// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Go execution tracer. // The tracer captures a wide range of execution events like goroutine // creation/blocking/unblocking, syscall enter/exit/block, GC-related events, // changes of heap size, processor start/stop, etc and writes them to a buffer // in a compact form. A precise nanosecond-precision timestamp and a stack // trace is captured for most events. // See https://golang.org/s/go15trace for more info. package runtime import "unsafe" // Event types in the trace, args are given in square brackets. const ( traceEvNone = 0 // unused traceEvBatch = 1 // start of per-P batch of events [pid, timestamp] traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)] traceEvStack = 3 // stack [stack id, number of PCs, array of PCs] traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id] traceEvProcStart = 5 // start of P [timestamp, thread id] traceEvProcStop = 6 // stop of P [timestamp] traceEvGCStart = 7 // GC start [timestamp, stack id] traceEvGCDone = 8 // GC done [timestamp] traceEvGCScanStart = 9 // GC scan start [timestamp] traceEvGCScanDone = 10 // GC scan done [timestamp] traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id] traceEvGCSweepDone = 12 // GC sweep done [timestamp] traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, start PC, stack id] traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id] traceEvGoEnd = 15 // goroutine ends [timestamp] traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack] traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack] traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack] traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack] traceEvGoBlock = 20 // goroutine blocks [timestamp, stack] traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, stack] traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack] traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack] traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack] traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack] traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack] traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack] traceEvGoSysCall = 28 // syscall enter [timestamp, stack] traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, real timestamp] traceEvGoSysBlock = 30 // syscall blocks [timestamp] traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [goroutine id] traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [goroutine id] traceEvHeapAlloc = 33 // memstats.heap_live change [timestamp, heap_alloc] traceEvNextGC = 34 // memstats.next_gc change [timestamp, next_gc] traceEvTimerGoroutine = 35 // denotes timer goroutine [timer goroutine id] traceEvFutileWakeup = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp] traceEvCount = 37 ) const ( // Timestamps in trace are cputicks/traceTickDiv. // This makes absolute values of timestamp diffs smaller, // and so they are encoded in less number of bytes. // 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine). // The suggested increment frequency for PowerPC's time base register is // 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64 // and ppc64le. // Tracing won't work reliably for architectures where cputicks is emulated // by nanotime, so the value doesn't matter for those architectures. traceTickDiv = 16 + 48*(goarch_386|goarch_amd64|goarch_amd64p32) // Maximum number of PCs in a single stack trace. // Since events contain only stack id rather than whole stack trace, // we can allow quite large values here. traceStackSize = 128 // Identifier of a fake P that is used when we trace without a real P. traceGlobProc = -1 // Maximum number of bytes to encode uint64 in base-128. traceBytesPerNumber = 10 // Shift of the number of arguments in the first event byte. traceArgCountShift = 6 // Flag passed to traceGoPark to denote that the previous wakeup of this // goroutine was futile. For example, a goroutine was unblocked on a mutex, // but another goroutine got ahead and acquired the mutex before the first // goroutine is scheduled, so the first goroutine has to block again. // Such wakeups happen on buffered channels and sync.Mutex, // but are generally not interesting for end user. traceFutileWakeup byte = 128 ) // trace is global tracing context. var trace struct { lock mutex // protects the following members lockOwner *g // to avoid deadlocks during recursive lock locks enabled bool // when set runtime traces events shutdown bool // set when we are waiting for trace reader to finish after setting enabled to false headerWritten bool // whether ReadTrace has emitted trace header footerWritten bool // whether ReadTrace has emitted trace footer shutdownSema uint32 // used to wait for ReadTrace completion seqStart uint64 // sequence number when tracing was started ticksStart int64 // cputicks when tracing was started ticksEnd int64 // cputicks when tracing was stopped timeStart int64 // nanotime when tracing was started timeEnd int64 // nanotime when tracing was stopped reading *traceBuf // buffer currently handed off to user empty *traceBuf // stack of empty buffers fullHead *traceBuf // queue of full buffers fullTail *traceBuf reader *g // goroutine that called ReadTrace, or nil stackTab traceStackTable // maps stack traces to unique ids bufLock mutex // protects buf buf *traceBuf // global trace buffer, used when running without a p } var traceseq uint64 // global trace sequence number // tracestamp returns a consistent sequence number, time stamp pair // for use in a trace. We need to make sure that time stamp ordering // (assuming synchronized CPUs) and sequence ordering match. // To do that, we increment traceseq, grab ticks, and increment traceseq again. // We treat odd traceseq as a sign that another thread is in the middle // of the sequence and spin until it is done. // Not splitting stack to avoid preemption, just in case the call sites // that used to call xadd64 and cputicks are sensitive to that. //go:nosplit func tracestamp() (seq uint64, ts int64) { seq = atomicload64(&traceseq) for seq&1 != 0 || !cas64(&traceseq, seq, seq+1) { seq = atomicload64(&traceseq) } ts = cputicks() atomicstore64(&traceseq, seq+2) return seq >> 1, ts } // traceBufHeader is per-P tracing buffer. type traceBufHeader struct { link *traceBuf // in trace.empty/full lastSeq uint64 // sequence number of last event lastTicks uint64 // when we wrote the last event buf []byte // trace data, always points to traceBuf.arr stk [traceStackSize]uintptr // scratch buffer for traceback } // traceBuf is per-P tracing buffer. type traceBuf struct { traceBufHeader arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf } // StartTrace enables tracing for the current process. // While tracing, the data will be buffered and available via ReadTrace. // StartTrace returns an error if tracing is already enabled. // Most clients should use the runtime/trace package or the testing package's // -test.trace flag instead of calling StartTrace directly. func StartTrace() error { // Stop the world, so that we can take a consistent snapshot // of all goroutines at the beginning of the trace. stopTheWorld("start tracing") // We are in stop-the-world, but syscalls can finish and write to trace concurrently. // Exitsyscall could check trace.enabled long before and then suddenly wake up // and decide to write to trace at a random point in time. // However, such syscall will use the global trace.buf buffer, because we've // acquired all p's by doing stop-the-world. So this protects us from such races. lock(&trace.bufLock) if trace.enabled || trace.shutdown { unlock(&trace.bufLock) startTheWorld() return errorString("tracing is already enabled") } trace.seqStart, trace.ticksStart = tracestamp() trace.timeStart = nanotime() trace.headerWritten = false trace.footerWritten = false // Can't set trace.enabled yet. While the world is stopped, exitsyscall could // already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here. // That would lead to an inconsistent trace: // - either GoSysExit appears before EvGoInSyscall, // - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below. // To instruct traceEvent that it must not ignore events below, we set startingtrace. // trace.enabled is set afterwards once we have emitted all preliminary events. _g_ := getg() _g_.m.startingtrace = true for _, gp := range allgs { status := readgstatus(gp) if status != _Gdead { traceGoCreate(gp, gp.startpc) } if status == _Gwaiting { traceEvent(traceEvGoWaiting, -1, uint64(gp.goid)) } if status == _Gsyscall { traceEvent(traceEvGoInSyscall, -1, uint64(gp.goid)) } else { gp.sysblocktraced = false } } traceProcStart() traceGoStart() _g_.m.startingtrace = false trace.enabled = true unlock(&trace.bufLock) startTheWorld() return nil } // StopTrace stops tracing, if it was previously enabled. // StopTrace only returns after all the reads for the trace have completed. func StopTrace() { // Stop the world so that we can collect the trace buffers from all p's below, // and also to avoid races with traceEvent. stopTheWorld("stop tracing") // See the comment in StartTrace. lock(&trace.bufLock) if !trace.enabled { unlock(&trace.bufLock) startTheWorld() return } traceGoSched() for _, p := range &allp { if p == nil { break } buf := p.tracebuf if buf != nil { traceFullQueue(buf) p.tracebuf = nil } } if trace.buf != nil && len(trace.buf.buf) != 0 { buf := trace.buf trace.buf = nil traceFullQueue(buf) } for { trace.ticksEnd = cputicks() trace.timeEnd = nanotime() // Windows time can tick only every 15ms, wait for at least one tick. if trace.timeEnd != trace.timeStart { break } osyield() } trace.enabled = false trace.shutdown = true trace.stackTab.dump() unlock(&trace.bufLock) startTheWorld() // The world is started but we've set trace.shutdown, so new tracing can't start. // Wait for the trace reader to flush pending buffers and stop. semacquire(&trace.shutdownSema, false) if raceenabled { raceacquire(unsafe.Pointer(&trace.shutdownSema)) } // The lock protects us from races with StartTrace/StopTrace because they do stop-the-world. lock(&trace.lock) for _, p := range &allp { if p == nil { break } if p.tracebuf != nil { throw("trace: non-empty trace buffer in proc") } } if trace.buf != nil { throw("trace: non-empty global trace buffer") } if trace.fullHead != nil || trace.fullTail != nil { throw("trace: non-empty full trace buffer") } if trace.reading != nil || trace.reader != nil { throw("trace: reading after shutdown") } for trace.empty != nil { buf := trace.empty trace.empty = buf.link sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf), &memstats.other_sys) } trace.shutdown = false unlock(&trace.lock) } // ReadTrace returns the next chunk of binary tracing data, blocking until data // is available. If tracing is turned off and all the data accumulated while it // was on has been returned, ReadTrace returns nil. The caller must copy the // returned data before calling ReadTrace again. // ReadTrace must be called from one goroutine at a time. func ReadTrace() []byte { // This function may need to lock trace.lock recursively // (goparkunlock -> traceGoPark -> traceEvent -> traceFlush). // To allow this we use trace.lockOwner. // Also this function must not allocate while holding trace.lock: // allocation can call heap allocate, which will try to emit a trace // event while holding heap lock. lock(&trace.lock) trace.lockOwner = getg() if trace.reader != nil { // More than one goroutine reads trace. This is bad. // But we rather do not crash the program because of tracing, // because tracing can be enabled at runtime on prod servers. trace.lockOwner = nil unlock(&trace.lock) println("runtime: ReadTrace called from multiple goroutines simultaneously") return nil } // Recycle the old buffer. if buf := trace.reading; buf != nil { buf.link = trace.empty trace.empty = buf trace.reading = nil } // Write trace header. if !trace.headerWritten { trace.headerWritten = true trace.lockOwner = nil unlock(&trace.lock) return []byte("go 1.5 trace\x00\x00\x00\x00") } // Wait for new data. if trace.fullHead == nil && !trace.shutdown { trace.reader = getg() goparkunlock(&trace.lock, "trace reader (blocked)", traceEvGoBlock, 2) lock(&trace.lock) } // Write a buffer. if trace.fullHead != nil { buf := traceFullDequeue() trace.reading = buf trace.lockOwner = nil unlock(&trace.lock) return buf.buf } // Write footer with timer frequency. if !trace.footerWritten { trace.footerWritten = true // Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64. freq := float64(trace.ticksEnd-trace.ticksStart) * 1e9 / float64(trace.timeEnd-trace.timeStart) / traceTickDiv trace.lockOwner = nil unlock(&trace.lock) var data []byte data = append(data, traceEvFrequency|0<<traceArgCountShift) data = traceAppend(data, uint64(freq)) data = traceAppend(data, 0) if timers.gp != nil { data = append(data, traceEvTimerGoroutine|0<<traceArgCountShift) data = traceAppend(data, uint64(timers.gp.goid)) data = traceAppend(data, 0) } return data } // Done. if trace.shutdown { trace.lockOwner = nil unlock(&trace.lock) if raceenabled { // Model synchronization on trace.shutdownSema, which race // detector does not see. This is required to avoid false // race reports on writer passed to trace.Start. racerelease(unsafe.Pointer(&trace.shutdownSema)) } // trace.enabled is already reset, so can call traceable functions. semrelease(&trace.shutdownSema) return nil } // Also bad, but see the comment above. trace.lockOwner = nil unlock(&trace.lock) println("runtime: spurious wakeup of trace reader") return nil } // traceReader returns the trace reader that should be woken up, if any. func traceReader() *g { if trace.reader == nil || (trace.fullHead == nil && !trace.shutdown) { return nil } lock(&trace.lock) if trace.reader == nil || (trace.fullHead == nil && !trace.shutdown) { unlock(&trace.lock) return nil } gp := trace.reader trace.reader = nil unlock(&trace.lock) return gp } // traceProcFree frees trace buffer associated with pp. func traceProcFree(pp *p) { buf := pp.tracebuf pp.tracebuf = nil if buf == nil { return } lock(&trace.lock) traceFullQueue(buf) unlock(&trace.lock) } // traceFullQueue queues buf into queue of full buffers. func traceFullQueue(buf *traceBuf) { buf.link = nil if trace.fullHead == nil { trace.fullHead = buf } else { trace.fullTail.link = buf } trace.fullTail = buf } // traceFullDequeue dequeues from queue of full buffers. func traceFullDequeue() *traceBuf { buf := trace.fullHead if buf == nil { return nil } trace.fullHead = buf.link if trace.fullHead == nil { trace.fullTail = nil } buf.link = nil return buf } // traceEvent writes a single event to trace buffer, flushing the buffer if necessary. // ev is event type. // If skip > 0, write current stack id as the last argument (skipping skip top frames). // If skip = 0, this event type should contain a stack, but we don't want // to collect and remember it for this particular call. func traceEvent(ev byte, skip int, args ...uint64) { mp, pid, bufp := traceAcquireBuffer() // Double-check trace.enabled now that we've done m.locks++ and acquired bufLock. // This protects from races between traceEvent and StartTrace/StopTrace. // The caller checked that trace.enabled == true, but trace.enabled might have been // turned off between the check and now. Check again. traceLockBuffer did mp.locks++, // StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero, // so if we see trace.enabled == true now, we know it's true for the rest of the function. // Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace // during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer. if !trace.enabled && !mp.startingtrace { traceReleaseBuffer(pid) return } buf := *bufp const maxSize = 2 + 5*traceBytesPerNumber // event type, length, sequence, timestamp, stack id and two add params if buf == nil || cap(buf.buf)-len(buf.buf) < maxSize { buf = traceFlush(buf) *bufp = buf } seq, ticksraw := tracestamp() seqDiff := seq - buf.lastSeq ticks := uint64(ticksraw) / traceTickDiv tickDiff := ticks - buf.lastTicks if len(buf.buf) == 0 { data := buf.buf data = append(data, traceEvBatch|1<<traceArgCountShift) data = traceAppend(data, uint64(pid)) data = traceAppend(data, seq) data = traceAppend(data, ticks) buf.buf = data seqDiff = 0 tickDiff = 0 } buf.lastSeq = seq buf.lastTicks = ticks narg := byte(len(args)) if skip >= 0 { narg++ } // We have only 2 bits for number of arguments. // If number is >= 3, then the event type is followed by event length in bytes. if narg > 3 { narg = 3 } data := buf.buf data = append(data, ev|narg<<traceArgCountShift) var lenp *byte if narg == 3 { // Reserve the byte for length assuming that length < 128. data = append(data, 0) lenp = &data[len(data)-1] } data = traceAppend(data, seqDiff) data = traceAppend(data, tickDiff) for _, a := range args { data = traceAppend(data, a) } if skip == 0 { data = append(data, 0) } else if skip > 0 { _g_ := getg() gp := mp.curg var nstk int if gp == _g_ { nstk = callers(skip, buf.stk[:]) } else if gp != nil { gp = mp.curg nstk = gcallers(gp, skip, buf.stk[:]) } if nstk > 0 { nstk-- // skip runtime.goexit } if nstk > 0 && gp.goid == 1 { nstk-- // skip runtime.main } id := trace.stackTab.put(buf.stk[:nstk]) data = traceAppend(data, uint64(id)) } evSize := len(data) - len(buf.buf) if evSize > maxSize { throw("invalid length of trace event") } if lenp != nil { // Fill in actual length. *lenp = byte(evSize - 2) } buf.buf = data traceReleaseBuffer(pid) } // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it. func traceAcquireBuffer() (mp *m, pid int32, bufp **traceBuf) { mp = acquirem() if p := mp.p.ptr(); p != nil { return mp, p.id, &p.tracebuf } lock(&trace.bufLock) return mp, traceGlobProc, &trace.buf } // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer. func traceReleaseBuffer(pid int32) { if pid == traceGlobProc { unlock(&trace.bufLock) } releasem(getg().m) } // traceFlush puts buf onto stack of full buffers and returns an empty buffer. func traceFlush(buf *traceBuf) *traceBuf { owner := trace.lockOwner dolock := owner == nil || owner != getg().m.curg if dolock { lock(&trace.lock) } if buf != nil { if &buf.buf[0] != &buf.arr[0] { throw("trace buffer overflow") } traceFullQueue(buf) } if trace.empty != nil { buf = trace.empty trace.empty = buf.link } else { buf = (*traceBuf)(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys)) if buf == nil { throw("trace: out of memory") } } buf.link = nil buf.buf = buf.arr[:0] buf.lastTicks = 0 if dolock { unlock(&trace.lock) } return buf } // traceAppend appends v to buf in little-endian-base-128 encoding. func traceAppend(buf []byte, v uint64) []byte { for ; v >= 0x80; v >>= 7 { buf = append(buf, 0x80|byte(v)) } buf = append(buf, byte(v)) return buf } // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids. // It is lock-free for reading. type traceStackTable struct { lock mutex seq uint32 mem traceAlloc tab [1 << 13]*traceStack } // traceStack is a single stack in traceStackTable. type traceStack struct { link *traceStack hash uintptr id uint32 n int stk [0]uintptr // real type [n]uintptr } // stack returns slice of PCs. func (ts *traceStack) stack() []uintptr { return (*[traceStackSize]uintptr)(unsafe.Pointer(&ts.stk))[:ts.n] } // put returns a unique id for the stack trace pcs and caches it in the table, // if it sees the trace for the first time. func (tab *traceStackTable) put(pcs []uintptr) uint32 { if len(pcs) == 0 { return 0 } hash := memhash(unsafe.Pointer(&pcs[0]), uintptr(len(pcs))*unsafe.Sizeof(pcs[0]), 0) // First, search the hashtable w/o the mutex. if id := tab.find(pcs, hash); id != 0 { return id } // Now, double check under the mutex. lock(&tab.lock) if id := tab.find(pcs, hash); id != 0 { unlock(&tab.lock) return id } // Create new record. tab.seq++ stk := tab.newStack(len(pcs)) stk.hash = hash stk.id = tab.seq stk.n = len(pcs) stkpc := stk.stack() for i, pc := range pcs { stkpc[i] = pc } part := int(hash % uintptr(len(tab.tab))) stk.link = tab.tab[part] atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk)) unlock(&tab.lock) return stk.id } // find checks if the stack trace pcs is already present in the table. func (tab *traceStackTable) find(pcs []uintptr, hash uintptr) uint32 { part := int(hash % uintptr(len(tab.tab))) Search: for stk := tab.tab[part]; stk != nil; stk = stk.link { if stk.hash == hash && stk.n == len(pcs) { for i, stkpc := range stk.stack() { if stkpc != pcs[i] { continue Search } } return stk.id } } return 0 } // newStack allocates a new stack of size n. func (tab *traceStackTable) newStack(n int) *traceStack { return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*ptrSize)) } // dump writes all previously cached stacks to trace buffers, // releases all memory and resets state. func (tab *traceStackTable) dump() { var tmp [(2 + traceStackSize) * traceBytesPerNumber]byte buf := traceFlush(nil) for _, stk := range tab.tab { for ; stk != nil; stk = stk.link { maxSize := 1 + (3+stk.n)*traceBytesPerNumber if cap(buf.buf)-len(buf.buf) < maxSize { buf = traceFlush(buf) } // Form the event in the temp buffer, we need to know the actual length. tmpbuf := tmp[:0] tmpbuf = traceAppend(tmpbuf, uint64(stk.id)) tmpbuf = traceAppend(tmpbuf, uint64(stk.n)) for _, pc := range stk.stack() { tmpbuf = traceAppend(tmpbuf, uint64(pc)) } // Now copy to the buffer. data := buf.buf data = append(data, traceEvStack|3<<traceArgCountShift) data = traceAppend(data, uint64(len(tmpbuf))) data = append(data, tmpbuf...) buf.buf = data } } lock(&trace.lock) traceFullQueue(buf) unlock(&trace.lock) tab.mem.drop() *tab = traceStackTable{} } // traceAlloc is a non-thread-safe region allocator. // It holds a linked list of traceAllocBlock. type traceAlloc struct { head *traceAllocBlock off uintptr } // traceAllocBlock is a block in traceAlloc. type traceAllocBlock struct { next *traceAllocBlock data [64<<10 - ptrSize]byte } // alloc allocates n-byte block. func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer { n = round(n, ptrSize) if a.head == nil || a.off+n > uintptr(len(a.head.data)) { if n > uintptr(len(a.head.data)) { throw("trace: alloc too large") } block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)) if block == nil { throw("trace: out of memory") } block.next = a.head a.head = block a.off = 0 } p := &a.head.data[a.off] a.off += n return unsafe.Pointer(p) } // drop frees all previously allocated memory and resets the allocator. func (a *traceAlloc) drop() { for a.head != nil { block := a.head a.head = block.next sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys) } } // The following functions write specific events to trace. func traceGomaxprocs(procs int32) { traceEvent(traceEvGomaxprocs, 1, uint64(procs)) } func traceProcStart() { traceEvent(traceEvProcStart, -1, uint64(getg().m.id)) } func traceProcStop(pp *p) { // Sysmon and stopTheWorld can stop Ps blocked in syscalls, // to handle this we temporary employ the P. mp := acquirem() oldp := mp.p mp.p.set(pp) traceEvent(traceEvProcStop, -1) mp.p = oldp releasem(mp) } func traceGCStart() { traceEvent(traceEvGCStart, 4) } func traceGCDone() { traceEvent(traceEvGCDone, -1) } func traceGCScanStart() { traceEvent(traceEvGCScanStart, -1) } func traceGCScanDone() { traceEvent(traceEvGCScanDone, -1) } func traceGCSweepStart() { traceEvent(traceEvGCSweepStart, 1) } func traceGCSweepDone() { traceEvent(traceEvGCSweepDone, -1) } func traceGoCreate(newg *g, pc uintptr) { traceEvent(traceEvGoCreate, 2, uint64(newg.goid), uint64(pc)) } func traceGoStart() { traceEvent(traceEvGoStart, -1, uint64(getg().m.curg.goid)) } func traceGoEnd() { traceEvent(traceEvGoEnd, -1) } func traceGoSched() { traceEvent(traceEvGoSched, 1) } func traceGoPreempt() { traceEvent(traceEvGoPreempt, 1) } func traceGoPark(traceEv byte, skip int, gp *g) { if traceEv&traceFutileWakeup != 0 { traceEvent(traceEvFutileWakeup, -1) } traceEvent(traceEv & ^traceFutileWakeup, skip) } func traceGoUnpark(gp *g, skip int) { traceEvent(traceEvGoUnblock, skip, uint64(gp.goid)) } func traceGoSysCall() { traceEvent(traceEvGoSysCall, 4) } func traceGoSysExit(seq uint64, ts int64) { if int64(seq)-int64(trace.seqStart) < 0 { // The timestamp was obtained during a previous tracing session, ignore. return } traceEvent(traceEvGoSysExit, -1, uint64(getg().m.curg.goid), seq, uint64(ts)/traceTickDiv) } func traceGoSysBlock(pp *p) { // Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked, // to handle this we temporary employ the P. mp := acquirem() oldp := mp.p mp.p.set(pp) traceEvent(traceEvGoSysBlock, -1) mp.p = oldp releasem(mp) } func traceHeapAlloc() { traceEvent(traceEvHeapAlloc, -1, memstats.heap_live) } func traceNextGC() { traceEvent(traceEvNextGC, -1, memstats.next_gc) }