// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" //extern SigTabTT runtime·sigtab[]; var sigset_all = ^uint32(0) func unimplemented(name string) { println(name, "not implemented") *(*int)(unsafe.Pointer(uintptr(1231))) = 1231 } //go:nosplit func semawakeup(mp *m) { mach_semrelease(uint32(mp.waitsema)) } //go:nosplit func semacreate() uintptr { var x uintptr systemstack(func() { x = uintptr(mach_semcreate()) }) return x } // BSD interface for threading. func osinit() { // bsdthread_register delayed until end of goenvs so that we // can look at the environment first. ncpu = getncpu() } func getncpu() int32 { // Use sysctl to fetch hw.ncpu. mib := [2]uint32{6, 3} out := uint32(0) nout := unsafe.Sizeof(out) ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret >= 0 && int32(out) > 0 { return int32(out) } return 1 } var urandom_dev = []byte("/dev/urandom\x00") //go:nosplit func getRandomData(r []byte) { fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) closefd(fd) extendRandom(r, int(n)) } func goenvs() { goenvs_unix() // Register our thread-creation callback (see sys_darwin_{amd64,386}.s) // but only if we're not using cgo. If we are using cgo we need // to let the C pthread library install its own thread-creation callback. if !iscgo { if bsdthread_register() != 0 { if gogetenv("DYLD_INSERT_LIBRARIES") != "" { throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)") } throw("runtime: bsdthread_register error") } } } // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrier func newosproc(mp *m, stk unsafe.Pointer) { mp.tls[0] = uintptr(mp.id) // so 386 asm can find it if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int(mp.tls[0]), " ostk=", &mp, "\n") } var oset uint32 sigprocmask(_SIG_SETMASK, &sigset_all, &oset) errno := bsdthread_create(stk, unsafe.Pointer(mp), funcPC(mstart)) sigprocmask(_SIG_SETMASK, &oset, nil) if errno < 0 { print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -errno, ")\n") throw("runtime.newosproc") } } // newosproc0 is a version of newosproc that can be called before the runtime // is initialized. // // As Go uses bsdthread_register when running without cgo, this function is // not safe to use after initialization as it does not pass an M as fnarg. // //go:nosplit func newosproc0(stacksize uintptr, fn unsafe.Pointer, fnarg uintptr) { stack := sysAlloc(stacksize, &memstats.stacks_sys) if stack == nil { write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) exit(1) } stk := unsafe.Pointer(uintptr(stack) + stacksize) var oset uint32 sigprocmask(_SIG_SETMASK, &sigset_all, &oset) errno := bsdthread_create(stk, fn, fnarg) sigprocmask(_SIG_SETMASK, &oset, nil) if errno < 0 { write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) exit(1) } } var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") var failthreadcreate = []byte("runtime: failed to create new OS thread\n") // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) // OS X wants >= 8K mp.gsignal.m = mp } func msigsave(mp *m) { smask := (*uint32)(unsafe.Pointer(&mp.sigmask)) if unsafe.Sizeof(*smask) > unsafe.Sizeof(mp.sigmask) { throw("insufficient storage for signal mask") } sigprocmask(_SIG_SETMASK, nil, smask) } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. func minit() { // Initialize signal handling. _g_ := getg() signalstack(&_g_.m.gsignal.stack) // restore signal mask from m.sigmask and unblock essential signals nmask := *(*uint32)(unsafe.Pointer(&_g_.m.sigmask)) for i := range sigtable { if sigtable[i].flags&_SigUnblock != 0 { nmask &^= 1 << (uint32(i) - 1) } } sigprocmask(_SIG_SETMASK, &nmask, nil) } // Called from dropm to undo the effect of an minit. func unminit() { _g_ := getg() smask := (*uint32)(unsafe.Pointer(&_g_.m.sigmask)) sigprocmask(_SIG_SETMASK, smask, nil) signalstack(nil) } // Mach IPC, to get at semaphores // Definitions are in /usr/include/mach on a Mac. func macherror(r int32, fn string) { print("mach error ", fn, ": ", r, "\n") throw("mach error") } const _DebugMach = false var zerondr machndr func mach_msgh_bits(a, b uint32) uint32 { return a | b<<8 } func mach_msg(h *machheader, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32 { // TODO: Loop on interrupt. return mach_msg_trap(unsafe.Pointer(h), op, send_size, rcv_size, rcv_name, timeout, notify) } // Mach RPC (MIG) const ( _MinMachMsg = 48 _MachReply = 100 ) type codemsg struct { h machheader ndr machndr code int32 } func machcall(h *machheader, maxsize int32, rxsize int32) int32 { _g_ := getg() port := _g_.m.machport if port == 0 { port = mach_reply_port() _g_.m.machport = port } h.msgh_bits |= mach_msgh_bits(_MACH_MSG_TYPE_COPY_SEND, _MACH_MSG_TYPE_MAKE_SEND_ONCE) h.msgh_local_port = port h.msgh_reserved = 0 id := h.msgh_id if _DebugMach { p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h)) print("send:\t") var i uint32 for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ { print(" ", p[i]) if i%8 == 7 { print("\n\t") } } if i%8 != 0 { print("\n") } } ret := mach_msg(h, _MACH_SEND_MSG|_MACH_RCV_MSG, h.msgh_size, uint32(maxsize), port, 0, 0) if ret != 0 { if _DebugMach { print("mach_msg error ", ret, "\n") } return ret } if _DebugMach { p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h)) var i uint32 for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ { print(" ", p[i]) if i%8 == 7 { print("\n\t") } } if i%8 != 0 { print("\n") } } if h.msgh_id != id+_MachReply { if _DebugMach { print("mach_msg _MachReply id mismatch ", h.msgh_id, " != ", id+_MachReply, "\n") } return -303 // MIG_REPLY_MISMATCH } // Look for a response giving the return value. // Any call can send this back with an error, // and some calls only have return values so they // send it back on success too. I don't quite see how // you know it's one of these and not the full response // format, so just look if the message is right. c := (*codemsg)(unsafe.Pointer(h)) if uintptr(h.msgh_size) == unsafe.Sizeof(*c) && h.msgh_bits&_MACH_MSGH_BITS_COMPLEX == 0 { if _DebugMach { print("mig result ", c.code, "\n") } return c.code } if h.msgh_size != uint32(rxsize) { if _DebugMach { print("mach_msg _MachReply size mismatch ", h.msgh_size, " != ", rxsize, "\n") } return -307 // MIG_ARRAY_TOO_LARGE } return 0 } // Semaphores! const ( tmach_semcreate = 3418 rmach_semcreate = tmach_semcreate + _MachReply tmach_semdestroy = 3419 rmach_semdestroy = tmach_semdestroy + _MachReply _KERN_ABORTED = 14 _KERN_OPERATION_TIMED_OUT = 49 ) type tmach_semcreatemsg struct { h machheader ndr machndr policy int32 value int32 } type rmach_semcreatemsg struct { h machheader body machbody semaphore machport } type tmach_semdestroymsg struct { h machheader body machbody semaphore machport } func mach_semcreate() uint32 { var m [256]uint8 tx := (*tmach_semcreatemsg)(unsafe.Pointer(&m)) rx := (*rmach_semcreatemsg)(unsafe.Pointer(&m)) tx.h.msgh_bits = 0 tx.h.msgh_size = uint32(unsafe.Sizeof(*tx)) tx.h.msgh_remote_port = mach_task_self() tx.h.msgh_id = tmach_semcreate tx.ndr = zerondr tx.policy = 0 // 0 = SYNC_POLICY_FIFO tx.value = 0 for { r := machcall(&tx.h, int32(unsafe.Sizeof(m)), int32(unsafe.Sizeof(*rx))) if r == 0 { break } if r == _KERN_ABORTED { // interrupted continue } macherror(r, "semaphore_create") } if rx.body.msgh_descriptor_count != 1 { unimplemented("mach_semcreate desc count") } return rx.semaphore.name } func mach_semdestroy(sem uint32) { var m [256]uint8 tx := (*tmach_semdestroymsg)(unsafe.Pointer(&m)) tx.h.msgh_bits = _MACH_MSGH_BITS_COMPLEX tx.h.msgh_size = uint32(unsafe.Sizeof(*tx)) tx.h.msgh_remote_port = mach_task_self() tx.h.msgh_id = tmach_semdestroy tx.body.msgh_descriptor_count = 1 tx.semaphore.name = sem tx.semaphore.disposition = _MACH_MSG_TYPE_MOVE_SEND tx.semaphore._type = 0 for { r := machcall(&tx.h, int32(unsafe.Sizeof(m)), 0) if r == 0 { break } if r == _KERN_ABORTED { // interrupted continue } macherror(r, "semaphore_destroy") } } // The other calls have simple system call traps in sys_darwin_{amd64,386}.s func mach_semaphore_wait(sema uint32) int32 func mach_semaphore_timedwait(sema, sec, nsec uint32) int32 func mach_semaphore_signal(sema uint32) int32 func mach_semaphore_signal_all(sema uint32) int32 func semasleep1(ns int64) int32 { _g_ := getg() if ns >= 0 { var nsecs int32 secs := timediv(ns, 1000000000, &nsecs) r := mach_semaphore_timedwait(uint32(_g_.m.waitsema), uint32(secs), uint32(nsecs)) if r == _KERN_ABORTED || r == _KERN_OPERATION_TIMED_OUT { return -1 } if r != 0 { macherror(r, "semaphore_wait") } return 0 } for { r := mach_semaphore_wait(uint32(_g_.m.waitsema)) if r == 0 { break } if r == _KERN_ABORTED { // interrupted continue } macherror(r, "semaphore_wait") } return 0 } //go:nosplit func semasleep(ns int64) int32 { var r int32 systemstack(func() { r = semasleep1(ns) }) return r } //go:nosplit func mach_semrelease(sem uint32) { for { r := mach_semaphore_signal(sem) if r == 0 { break } if r == _KERN_ABORTED { // interrupted continue } // mach_semrelease must be completely nosplit, // because it is called from Go code. // If we're going to die, start that process on the system stack // to avoid a Go stack split. systemstack(func() { macherror(r, "semaphore_signal") }) } } //go:nosplit func osyield() { usleep(1) } func memlimit() uintptr { // NOTE(rsc): Could use getrlimit here, // like on FreeBSD or Linux, but Darwin doesn't enforce // ulimit -v, so it's unclear why we'd try to stay within // the limit. return 0 } func setsig(i int32, fn uintptr, restart bool) { var sa sigactiont memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK if restart { sa.sa_flags |= _SA_RESTART } sa.sa_mask = ^uint32(0) sa.sa_tramp = unsafe.Pointer(funcPC(sigtramp)) // runtime·sigtramp's job is to call into real handler *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) = fn sigaction(uint32(i), &sa, nil) } func setsigstack(i int32) { throw("setsigstack") } func getsig(i int32) uintptr { var sa sigactiont memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) sigaction(uint32(i), nil, &sa) return *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) } func signalstack(s *stack) { var st stackt if s == nil { st.ss_flags = _SS_DISABLE } else { st.ss_sp = (*byte)(unsafe.Pointer(s.lo)) st.ss_size = s.hi - s.lo st.ss_flags = 0 } sigaltstack(&st, nil) } func updatesigmask(m sigmask) { sigprocmask(_SIG_SETMASK, &m[0], nil) } func unblocksig(sig int32) { mask := uint32(1) << (uint32(sig) - 1) sigprocmask(_SIG_UNBLOCK, &mask, nil) }