// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" var sigset_all sigset = sigset{^uint32(0), ^uint32(0)} // Linux futex. // // futexsleep(uint32 *addr, uint32 val) // futexwakeup(uint32 *addr) // // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. // Futexwakeup wakes up threads sleeping on addr. // Futexsleep is allowed to wake up spuriously. const ( _FUTEX_WAIT = 0 _FUTEX_WAKE = 1 ) // Atomically, // if(*addr == val) sleep // Might be woken up spuriously; that's allowed. // Don't sleep longer than ns; ns < 0 means forever. //go:nosplit func futexsleep(addr *uint32, val uint32, ns int64) { var ts timespec // Some Linux kernels have a bug where futex of // FUTEX_WAIT returns an internal error code // as an errno. Libpthread ignores the return value // here, and so can we: as it says a few lines up, // spurious wakeups are allowed. if ns < 0 { futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0) return } // It's difficult to live within the no-split stack limits here. // On ARM and 386, a 64-bit divide invokes a general software routine // that needs more stack than we can afford. So we use timediv instead. // But on real 64-bit systems, where words are larger but the stack limit // is not, even timediv is too heavy, and we really need to use just an // ordinary machine instruction. if ptrSize == 8 { ts.set_sec(ns / 1000000000) ts.set_nsec(int32(ns % 1000000000)) } else { ts.tv_nsec = 0 ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))) } futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0) } // If any procs are sleeping on addr, wake up at most cnt. //go:nosplit func futexwakeup(addr *uint32, cnt uint32) { ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0) if ret >= 0 { return } // I don't know that futex wakeup can return // EAGAIN or EINTR, but if it does, it would be // safe to loop and call futex again. systemstack(func() { print("futexwakeup addr=", addr, " returned ", ret, "\n") }) *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 } func getproccount() int32 { // This buffer is huge (8 kB) but we are on the system stack // and there should be plenty of space (64 kB) -- except on ARM where // the system stack itself is only 8kb (see golang.org/issue/11873). // Also this is a leaf, so we're not holding up the memory for long. // See golang.org/issue/11823. // The suggested behavior here is to keep trying with ever-larger // buffers, but we don't have a dynamic memory allocator at the // moment, so that's a bit tricky and seems like overkill. const maxCPUs = 64*1024*(1-goarch_arm) + 1024*goarch_arm var buf [maxCPUs / (ptrSize * 8)]uintptr r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) n := int32(0) for _, v := range buf[:r/ptrSize] { for v != 0 { n += int32(v & 1) v >>= 1 } } if n == 0 { n = 1 } return n } // Clone, the Linux rfork. const ( _CLONE_VM = 0x100 _CLONE_FS = 0x200 _CLONE_FILES = 0x400 _CLONE_SIGHAND = 0x800 _CLONE_PTRACE = 0x2000 _CLONE_VFORK = 0x4000 _CLONE_PARENT = 0x8000 _CLONE_THREAD = 0x10000 _CLONE_NEWNS = 0x20000 _CLONE_SYSVSEM = 0x40000 _CLONE_SETTLS = 0x80000 _CLONE_PARENT_SETTID = 0x100000 _CLONE_CHILD_CLEARTID = 0x200000 _CLONE_UNTRACED = 0x800000 _CLONE_CHILD_SETTID = 0x1000000 _CLONE_STOPPED = 0x2000000 _CLONE_NEWUTS = 0x4000000 _CLONE_NEWIPC = 0x8000000 cloneFlags = _CLONE_VM | /* share memory */ _CLONE_FS | /* share cwd, etc */ _CLONE_FILES | /* share fd table */ _CLONE_SIGHAND | /* share sig handler table */ _CLONE_THREAD /* revisit - okay for now */ ) // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrier func newosproc(mp *m, stk unsafe.Pointer) { /* * note: strace gets confused if we use CLONE_PTRACE here. */ mp.tls[0] = uintptr(mp.id) // so 386 asm can find it if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n") } // Disable signals during clone, so that the new thread starts // with signals disabled. It will enable them in minit. var oset sigset rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset))) ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart))) rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset))) if ret < 0 { print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n") throw("newosproc") } } // Version of newosproc that doesn't require a valid G. //go:nosplit func newosproc0(stacksize uintptr, fn unsafe.Pointer) { stack := sysAlloc(stacksize, &memstats.stacks_sys) if stack == nil { write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) exit(1) } ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) if ret < 0 { write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) exit(1) } } var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") var failthreadcreate = []byte("runtime: failed to create new OS thread\n") func osinit() { ncpu = getproccount() } var urandom_dev = []byte("/dev/urandom\x00") func getRandomData(r []byte) { if startupRandomData != nil { n := copy(r, startupRandomData) extendRandom(r, n) return } fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) closefd(fd) extendRandom(r, int(n)) } func goenvs() { goenvs_unix() } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) // Linux wants >= 2K mp.gsignal.m = mp } func msigsave(mp *m) { smask := (*sigset)(unsafe.Pointer(&mp.sigmask)) if unsafe.Sizeof(*smask) > unsafe.Sizeof(mp.sigmask) { throw("insufficient storage for signal mask") } rtsigprocmask(_SIG_SETMASK, nil, smask, int32(unsafe.Sizeof(*smask))) } func gettid() uint32 // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. func minit() { // Initialize signal handling. _g_ := getg() signalstack(&_g_.m.gsignal.stack) // for debuggers, in case cgo created the thread _g_.m.procid = uint64(gettid()) // restore signal mask from m.sigmask and unblock essential signals nmask := *(*sigset)(unsafe.Pointer(&_g_.m.sigmask)) for i := range sigtable { if sigtable[i].flags&_SigUnblock != 0 { nmask[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31) } } rtsigprocmask(_SIG_SETMASK, &nmask, nil, int32(unsafe.Sizeof(nmask))) } // Called from dropm to undo the effect of an minit. func unminit() { _g_ := getg() smask := (*sigset)(unsafe.Pointer(&_g_.m.sigmask)) rtsigprocmask(_SIG_SETMASK, smask, nil, int32(unsafe.Sizeof(*smask))) signalstack(nil) } func memlimit() uintptr { /* TODO: Convert to Go when something actually uses the result. Rlimit rl; extern byte runtime·text[], runtime·end[]; uintptr used; if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) return 0; if(rl.rlim_cur >= 0x7fffffff) return 0; // Estimate our VM footprint excluding the heap. // Not an exact science: use size of binary plus // some room for thread stacks. used = runtime·end - runtime·text + (64<<20); if(used >= rl.rlim_cur) return 0; // If there's not at least 16 MB left, we're probably // not going to be able to do much. Treat as no limit. rl.rlim_cur -= used; if(rl.rlim_cur < (16<<20)) return 0; return rl.rlim_cur - used; */ return 0 } //#ifdef GOARCH_386 //#define sa_handler k_sa_handler //#endif func sigreturn() func sigtramp() func setsig(i int32, fn uintptr, restart bool) { var sa sigactiont memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER if restart { sa.sa_flags |= _SA_RESTART } sa.sa_mask = ^uint64(0) // Although Linux manpage says "sa_restorer element is obsolete and // should not be used". x86_64 kernel requires it. Only use it on // x86. if GOARCH == "386" || GOARCH == "amd64" { sa.sa_restorer = funcPC(sigreturn) } if fn == funcPC(sighandler) { fn = funcPC(sigtramp) } sa.sa_handler = fn if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 { throw("rt_sigaction failure") } } func setsigstack(i int32) { var sa sigactiont if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 { throw("rt_sigaction failure") } if sa.sa_handler == 0 || sa.sa_handler == _SIG_DFL || sa.sa_handler == _SIG_IGN || sa.sa_flags&_SA_ONSTACK != 0 { return } sa.sa_flags |= _SA_ONSTACK if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 { throw("rt_sigaction failure") } } func getsig(i int32) uintptr { var sa sigactiont memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 { throw("rt_sigaction read failure") } if sa.sa_handler == funcPC(sigtramp) { return funcPC(sighandler) } return sa.sa_handler } func signalstack(s *stack) { var st sigaltstackt if s == nil { st.ss_flags = _SS_DISABLE } else { st.ss_sp = (*byte)(unsafe.Pointer(s.lo)) st.ss_size = s.hi - s.lo st.ss_flags = 0 } sigaltstack(&st, nil) } func updatesigmask(m sigmask) { var mask sigset copy(mask[:], m[:]) rtsigprocmask(_SIG_SETMASK, &mask, nil, int32(unsafe.Sizeof(mask))) } func unblocksig(sig int32) { var mask sigset mask[(sig-1)/32] |= 1 << ((uint32(sig) - 1) & 31) rtsigprocmask(_SIG_UNBLOCK, &mask, nil, int32(unsafe.Sizeof(mask))) }