// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gob import ( "bytes" "errors" "flag" "math" "math/rand" "reflect" "strings" "testing" "time" ) var doFuzzTests = flag.Bool("gob.fuzz", false, "run the fuzz tests, which are large and very slow") // Guarantee encoding format by comparing some encodings to hand-written values type EncodeT struct { x uint64 b []byte } var encodeT = []EncodeT{ {0x00, []byte{0x00}}, {0x0F, []byte{0x0F}}, {0xFF, []byte{0xFF, 0xFF}}, {0xFFFF, []byte{0xFE, 0xFF, 0xFF}}, {0xFFFFFF, []byte{0xFD, 0xFF, 0xFF, 0xFF}}, {0xFFFFFFFF, []byte{0xFC, 0xFF, 0xFF, 0xFF, 0xFF}}, {0xFFFFFFFFFF, []byte{0xFB, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}}, {0xFFFFFFFFFFFF, []byte{0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}}, {0xFFFFFFFFFFFFFF, []byte{0xF9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}}, {0xFFFFFFFFFFFFFFFF, []byte{0xF8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}}, {0x1111, []byte{0xFE, 0x11, 0x11}}, {0x1111111111111111, []byte{0xF8, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11}}, {0x8888888888888888, []byte{0xF8, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88}}, {1 << 63, []byte{0xF8, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, } // testError is meant to be used as a deferred function to turn a panic(gobError) into a // plain test.Error call. func testError(t *testing.T) { if e := recover(); e != nil { t.Error(e.(gobError).err) // Will re-panic if not one of our errors, such as a runtime error. } return } func newDecBuffer(data []byte) *decBuffer { return &decBuffer{ data: data, } } // Test basic encode/decode routines for unsigned integers func TestUintCodec(t *testing.T) { defer testError(t) b := new(encBuffer) encState := newEncoderState(b) for _, tt := range encodeT { b.Reset() encState.encodeUint(tt.x) if !bytes.Equal(tt.b, b.Bytes()) { t.Errorf("encodeUint: %#x encode: expected % x got % x", tt.x, tt.b, b.Bytes()) } } for u := uint64(0); ; u = (u + 1) * 7 { b.Reset() encState.encodeUint(u) decState := newDecodeState(newDecBuffer(b.Bytes())) v := decState.decodeUint() if u != v { t.Errorf("Encode/Decode: sent %#x received %#x", u, v) } if u&(1<<63) != 0 { break } } } func verifyInt(i int64, t *testing.T) { defer testError(t) var b = new(encBuffer) encState := newEncoderState(b) encState.encodeInt(i) decState := newDecodeState(newDecBuffer(b.Bytes())) decState.buf = make([]byte, 8) j := decState.decodeInt() if i != j { t.Errorf("Encode/Decode: sent %#x received %#x", uint64(i), uint64(j)) } } // Test basic encode/decode routines for signed integers func TestIntCodec(t *testing.T) { for u := uint64(0); ; u = (u + 1) * 7 { // Do positive and negative values i := int64(u) verifyInt(i, t) verifyInt(-i, t) verifyInt(^i, t) if u&(1<<63) != 0 { break } } verifyInt(-1<<63, t) // a tricky case } // The result of encoding a true boolean with field number 7 var boolResult = []byte{0x07, 0x01} // The result of encoding a number 17 with field number 7 var signedResult = []byte{0x07, 2 * 17} var unsignedResult = []byte{0x07, 17} var floatResult = []byte{0x07, 0xFE, 0x31, 0x40} // The result of encoding a number 17+19i with field number 7 var complexResult = []byte{0x07, 0xFE, 0x31, 0x40, 0xFE, 0x33, 0x40} // The result of encoding "hello" with field number 7 var bytesResult = []byte{0x07, 0x05, 'h', 'e', 'l', 'l', 'o'} func newDecodeState(buf *decBuffer) *decoderState { d := new(decoderState) d.b = buf d.buf = make([]byte, uint64Size) return d } func newEncoderState(b *encBuffer) *encoderState { b.Reset() state := &encoderState{enc: nil, b: b} state.fieldnum = -1 return state } // Test instruction execution for encoding. // Do not run the machine yet; instead do individual instructions crafted by hand. func TestScalarEncInstructions(t *testing.T) { var b = new(encBuffer) // bool { var data bool = true instr := &encInstr{encBool, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(boolResult, b.Bytes()) { t.Errorf("bool enc instructions: expected % x got % x", boolResult, b.Bytes()) } } // int { b.Reset() var data int = 17 instr := &encInstr{encInt, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(signedResult, b.Bytes()) { t.Errorf("int enc instructions: expected % x got % x", signedResult, b.Bytes()) } } // uint { b.Reset() var data uint = 17 instr := &encInstr{encUint, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(unsignedResult, b.Bytes()) { t.Errorf("uint enc instructions: expected % x got % x", unsignedResult, b.Bytes()) } } // int8 { b.Reset() var data int8 = 17 instr := &encInstr{encInt, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(signedResult, b.Bytes()) { t.Errorf("int8 enc instructions: expected % x got % x", signedResult, b.Bytes()) } } // uint8 { b.Reset() var data uint8 = 17 instr := &encInstr{encUint, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(unsignedResult, b.Bytes()) { t.Errorf("uint8 enc instructions: expected % x got % x", unsignedResult, b.Bytes()) } } // int16 { b.Reset() var data int16 = 17 instr := &encInstr{encInt, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(signedResult, b.Bytes()) { t.Errorf("int16 enc instructions: expected % x got % x", signedResult, b.Bytes()) } } // uint16 { b.Reset() var data uint16 = 17 instr := &encInstr{encUint, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(unsignedResult, b.Bytes()) { t.Errorf("uint16 enc instructions: expected % x got % x", unsignedResult, b.Bytes()) } } // int32 { b.Reset() var data int32 = 17 instr := &encInstr{encInt, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(signedResult, b.Bytes()) { t.Errorf("int32 enc instructions: expected % x got % x", signedResult, b.Bytes()) } } // uint32 { b.Reset() var data uint32 = 17 instr := &encInstr{encUint, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(unsignedResult, b.Bytes()) { t.Errorf("uint32 enc instructions: expected % x got % x", unsignedResult, b.Bytes()) } } // int64 { b.Reset() var data int64 = 17 instr := &encInstr{encInt, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(signedResult, b.Bytes()) { t.Errorf("int64 enc instructions: expected % x got % x", signedResult, b.Bytes()) } } // uint64 { b.Reset() var data uint64 = 17 instr := &encInstr{encUint, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(unsignedResult, b.Bytes()) { t.Errorf("uint64 enc instructions: expected % x got % x", unsignedResult, b.Bytes()) } } // float32 { b.Reset() var data float32 = 17 instr := &encInstr{encFloat, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(floatResult, b.Bytes()) { t.Errorf("float32 enc instructions: expected % x got % x", floatResult, b.Bytes()) } } // float64 { b.Reset() var data float64 = 17 instr := &encInstr{encFloat, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(floatResult, b.Bytes()) { t.Errorf("float64 enc instructions: expected % x got % x", floatResult, b.Bytes()) } } // bytes == []uint8 { b.Reset() data := []byte("hello") instr := &encInstr{encUint8Array, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(bytesResult, b.Bytes()) { t.Errorf("bytes enc instructions: expected % x got % x", bytesResult, b.Bytes()) } } // string { b.Reset() var data string = "hello" instr := &encInstr{encString, 6, nil, 0} state := newEncoderState(b) instr.op(instr, state, reflect.ValueOf(data)) if !bytes.Equal(bytesResult, b.Bytes()) { t.Errorf("string enc instructions: expected % x got % x", bytesResult, b.Bytes()) } } } func execDec(typ string, instr *decInstr, state *decoderState, t *testing.T, value reflect.Value) { defer testError(t) v := int(state.decodeUint()) if v+state.fieldnum != 6 { t.Fatalf("decoding field number %d, got %d", 6, v+state.fieldnum) } instr.op(instr, state, value.Elem()) state.fieldnum = 6 } func newDecodeStateFromData(data []byte) *decoderState { b := newDecBuffer(data) state := newDecodeState(b) state.fieldnum = -1 return state } // Test instruction execution for decoding. // Do not run the machine yet; instead do individual instructions crafted by hand. func TestScalarDecInstructions(t *testing.T) { ovfl := errors.New("overflow") // bool { var data bool instr := &decInstr{decBool, 6, nil, ovfl} state := newDecodeStateFromData(boolResult) execDec("bool", instr, state, t, reflect.ValueOf(&data)) if data != true { t.Errorf("bool a = %v not true", data) } } // int { var data int instr := &decInstr{decOpTable[reflect.Int], 6, nil, ovfl} state := newDecodeStateFromData(signedResult) execDec("int", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("int a = %v not 17", data) } } // uint { var data uint instr := &decInstr{decOpTable[reflect.Uint], 6, nil, ovfl} state := newDecodeStateFromData(unsignedResult) execDec("uint", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("uint a = %v not 17", data) } } // int8 { var data int8 instr := &decInstr{decInt8, 6, nil, ovfl} state := newDecodeStateFromData(signedResult) execDec("int8", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("int8 a = %v not 17", data) } } // uint8 { var data uint8 instr := &decInstr{decUint8, 6, nil, ovfl} state := newDecodeStateFromData(unsignedResult) execDec("uint8", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("uint8 a = %v not 17", data) } } // int16 { var data int16 instr := &decInstr{decInt16, 6, nil, ovfl} state := newDecodeStateFromData(signedResult) execDec("int16", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("int16 a = %v not 17", data) } } // uint16 { var data uint16 instr := &decInstr{decUint16, 6, nil, ovfl} state := newDecodeStateFromData(unsignedResult) execDec("uint16", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("uint16 a = %v not 17", data) } } // int32 { var data int32 instr := &decInstr{decInt32, 6, nil, ovfl} state := newDecodeStateFromData(signedResult) execDec("int32", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("int32 a = %v not 17", data) } } // uint32 { var data uint32 instr := &decInstr{decUint32, 6, nil, ovfl} state := newDecodeStateFromData(unsignedResult) execDec("uint32", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("uint32 a = %v not 17", data) } } // uintptr { var data uintptr instr := &decInstr{decOpTable[reflect.Uintptr], 6, nil, ovfl} state := newDecodeStateFromData(unsignedResult) execDec("uintptr", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("uintptr a = %v not 17", data) } } // int64 { var data int64 instr := &decInstr{decInt64, 6, nil, ovfl} state := newDecodeStateFromData(signedResult) execDec("int64", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("int64 a = %v not 17", data) } } // uint64 { var data uint64 instr := &decInstr{decUint64, 6, nil, ovfl} state := newDecodeStateFromData(unsignedResult) execDec("uint64", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("uint64 a = %v not 17", data) } } // float32 { var data float32 instr := &decInstr{decFloat32, 6, nil, ovfl} state := newDecodeStateFromData(floatResult) execDec("float32", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("float32 a = %v not 17", data) } } // float64 { var data float64 instr := &decInstr{decFloat64, 6, nil, ovfl} state := newDecodeStateFromData(floatResult) execDec("float64", instr, state, t, reflect.ValueOf(&data)) if data != 17 { t.Errorf("float64 a = %v not 17", data) } } // complex64 { var data complex64 instr := &decInstr{decOpTable[reflect.Complex64], 6, nil, ovfl} state := newDecodeStateFromData(complexResult) execDec("complex", instr, state, t, reflect.ValueOf(&data)) if data != 17+19i { t.Errorf("complex a = %v not 17+19i", data) } } // complex128 { var data complex128 instr := &decInstr{decOpTable[reflect.Complex128], 6, nil, ovfl} state := newDecodeStateFromData(complexResult) execDec("complex", instr, state, t, reflect.ValueOf(&data)) if data != 17+19i { t.Errorf("complex a = %v not 17+19i", data) } } // bytes == []uint8 { var data []byte instr := &decInstr{decUint8Slice, 6, nil, ovfl} state := newDecodeStateFromData(bytesResult) execDec("bytes", instr, state, t, reflect.ValueOf(&data)) if string(data) != "hello" { t.Errorf(`bytes a = %q not "hello"`, string(data)) } } // string { var data string instr := &decInstr{decString, 6, nil, ovfl} state := newDecodeStateFromData(bytesResult) execDec("bytes", instr, state, t, reflect.ValueOf(&data)) if data != "hello" { t.Errorf(`bytes a = %q not "hello"`, data) } } } func TestEndToEnd(t *testing.T) { type T2 struct { T string } s1 := "string1" s2 := "string2" type T1 struct { A, B, C int M map[string]*float64 EmptyMap map[string]int // to check that we receive a non-nil map. N *[3]float64 Strs *[2]string Int64s *[]int64 RI complex64 S string Y []byte T *T2 } pi := 3.14159 e := 2.71828 t1 := &T1{ A: 17, B: 18, C: -5, M: map[string]*float64{"pi": &pi, "e": &e}, EmptyMap: make(map[string]int), N: &[3]float64{1.5, 2.5, 3.5}, Strs: &[2]string{s1, s2}, Int64s: &[]int64{77, 89, 123412342134}, RI: 17 - 23i, S: "Now is the time", Y: []byte("hello, sailor"), T: &T2{"this is T2"}, } b := new(bytes.Buffer) err := NewEncoder(b).Encode(t1) if err != nil { t.Error("encode:", err) } var _t1 T1 err = NewDecoder(b).Decode(&_t1) if err != nil { t.Fatal("decode:", err) } if !reflect.DeepEqual(t1, &_t1) { t.Errorf("encode expected %v got %v", *t1, _t1) } // Be absolutely sure the received map is non-nil. if t1.EmptyMap == nil { t.Errorf("nil map sent") } if _t1.EmptyMap == nil { t.Errorf("nil map received") } } func TestOverflow(t *testing.T) { type inputT struct { Maxi int64 Mini int64 Maxu uint64 Maxf float64 Minf float64 Maxc complex128 Minc complex128 } var it inputT var err error b := new(bytes.Buffer) enc := NewEncoder(b) dec := NewDecoder(b) // int8 b.Reset() it = inputT{ Maxi: math.MaxInt8 + 1, } type outi8 struct { Maxi int8 Mini int8 } var o1 outi8 enc.Encode(it) err = dec.Decode(&o1) if err == nil || err.Error() != `value for "Maxi" out of range` { t.Error("wrong overflow error for int8:", err) } it = inputT{ Mini: math.MinInt8 - 1, } b.Reset() enc.Encode(it) err = dec.Decode(&o1) if err == nil || err.Error() != `value for "Mini" out of range` { t.Error("wrong underflow error for int8:", err) } // int16 b.Reset() it = inputT{ Maxi: math.MaxInt16 + 1, } type outi16 struct { Maxi int16 Mini int16 } var o2 outi16 enc.Encode(it) err = dec.Decode(&o2) if err == nil || err.Error() != `value for "Maxi" out of range` { t.Error("wrong overflow error for int16:", err) } it = inputT{ Mini: math.MinInt16 - 1, } b.Reset() enc.Encode(it) err = dec.Decode(&o2) if err == nil || err.Error() != `value for "Mini" out of range` { t.Error("wrong underflow error for int16:", err) } // int32 b.Reset() it = inputT{ Maxi: math.MaxInt32 + 1, } type outi32 struct { Maxi int32 Mini int32 } var o3 outi32 enc.Encode(it) err = dec.Decode(&o3) if err == nil || err.Error() != `value for "Maxi" out of range` { t.Error("wrong overflow error for int32:", err) } it = inputT{ Mini: math.MinInt32 - 1, } b.Reset() enc.Encode(it) err = dec.Decode(&o3) if err == nil || err.Error() != `value for "Mini" out of range` { t.Error("wrong underflow error for int32:", err) } // uint8 b.Reset() it = inputT{ Maxu: math.MaxUint8 + 1, } type outu8 struct { Maxu uint8 } var o4 outu8 enc.Encode(it) err = dec.Decode(&o4) if err == nil || err.Error() != `value for "Maxu" out of range` { t.Error("wrong overflow error for uint8:", err) } // uint16 b.Reset() it = inputT{ Maxu: math.MaxUint16 + 1, } type outu16 struct { Maxu uint16 } var o5 outu16 enc.Encode(it) err = dec.Decode(&o5) if err == nil || err.Error() != `value for "Maxu" out of range` { t.Error("wrong overflow error for uint16:", err) } // uint32 b.Reset() it = inputT{ Maxu: math.MaxUint32 + 1, } type outu32 struct { Maxu uint32 } var o6 outu32 enc.Encode(it) err = dec.Decode(&o6) if err == nil || err.Error() != `value for "Maxu" out of range` { t.Error("wrong overflow error for uint32:", err) } // float32 b.Reset() it = inputT{ Maxf: math.MaxFloat32 * 2, } type outf32 struct { Maxf float32 Minf float32 } var o7 outf32 enc.Encode(it) err = dec.Decode(&o7) if err == nil || err.Error() != `value for "Maxf" out of range` { t.Error("wrong overflow error for float32:", err) } // complex64 b.Reset() it = inputT{ Maxc: complex(math.MaxFloat32*2, math.MaxFloat32*2), } type outc64 struct { Maxc complex64 Minc complex64 } var o8 outc64 enc.Encode(it) err = dec.Decode(&o8) if err == nil || err.Error() != `value for "Maxc" out of range` { t.Error("wrong overflow error for complex64:", err) } } func TestNesting(t *testing.T) { type RT struct { A string Next *RT } rt := new(RT) rt.A = "level1" rt.Next = new(RT) rt.Next.A = "level2" b := new(bytes.Buffer) NewEncoder(b).Encode(rt) var drt RT dec := NewDecoder(b) err := dec.Decode(&drt) if err != nil { t.Fatal("decoder error:", err) } if drt.A != rt.A { t.Errorf("nesting: encode expected %v got %v", *rt, drt) } if drt.Next == nil { t.Errorf("nesting: recursion failed") } if drt.Next.A != rt.Next.A { t.Errorf("nesting: encode expected %v got %v", *rt.Next, *drt.Next) } } // These three structures have the same data with different indirections type T0 struct { A int B int C int D int } type T1 struct { A int B *int C **int D ***int } type T2 struct { A ***int B **int C *int D int } func TestAutoIndirection(t *testing.T) { // First transfer t1 into t0 var t1 T1 t1.A = 17 t1.B = new(int) *t1.B = 177 t1.C = new(*int) *t1.C = new(int) **t1.C = 1777 t1.D = new(**int) *t1.D = new(*int) **t1.D = new(int) ***t1.D = 17777 b := new(bytes.Buffer) enc := NewEncoder(b) enc.Encode(t1) dec := NewDecoder(b) var t0 T0 dec.Decode(&t0) if t0.A != 17 || t0.B != 177 || t0.C != 1777 || t0.D != 17777 { t.Errorf("t1->t0: expected {17 177 1777 17777}; got %v", t0) } // Now transfer t2 into t0 var t2 T2 t2.D = 17777 t2.C = new(int) *t2.C = 1777 t2.B = new(*int) *t2.B = new(int) **t2.B = 177 t2.A = new(**int) *t2.A = new(*int) **t2.A = new(int) ***t2.A = 17 b.Reset() enc.Encode(t2) t0 = T0{} dec.Decode(&t0) if t0.A != 17 || t0.B != 177 || t0.C != 1777 || t0.D != 17777 { t.Errorf("t2->t0 expected {17 177 1777 17777}; got %v", t0) } // Now transfer t0 into t1 t0 = T0{17, 177, 1777, 17777} b.Reset() enc.Encode(t0) t1 = T1{} dec.Decode(&t1) if t1.A != 17 || *t1.B != 177 || **t1.C != 1777 || ***t1.D != 17777 { t.Errorf("t0->t1 expected {17 177 1777 17777}; got {%d %d %d %d}", t1.A, *t1.B, **t1.C, ***t1.D) } // Now transfer t0 into t2 b.Reset() enc.Encode(t0) t2 = T2{} dec.Decode(&t2) if ***t2.A != 17 || **t2.B != 177 || *t2.C != 1777 || t2.D != 17777 { t.Errorf("t0->t2 expected {17 177 1777 17777}; got {%d %d %d %d}", ***t2.A, **t2.B, *t2.C, t2.D) } // Now do t2 again but without pre-allocated pointers. b.Reset() enc.Encode(t0) ***t2.A = 0 **t2.B = 0 *t2.C = 0 t2.D = 0 dec.Decode(&t2) if ***t2.A != 17 || **t2.B != 177 || *t2.C != 1777 || t2.D != 17777 { t.Errorf("t0->t2 expected {17 177 1777 17777}; got {%d %d %d %d}", ***t2.A, **t2.B, *t2.C, t2.D) } } type RT0 struct { A int B string C float64 } type RT1 struct { C float64 B string A int NotSet string } func TestReorderedFields(t *testing.T) { var rt0 RT0 rt0.A = 17 rt0.B = "hello" rt0.C = 3.14159 b := new(bytes.Buffer) NewEncoder(b).Encode(rt0) dec := NewDecoder(b) var rt1 RT1 // Wire type is RT0, local type is RT1. err := dec.Decode(&rt1) if err != nil { t.Fatal("decode error:", err) } if rt0.A != rt1.A || rt0.B != rt1.B || rt0.C != rt1.C { t.Errorf("rt1->rt0: expected %v; got %v", rt0, rt1) } } // Like an RT0 but with fields we'll ignore on the decode side. type IT0 struct { A int64 B string Ignore_d []int Ignore_e [3]float64 Ignore_f bool Ignore_g string Ignore_h []byte Ignore_i *RT1 Ignore_m map[string]int C float64 } func TestIgnoredFields(t *testing.T) { var it0 IT0 it0.A = 17 it0.B = "hello" it0.C = 3.14159 it0.Ignore_d = []int{1, 2, 3} it0.Ignore_e[0] = 1.0 it0.Ignore_e[1] = 2.0 it0.Ignore_e[2] = 3.0 it0.Ignore_f = true it0.Ignore_g = "pay no attention" it0.Ignore_h = []byte("to the curtain") it0.Ignore_i = &RT1{3.1, "hi", 7, "hello"} it0.Ignore_m = map[string]int{"one": 1, "two": 2} b := new(bytes.Buffer) NewEncoder(b).Encode(it0) dec := NewDecoder(b) var rt1 RT1 // Wire type is IT0, local type is RT1. err := dec.Decode(&rt1) if err != nil { t.Error("error: ", err) } if int(it0.A) != rt1.A || it0.B != rt1.B || it0.C != rt1.C { t.Errorf("rt0->rt1: expected %v; got %v", it0, rt1) } } func TestBadRecursiveType(t *testing.T) { type Rec ***Rec var rec Rec b := new(bytes.Buffer) err := NewEncoder(b).Encode(&rec) if err == nil { t.Error("expected error; got none") } else if strings.Index(err.Error(), "recursive") < 0 { t.Error("expected recursive type error; got", err) } // Can't test decode easily because we can't encode one, so we can't pass one to a Decoder. } type Indirect struct { A ***[3]int S ***[]int M ****map[string]int } type Direct struct { A [3]int S []int M map[string]int } func TestIndirectSliceMapArray(t *testing.T) { // Marshal indirect, unmarshal to direct. i := new(Indirect) i.A = new(**[3]int) *i.A = new(*[3]int) **i.A = new([3]int) ***i.A = [3]int{1, 2, 3} i.S = new(**[]int) *i.S = new(*[]int) **i.S = new([]int) ***i.S = []int{4, 5, 6} i.M = new(***map[string]int) *i.M = new(**map[string]int) **i.M = new(*map[string]int) ***i.M = new(map[string]int) ****i.M = map[string]int{"one": 1, "two": 2, "three": 3} b := new(bytes.Buffer) NewEncoder(b).Encode(i) dec := NewDecoder(b) var d Direct err := dec.Decode(&d) if err != nil { t.Error("error: ", err) } if len(d.A) != 3 || d.A[0] != 1 || d.A[1] != 2 || d.A[2] != 3 { t.Errorf("indirect to direct: d.A is %v not %v", d.A, ***i.A) } if len(d.S) != 3 || d.S[0] != 4 || d.S[1] != 5 || d.S[2] != 6 { t.Errorf("indirect to direct: d.S is %v not %v", d.S, ***i.S) } if len(d.M) != 3 || d.M["one"] != 1 || d.M["two"] != 2 || d.M["three"] != 3 { t.Errorf("indirect to direct: d.M is %v not %v", d.M, ***i.M) } // Marshal direct, unmarshal to indirect. d.A = [3]int{11, 22, 33} d.S = []int{44, 55, 66} d.M = map[string]int{"four": 4, "five": 5, "six": 6} i = new(Indirect) b.Reset() NewEncoder(b).Encode(d) dec = NewDecoder(b) err = dec.Decode(&i) if err != nil { t.Fatal("error: ", err) } if len(***i.A) != 3 || (***i.A)[0] != 11 || (***i.A)[1] != 22 || (***i.A)[2] != 33 { t.Errorf("direct to indirect: ***i.A is %v not %v", ***i.A, d.A) } if len(***i.S) != 3 || (***i.S)[0] != 44 || (***i.S)[1] != 55 || (***i.S)[2] != 66 { t.Errorf("direct to indirect: ***i.S is %v not %v", ***i.S, ***i.S) } if len(****i.M) != 3 || (****i.M)["four"] != 4 || (****i.M)["five"] != 5 || (****i.M)["six"] != 6 { t.Errorf("direct to indirect: ****i.M is %v not %v", ****i.M, d.M) } } // An interface with several implementations type Squarer interface { Square() int } type Int int func (i Int) Square() int { return int(i * i) } type Float float64 func (f Float) Square() int { return int(f * f) } type Vector []int func (v Vector) Square() int { sum := 0 for _, x := range v { sum += x * x } return sum } type Point struct { X, Y int } func (p Point) Square() int { return p.X*p.X + p.Y*p.Y } // A struct with interfaces in it. type InterfaceItem struct { I int Sq1, Sq2, Sq3 Squarer F float64 Sq []Squarer } // The same struct without interfaces type NoInterfaceItem struct { I int F float64 } func TestInterface(t *testing.T) { iVal := Int(3) fVal := Float(5) // Sending a Vector will require that the receiver define a type in the middle of // receiving the value for item2. vVal := Vector{1, 2, 3} b := new(bytes.Buffer) item1 := &InterfaceItem{1, iVal, fVal, vVal, 11.5, []Squarer{iVal, fVal, nil, vVal}} // Register the types. Register(Int(0)) Register(Float(0)) Register(Vector{}) err := NewEncoder(b).Encode(item1) if err != nil { t.Error("expected no encode error; got", err) } item2 := InterfaceItem{} err = NewDecoder(b).Decode(&item2) if err != nil { t.Fatal("decode:", err) } if item2.I != item1.I { t.Error("normal int did not decode correctly") } if item2.Sq1 == nil || item2.Sq1.Square() != iVal.Square() { t.Error("Int did not decode correctly") } if item2.Sq2 == nil || item2.Sq2.Square() != fVal.Square() { t.Error("Float did not decode correctly") } if item2.Sq3 == nil || item2.Sq3.Square() != vVal.Square() { t.Error("Vector did not decode correctly") } if item2.F != item1.F { t.Error("normal float did not decode correctly") } // Now check that we received a slice of Squarers correctly, including a nil element if len(item1.Sq) != len(item2.Sq) { t.Fatalf("[]Squarer length wrong: got %d; expected %d", len(item2.Sq), len(item1.Sq)) } for i, v1 := range item1.Sq { v2 := item2.Sq[i] if v1 == nil || v2 == nil { if v1 != nil || v2 != nil { t.Errorf("item %d inconsistent nils", i) } } else if v1.Square() != v2.Square() { t.Errorf("item %d inconsistent values: %v %v", i, v1, v2) } } } // A struct with all basic types, stored in interfaces. type BasicInterfaceItem struct { Int, Int8, Int16, Int32, Int64 interface{} Uint, Uint8, Uint16, Uint32, Uint64 interface{} Float32, Float64 interface{} Complex64, Complex128 interface{} Bool interface{} String interface{} Bytes interface{} } func TestInterfaceBasic(t *testing.T) { b := new(bytes.Buffer) item1 := &BasicInterfaceItem{ int(1), int8(1), int16(1), int32(1), int64(1), uint(1), uint8(1), uint16(1), uint32(1), uint64(1), float32(1), 1.0, complex64(1i), complex128(1i), true, "hello", []byte("sailor"), } err := NewEncoder(b).Encode(item1) if err != nil { t.Error("expected no encode error; got", err) } item2 := &BasicInterfaceItem{} err = NewDecoder(b).Decode(&item2) if err != nil { t.Fatal("decode:", err) } if !reflect.DeepEqual(item1, item2) { t.Errorf("encode expected %v got %v", item1, item2) } // Hand check a couple for correct types. if v, ok := item2.Bool.(bool); !ok || !v { t.Error("boolean should be true") } if v, ok := item2.String.(string); !ok || v != item1.String.(string) { t.Errorf("string should be %v is %v", item1.String, v) } } type String string type PtrInterfaceItem struct { Str1 interface{} // basic Str2 interface{} // derived } // We'll send pointers; should receive values. // Also check that we can register T but send *T. func TestInterfacePointer(t *testing.T) { b := new(bytes.Buffer) str1 := "howdy" str2 := String("kiddo") item1 := &PtrInterfaceItem{ &str1, &str2, } // Register the type. Register(str2) err := NewEncoder(b).Encode(item1) if err != nil { t.Error("expected no encode error; got", err) } item2 := &PtrInterfaceItem{} err = NewDecoder(b).Decode(&item2) if err != nil { t.Fatal("decode:", err) } // Hand test for correct types and values. if v, ok := item2.Str1.(string); !ok || v != str1 { t.Errorf("basic string failed: %q should be %q", v, str1) } if v, ok := item2.Str2.(String); !ok || v != str2 { t.Errorf("derived type String failed: %q should be %q", v, str2) } } func TestIgnoreInterface(t *testing.T) { iVal := Int(3) fVal := Float(5) // Sending a Point will require that the receiver define a type in the middle of // receiving the value for item2. pVal := Point{2, 3} b := new(bytes.Buffer) item1 := &InterfaceItem{1, iVal, fVal, pVal, 11.5, nil} // Register the types. Register(Int(0)) Register(Float(0)) Register(Point{}) err := NewEncoder(b).Encode(item1) if err != nil { t.Error("expected no encode error; got", err) } item2 := NoInterfaceItem{} err = NewDecoder(b).Decode(&item2) if err != nil { t.Fatal("decode:", err) } if item2.I != item1.I { t.Error("normal int did not decode correctly") } if item2.F != item2.F { t.Error("normal float did not decode correctly") } } type U struct { A int B string c float64 D uint } func TestUnexportedFields(t *testing.T) { var u0 U u0.A = 17 u0.B = "hello" u0.c = 3.14159 u0.D = 23 b := new(bytes.Buffer) NewEncoder(b).Encode(u0) dec := NewDecoder(b) var u1 U u1.c = 1234. err := dec.Decode(&u1) if err != nil { t.Fatal("decode error:", err) } if u0.A != u0.A || u0.B != u1.B || u0.D != u1.D { t.Errorf("u1->u0: expected %v; got %v", u0, u1) } if u1.c != 1234. { t.Error("u1.c modified") } } var singletons = []interface{}{ true, 7, 3.2, "hello", [3]int{11, 22, 33}, []float32{0.5, 0.25, 0.125}, map[string]int{"one": 1, "two": 2}, } func TestDebugSingleton(t *testing.T) { if debugFunc == nil { return } b := new(bytes.Buffer) // Accumulate a number of values and print them out all at once. for _, x := range singletons { err := NewEncoder(b).Encode(x) if err != nil { t.Fatal("encode:", err) } } debugFunc(b) } // A type that won't be defined in the gob until we send it in an interface value. type OnTheFly struct { A int } type DT struct { // X OnTheFly A int B string C float64 I interface{} J interface{} I_nil interface{} M map[string]int T [3]int S []string } func newDT() DT { var dt DT dt.A = 17 dt.B = "hello" dt.C = 3.14159 dt.I = 271828 dt.J = OnTheFly{3} dt.I_nil = nil dt.M = map[string]int{"one": 1, "two": 2} dt.T = [3]int{11, 22, 33} dt.S = []string{"hi", "joe"} return dt } func TestDebugStruct(t *testing.T) { if debugFunc == nil { return } Register(OnTheFly{}) dt := newDT() b := new(bytes.Buffer) err := NewEncoder(b).Encode(dt) if err != nil { t.Fatal("encode:", err) } debugBuffer := bytes.NewBuffer(b.Bytes()) dt2 := &DT{} err = NewDecoder(b).Decode(&dt2) if err != nil { t.Error("decode:", err) } debugFunc(debugBuffer) } func encFuzzDec(rng *rand.Rand, in interface{}) error { buf := new(bytes.Buffer) enc := NewEncoder(buf) if err := enc.Encode(&in); err != nil { return err } b := buf.Bytes() for i, bi := range b { if rng.Intn(10) < 3 { b[i] = bi + uint8(rng.Intn(256)) } } dec := NewDecoder(buf) var e interface{} if err := dec.Decode(&e); err != nil { return err } return nil } // This does some "fuzz testing" by attempting to decode a sequence of random bytes. func TestFuzz(t *testing.T) { if !*doFuzzTests { t.Logf("disabled; run with -gob.fuzz to enable") return } // all possible inputs input := []interface{}{ new(int), new(float32), new(float64), new(complex128), &ByteStruct{255}, &ArrayStruct{}, &StringStruct{"hello"}, &GobTest1{0, &StringStruct{"hello"}}, } testFuzz(t, time.Now().UnixNano(), 100, input...) } func TestFuzzRegressions(t *testing.T) { if !*doFuzzTests { t.Logf("disabled; run with -gob.fuzz to enable") return } // An instance triggering a type name of length ~102 GB. testFuzz(t, 1328492090837718000, 100, new(float32)) // An instance triggering a type name of 1.6 GB. // Note: can take several minutes to run. testFuzz(t, 1330522872628565000, 100, new(int)) } func testFuzz(t *testing.T, seed int64, n int, input ...interface{}) { for _, e := range input { t.Logf("seed=%d n=%d e=%T", seed, n, e) rng := rand.New(rand.NewSource(seed)) for i := 0; i < n; i++ { encFuzzDec(rng, e) } } } // TestFuzzOneByte tries to decode corrupted input sequences // and checks that no panic occurs. func TestFuzzOneByte(t *testing.T) { buf := new(bytes.Buffer) Register(OnTheFly{}) dt := newDT() if err := NewEncoder(buf).Encode(dt); err != nil { t.Fatal(err) } s := buf.String() indices := make([]int, 0, len(s)) for i := 0; i < len(s); i++ { switch i { case 14, 167, 231, 265: // a slice length, corruptions are not handled yet. continue } indices = append(indices, i) } if testing.Short() { indices = []int{1, 111, 178} // known fixed panics } for _, i := range indices { for j := 0; j < 256; j += 3 { b := []byte(s) b[i] ^= byte(j) var e DT func() { defer func() { if p := recover(); p != nil { t.Errorf("crash for b[%d] ^= 0x%x", i, j) panic(p) } }() err := NewDecoder(bytes.NewReader(b)).Decode(&e) _ = err }() } } } // Don't crash, just give error with invalid type id. // Issue 9649. func TestErrorInvalidTypeId(t *testing.T) { data := []byte{0x01, 0x00, 0x01, 0x00} d := NewDecoder(bytes.NewReader(data)) // When running d.Decode(&foo) the first time the decoder stops // after []byte{0x01, 0x00} and reports an errBadType. Running // d.Decode(&foo) again on exactly the same input sequence should // give another errBadType, but instead caused a panic because // decoderMap wasn't cleaned up properly after the first error. for i := 0; i < 2; i++ { var foo struct{} err := d.Decode(&foo) if err != errBadType { t.Fatal("decode: expected %s, got %s", errBadType, err) } } }