframeworker(frame *stkframe, unused unsafe.Pointer, gcw *gcWork) { f := frame.fn targetpc := frame.continpc if targetpc == 0 { // Frame is dead. return } if _DebugGC > 1 { print("scanframe ", funcname(f), "\n") } if targetpc != f.entry { targetpc-- } pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc) if pcdata == -1 { // We do not have a valid pcdata value but there might be a // stackmap for this function. It is likely that we are looking // at the function prologue, assume so and hope for the best. pcdata = 0 } // Scan local variables if stack frame has been allocated. size := frame.varp - frame.sp var minsize uintptr switch thechar { case '6', '8': minsize = 0 case '7': minsize = spAlign default: minsize = ptrSize } if size > minsize { stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps)) if stkmap == nil || stkmap.n <= 0 { print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n") throw("missing stackmap") } // Locals bitmap information, scan just the pointers in locals. if pcdata < 0 || pcdata >= stkmap.n { // don't know where we are print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") throw("scanframe: bad symbol table") } bv := stackmapdata(stkmap, pcdata) size = uintptr(bv.n) * ptrSize scanblock(frame.varp-size, size, bv.bytedata, gcw) } // Scan arguments. if frame.arglen > 0 { var bv bitvector if frame.argmap != nil { bv = *frame.argmap } else { stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) if stkmap == nil || stkmap.n <= 0 { print("runtime: frame ", funcname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n") throw("missing stackmap") } if pcdata < 0 || pcdata >= stkmap.n { // don't know where we are print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") throw("scanframe: bad symbol table") } bv = stackmapdata(stkmap, pcdata) } scanblock(frame.argp, uintptr(bv.n)*ptrSize, bv.bytedata, gcw) } } // gcMaxStackBarriers returns the maximum number of stack barriers // that can be installed in a stack of stackSize bytes. func gcMaxStackBarriers(stackSize int) (n int) { if firstStackBarrierOffset == 0 { // Special debugging case for inserting stack barriers // at every frame. Steal half of the stack for the // []stkbar. Technically, if the stack were to consist // solely of return PCs we would need two thirds of // the stack, but stealing that much breaks things and // this doesn't happen in practice. return stackSize / 2 / int(unsafe.Sizeof(stkbar{})) } offset := firstStackBarrierOffset for offset < stackSize { n++ offset *= 2 } return n + 1 } // gcInstallStackBarrier installs a stack barrier over the return PC of frame. //go:nowritebarrier func gcInstallStackBarrier(gp *g, frame *stkframe) bool { if frame.lr == 0 { if debugStackBarrier { print("not installing stack barrier with no LR, goid=", gp.goid, "\n") } return false } if frame.fn.entry == cgocallback_gofuncPC { // cgocallback_gofunc doesn't return to its LR; // instead, its return path puts LR in g.sched.pc and // switches back to the system stack on which // cgocallback_gofunc was originally called. We can't // have a stack barrier in g.sched.pc, so don't // install one in this frame. if debugStackBarrier { print("not installing stack barrier over LR of cgocallback_gofunc, goid=", gp.goid, "\n") } return false } // Save the return PC and overwrite it with stackBarrier. var lrUintptr uintptr if usesLR { lrUintptr = frame.sp } else { lrUintptr = frame.fp - regSize } lrPtr := (*uintreg)(unsafe.Pointer(lrUintptr)) if debugStackBarrier { print("install stack barrier at ", hex(lrUintptr), " over ", hex(*lrPtr), ", goid=", gp.goid, "\n") if uintptr(*lrPtr) != frame.lr { print("frame.lr=", hex(frame.lr)) throw("frame.lr differs from stack LR") } } gp.stkbar = gp.stkbar[:len(gp.stkbar)+1] stkbar := &gp.stkbar[len(gp.stkbar)-1] stkbar.savedLRPtr = lrUintptr stkbar.savedLRVal = uintptr(*lrPtr) *lrPtr = uintreg(stackBarrierPC) return true } // gcRemoveStackBarriers removes all stack barriers installed in gp's stack. //go:nowritebarrier func gcRemoveStackBarriers(gp *g) { if debugStackBarrier && gp.stkbarPos != 0 { print("hit ", gp.stkbarPos, " stack barriers, goid=", gp.goid, "\n") } // Remove stack barriers that we didn't hit. for _, stkbar := range gp.stkbar[gp.stkbarPos:] { gcRemoveStackBarrier(gp, stkbar) } // Clear recorded stack barriers so copystack doesn't try to // adjust them. gp.stkbarPos = 0 gp.stkbar = gp.stkbar[:0] } // gcRemoveStackBarrier removes a single stack barrier. It is the // inverse operation of gcInstallStackBarrier. // // This is nosplit to ensure gp's stack does not move. // //go:nowritebarrier //go:nosplit func gcRemoveStackBarrier(gp *g, stkbar stkbar) { if debugStackBarrier { print("remove stack barrier at ", hex(stkbar.savedLRPtr), " with ", hex(stkbar.savedLRVal), ", goid=", gp.goid, "\n") } lrPtr := (*uintreg)(unsafe.Pointer(stkbar.savedLRPtr)) if val := *lrPtr; val != uintreg(stackBarrierPC) { printlock() print("at *", hex(stkbar.savedLRPtr), " expected stack barrier PC ", hex(stackBarrierPC), ", found ", hex(val), ", goid=", gp.goid, "\n") print("gp.stkbar=") gcPrintStkbars(gp.stkbar) print(", gp.stkbarPos=", gp.stkbarPos, ", gp.stack=[", hex(gp.stack.lo), ",", hex(gp.stack.hi), ")\n") throw("stack barrier lost") } *lrPtr = uintreg(stkbar.savedLRVal) } // gcPrintStkbars prints a []stkbar for debugging. func gcPrintStkbars(stkbar []stkbar) { print("[") for i, s := range stkbar { if i > 0 { print(" ") } print("*", hex(s.savedLRPtr), "=", hex(s.savedLRVal)) } print("]") } // gcUnwindBarriers marks all stack barriers up the frame containing // sp as hit and removes them. This is used during stack unwinding for // panic/recover and by heapBitsBulkBarrier to force stack re-scanning // when its destination is on the stack. // // This is nosplit to ensure gp's stack does not move. // //go:nosplit func gcUnwindBarriers(gp *g, sp uintptr) { // On LR machines, if there is a stack barrier on the return // from the frame containing sp, this will mark it as hit even // though it isn't, but it's okay to be conservative. before := gp.stkbarPos for int(gp.stkbarPos) < len(gp.stkbar) && gp.stkbar[gp.stkbarPos].savedLRPtr < sp { gcRemoveStackBarrier(gp, gp.stkbar[gp.stkbarPos]) gp.stkbarPos++ } if debugStackBarrier && gp.stkbarPos != before { print("skip barriers below ", hex(sp), " in goid=", gp.goid, ": ") gcPrintStkbars(gp.stkbar[before:gp.stkbarPos]) print("\n") } } // nextBarrierPC returns the original return PC of the next stack barrier. // Used by getcallerpc, so it must be nosplit. //go:nosplit func nextBarrierPC() uintptr { gp := getg() return gp.stkbar[gp.stkbarPos].savedLRVal } // setNextBarrierPC sets the return PC of the next stack barrier. // Used by setcallerpc, so it must be nosplit. //go:nosplit func setNextBarrierPC(pc uintptr) { gp := getg() gp.stkbar[gp.stkbarPos].savedLRVal = pc } // TODO(austin): Can we consolidate the gcDrain* functions? // gcDrain scans objects in work buffers, blackening grey // objects until all work buffers have been drained. // If flushScanCredit != -1, gcDrain flushes accumulated scan work // credit to gcController.bgScanCredit whenever gcw's local scan work // credit exceeds flushScanCredit. //go:nowritebarrier func gcDrain(gcw *gcWork, flushScanCredit int64) { if !writeBarrierEnabled { throw("gcDrain phase incorrect") } var lastScanFlush, nextScanFlush int64 if flushScanCredit != -1 { lastScanFlush = gcw.scanWork nextScanFlush = lastScanFlush + flushScanCredit } else { nextScanFlush = int64(^uint64(0) >> 1) } for { // If another proc wants a pointer, give it some. if work.nwait > 0 && work.full == 0 { gcw.balance() } b := gcw.get() if b == 0 { // work barrier reached break } // If the current wbuf is filled by the scan a new wbuf might be // returned that could possibly hold only a single object. This // could result in each iteration draining only a single object // out of the wbuf passed in + a single object placed // into an empty wbuf in scanobject so there could be // a performance hit as we keep fetching fresh wbufs. scanobject(b, gcw) // Flush background scan work credit to the global // account if we've accumulated enough locally so // mutator assists can draw on it. if gcw.scanWork >= nextScanFlush { credit := gcw.scanWork - lastScanFlush xaddint64(&gcController.bgScanCredit, credit) lastScanFlush = gcw.scanWork nextScanFlush = lastScanFlush + flushScanCredit } } if flushScanCredit != -1 { credit := gcw.scanWork - lastScanFlush xaddint64(&gcController.bgScanCredit, credit) } } // gcDrainUntilPreempt blackens grey objects until g.preempt is set. // This is best-effort, so it will return as soon as it is unable to // get work, even though there may be more work in the system. //go:nowritebarrier func gcDrainUntilPreempt(gcw *gcWork, flushScanCredit int64) { if !writeBarrierEnabled { println("gcphase =", gcphase) throw("gcDrainUntilPreempt phase incorrect") } var lastScanFlush, nextScanFlush int64 if flushScanCredit != -1 { lastScanFlush = gcw.scanWork nextScanFlush = lastScanFlush + flushScanCredit } else { nextScanFlush = int64(^uint64(0) >> 1) } gp := getg() for !gp.preempt { // If the work queue is empty, balance. During // concurrent mark we don't really know if anyone else // can make use of this work, but even if we're the // only worker, the total cost of this per cycle is // only O(_WorkbufSize) pointer copies. if work.full == 0 && work.partial == 0 { gcw.balance() } b := gcw.tryGet() if b == 0 { // No more work break } scanobject(b, gcw) // Flush background scan work credit to the global // account if we've accumulated enough locally so // mutator assists can draw on it. if gcw.scanWork >= nextScanFlush { credit := gcw.scanWork - lastScanFlush xaddint64(&gcController.bgScanCredit, credit) lastScanFlush = gcw.scanWork nextScanFlush = lastScanFlush + flushScanCredit } } if flushScanCredit != -1 { credit := gcw.scanWork - lastScanFlush xaddint64(&gcController.bgScanCredit, credit) } } // gcDrainN blackens grey objects until it has performed roughly // scanWork units of scan work. This is best-effort, so it may perform // less work if it fails to get a work buffer. Otherwise, it will // perform at least n units of work, but may perform more because // scanning is always done in whole object increments. //go:nowritebarrier func gcDrainN(gcw *gcWork, scanWork int64) { if !writeBarrierEnabled { throw("gcDrainN phase incorrect") } targetScanWork := gcw.scanWork + scanWork for gcw.scanWork < targetScanWork { // This might be a good place to add prefetch code... // if(wbuf.nobj > 4) { // PREFETCH(wbuf->obj[wbuf.nobj - 3]; // } b := gcw.tryGet() if b == 0 { return } scanobject(b, gcw) } } // scanblock scans b as scanobject would, but using an explicit // pointer bitmap instead of the heap bitmap. // // This is used to scan non-heap roots, so it does not update // gcw.bytesMarked or gcw.scanWork. // //go:nowritebarrier func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) { // Use local copies of original parameters, so that a stack trace // due to one of the throws below shows the original block // base and extent. b := b0 n := n0 arena_start := mheap_.arena_start arena_used := mheap_.arena_used for i := uintptr(0); i < n; { // Find bits for the next word. bits := uint32(*addb(ptrmask, i/(ptrSize*8))) if bits == 0 { i += ptrSize * 8 continue } for j := 0; j < 8 && i < n; j++ { if bits&1 != 0 { // Same work as in scanobject; see comments there. obj := *(*uintptr)(unsafe.Pointer(b + i)) if obj != 0 && arena_start <= obj && obj < arena_used { if obj, hbits, span := heapBitsForObject(obj); obj != 0 { greyobject(obj, b, i, hbits, span, gcw) } } } bits >>= 1 i += ptrSize } } } // scanobject scans the object starting at b, adding pointers to gcw. // b must point to the beginning of a heap object; scanobject consults // the GC bitmap for the pointer mask and the spans for the size of the // object (it ignores n). //go:nowritebarrier func scanobject(b uintptr, gcw *gcWork) { // Note that arena_used may change concurrently during // scanobject and hence scanobject may encounter a pointer to // a newly allocated heap object that is *not* in // [start,used). It will not mark this object; however, we // know that it was just installed by a mutator, which means // that mutator will execute a write barrier and take care of // marking it. This is even more pronounced on relaxed memory // architectures since we access arena_used without barriers // or synchronization, but the same logic applies. arena_start := mheap_.arena_start arena_used := mheap_.arena_used // Find bits of the beginning of the object. // b must point to the beginning of a heap object, so // we can get its bits and span directly. hbits := heapBitsForAddr(b) s := spanOfUnchecked(b) n := s.elemsize if n == 0 { throw("scanobject n == 0") } var i uintptr for i = 0; i < n; i += ptrSize { // Find bits for this word. if i != 0 { // Avoid needless hbits.next() on last iteration. hbits = hbits.next() } // During checkmarking, 1-word objects store the checkmark // in the type bit for the one word. The only one-word objects // are pointers, or else they'd be merged with other non-pointer // data into larger allocations. bits := hbits.bits() if i >= 2*ptrSize && bits&bitMarked == 0 { break // no more pointers in this object } if bits&bitPointer == 0 { continue // not a pointer } // Work here is duplicated in scanblock and above. // If you make changes here, make changes there too. obj := *(*uintptr)(unsafe.Pointer(b + i)) // At this point we have extracted the next potential pointer. // Check if it points into heap and not back at the current object. if obj != 0 && arena_start <= obj && obj < arena_used && obj-b >= n { // Mark the object. if obj, hbits, span := heapBitsForObject(obj); obj != 0 { greyobject(obj, b, i, hbits, span, gcw) } } } gcw.bytesMarked += uint64(n) gcw.scanWork += int64(i) } // Shade the object if it isn't already. // The object is not nil and known to be in the heap. // Preemption must be disabled. //go:nowritebarrier func shade(b uintptr) { if obj, hbits, span := heapBitsForObject(b); obj != 0 { gcw := &getg().m.p.ptr().gcw greyobject(obj, 0, 0, hbits, span, gcw) if gcphase == _GCmarktermination || gcBlackenPromptly { // Ps aren't allowed to cache work during mark // termination. gcw.dispose() } } } // obj is the start of an object with mark mbits. // If it isn't already marked, mark it and enqueue into gcw. // base and off are for debugging only and could be removed. //go:nowritebarrier func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork) { // obj should be start of allocation, and so must be at least pointer-aligned. if obj&(ptrSize-1) != 0 { throw("greyobject: obj not pointer-aligned") } if useCheckmark { if !hbits.isMarked() { printlock() print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n") print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n") // Dump the source (base) object gcDumpObject("base", base, off) // Dump the object gcDumpObject("obj", obj, ^uintptr(0)) throw("checkmark found unmarked object") } if hbits.isCheckmarked(span.elemsize) { return } hbits.setCheckmarked(span.elemsize) if !hbits.isCheckmarked(span.elemsize) { throw("setCheckmarked and isCheckmarked disagree") } } else { // If marked we have nothing to do. if hbits.isMarked() { return } hbits.setMarked() // If this is a noscan object, fast-track it to black // instead of greying it. if !hbits.hasPointers(span.elemsize) { gcw.bytesMarked += uint64(span.elemsize) return } } // Queue the obj for scanning. The PREFETCH(obj) logic has been removed but // seems like a nice optimization that can be added back in. // There needs to be time between the PREFETCH and the use. // Previously we put the obj in an 8 element buffer that is drained at a rate // to give the PREFETCH time to do its work. // Use of PREFETCHNTA might be more appropriate than PREFETCH gcw.put(obj) } // gcDumpObject dumps the contents of obj for debugging and marks the // field at byte offset off in obj. func gcDumpObject(label string, obj, off uintptr) { if obj < mheap_.arena_start || obj >= mheap_.arena_used { print(label, "=", hex(obj), " is not a heap object\n") return } k := obj >> _PageShift x := k x -= mheap_.arena_start >> _PageShift s := h_spans[x] print(label, "=", hex(obj), " k=", hex(k)) if s == nil { print(" s=nil\n") return } print(" s.start*_PageSize=", hex(s.start*_PageSize), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, "\n") for i := uintptr(0); i < s.elemsize; i += ptrSize { print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + uintptr(i))))) if i == off { print(" <==") } print("\n") } } // If gcBlackenPromptly is true we are in the second mark phase phase so we allocate black. //go:nowritebarrier func gcmarknewobject_m(obj, size uintptr) { if useCheckmark && !gcBlackenPromptly { // The world should be stopped so this should not happen. throw("gcmarknewobject called while doing checkmark") } heapBitsForAddr(obj).setMarked() xadd64(&work.bytesMarked, int64(size)) } // Checkmarking // To help debug the concurrent GC we remark with the world // stopped ensuring that any object encountered has their normal // mark bit set. To do this we use an orthogonal bit // pattern to indicate the object is marked. The following pattern // uses the upper two bits in the object's boundary nibble. // 01: scalar not marked // 10: pointer not marked // 11: pointer marked // 00: scalar marked // Xoring with 01 will flip the pattern from marked to unmarked and vica versa. // The higher bit is 1 for pointers and 0 for scalars, whether the object // is marked or not. // The first nibble no longer holds the typeDead pattern indicating that the // there are no more pointers in the object. This information is held // in the second nibble. // If useCheckmark is true, marking of an object uses the // checkmark bits (encoding above) instead of the standard // mark bits. var useCheckmark = false //go:nowritebarrier func initCheckmarks() { useCheckmark = true for _, s := range work.spans { if s.state == _MSpanInUse { heapBitsForSpan(s.base()).initCheckmarkSpan(s.layout()) } } } func clearCheckmarks() { useCheckmark = false for _, s := range work.spans { if s.state == _MSpanInUse { heapBitsForSpan(s.base()).clearCheckmarkSpan(s.layout()) } } }