// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" // using frame size $-4 means do not save LR on stack. TEXT runtime·rt0_go(SB),NOSPLIT,$-4 MOVW $0xcafebabe, R12 // copy arguments forward on an even stack // use R13 instead of SP to avoid linker rewriting the offsets MOVW 0(R13), R0 // argc MOVW 4(R13), R1 // argv SUB $64, R13 // plenty of scratch AND $~7, R13 MOVW R0, 60(R13) // save argc, argv away MOVW R1, 64(R13) // set up g register // g is R10 MOVW $runtime·g0(SB), g MOVW $runtime·m0(SB), R8 // save m->g0 = g0 MOVW g, m_g0(R8) // save g->m = m0 MOVW R8, g_m(g) // create istack out of the OS stack MOVW $(-8192+104)(R13), R0 MOVW R0, g_stackguard0(g) MOVW R0, g_stackguard1(g) MOVW R0, (g_stack+stack_lo)(g) MOVW R13, (g_stack+stack_hi)(g) BL runtime·emptyfunc(SB) // fault if stack check is wrong BL runtime·_initcgo(SB) // will clobber R0-R3 // update stackguard after _cgo_init MOVW (g_stack+stack_lo)(g), R0 ADD $const__StackGuard, R0 MOVW R0, g_stackguard0(g) MOVW R0, g_stackguard1(g) BL runtime·check(SB) // saved argc, argv MOVW 60(R13), R0 MOVW R0, 4(R13) MOVW 64(R13), R1 MOVW R1, 8(R13) BL runtime·args(SB) BL runtime·checkgoarm(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVW $runtime·mainPC(SB), R0 MOVW.W R0, -4(R13) MOVW $8, R0 MOVW.W R0, -4(R13) MOVW $0, R0 MOVW.W R0, -4(R13) // push $0 as guard BL runtime·newproc(SB) MOVW $12(R13), R13 // pop args and LR // start this M BL runtime·mstart(SB) MOVW $1234, R0 MOVW $1000, R1 MOVW R0, (R1) // fail hard DATA runtime·mainPC+0(SB)/4,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 // gdb won't skip this breakpoint instruction automatically, // so you must manually "set $pc+=4" to skip it and continue. #ifdef GOOS_nacl WORD $0xe125be7f // BKPT 0x5bef, NACL_INSTR_ARM_BREAKPOINT #else WORD $0xe7f001f0 // undefined instruction that gdb understands is a software breakpoint #endif RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // disable runfast (flush-to-zero) mode of vfp if runtime.goarm > 5 MOVB runtime·goarm(SB), R11 CMP $5, R11 BLE 4(PC) WORD $0xeef1ba10 // vmrs r11, fpscr BIC $(1<<24), R11 WORD $0xeee1ba10 // vmsr fpscr, r11 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB),NOSPLIT,$-4-4 MOVW buf+0(FP), R0 MOVW R13, gobuf_sp(R0) MOVW LR, gobuf_pc(R0) MOVW g, gobuf_g(R0) MOVW $0, R11 MOVW R11, gobuf_lr(R0) MOVW R11, gobuf_ret(R0) MOVW R11, gobuf_ctxt(R0) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB),NOSPLIT,$-4-4 MOVW buf+0(FP), R1 MOVW gobuf_g(R1), R0 BL setg<>(SB) // NOTE: We updated g above, and we are about to update SP. // Until LR and PC are also updated, the g/SP/LR/PC quadruple // are out of sync and must not be used as the basis of a traceback. // Sigprof skips the traceback when SP is not within g's bounds, // and when the PC is inside this function, runtime.gogo. // Since we are about to update SP, until we complete runtime.gogo // we must not leave this function. In particular, no calls // after this point: it must be straight-line code until the // final B instruction. // See large comment in sigprof for more details. MOVW gobuf_sp(R1), R13 // restore SP==R13 MOVW gobuf_lr(R1), LR MOVW gobuf_ret(R1), R0 MOVW gobuf_ctxt(R1), R7 MOVW $0, R11 MOVW R11, gobuf_sp(R1) // clear to help garbage collector MOVW R11, gobuf_ret(R1) MOVW R11, gobuf_lr(R1) MOVW R11, gobuf_ctxt(R1) MOVW gobuf_pc(R1), R11 CMP R11, R11 // set condition codes for == test, needed by stack split B (R11) // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB),NOSPLIT,$-4-4 // Save caller state in g->sched. MOVW R13, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_pc)(g) MOVW $0, R11 MOVW R11, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVW g, R1 MOVW g_m(g), R8 MOVW m_g0(R8), R0 BL setg<>(SB) CMP g, R1 B.NE 2(PC) B runtime·badmcall(SB) MOVB runtime·iscgo(SB), R11 CMP $0, R11 BL.NE runtime·save_g(SB) MOVW fn+0(FP), R0 MOVW (g_sched+gobuf_sp)(g), R13 SUB $8, R13 MOVW R1, 4(R13) MOVW R0, R7 MOVW 0(R0), R0 BL (R0) B runtime·badmcall2(SB) RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0 MOVW $0, R0 BL (R0) // clobber lr to ensure push {lr} is kept RET // func systemstack(fn func()) TEXT runtime·systemstack(SB),NOSPLIT,$0-4 MOVW fn+0(FP), R0 // R0 = fn MOVW g_m(g), R1 // R1 = m MOVW m_gsignal(R1), R2 // R2 = gsignal CMP g, R2 B.EQ noswitch MOVW m_g0(R1), R2 // R2 = g0 CMP g, R2 B.EQ noswitch MOVW m_curg(R1), R3 CMP g, R3 B.EQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVW $runtime·badsystemstack(SB), R0 BL (R0) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVW $runtime·systemstack_switch(SB), R3 #ifdef GOOS_nacl ADD $4, R3, R3 // get past nacl-insert bic instruction #endif ADD $4, R3, R3 // get past push {lr} MOVW R3, (g_sched+gobuf_pc)(g) MOVW R13, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // switch to g0 MOVW R0, R5 MOVW R2, R0 BL setg<>(SB) MOVW R5, R0 MOVW (g_sched+gobuf_sp)(R2), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $4, R3, R3 MOVW $runtime·mstart(SB), R4 MOVW R4, 0(R3) MOVW R3, R13 // call target function MOVW R0, R7 MOVW 0(R0), R0 BL (R0) // switch back to g MOVW g_m(g), R1 MOVW m_curg(R1), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R13 MOVW $0, R3 MOVW R3, (g_sched+gobuf_sp)(g) RET noswitch: MOVW R0, R7 MOVW 0(R0), R0 BL (R0) RET /* * support for morestack */ // Called during function prolog when more stack is needed. // R1 frame size // R3 prolog's LR // NB. we do not save R0 because we've forced 5c to pass all arguments // on the stack. // using frame size $-4 means do not save LR on stack. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$-4-0 // Cannot grow scheduler stack (m->g0). MOVW g_m(g), R8 MOVW m_g0(R8), R4 CMP g, R4 BL.EQ runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVW m_gsignal(R8), R4 CMP g, R4 BL.EQ runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVW R7, (g_sched+gobuf_ctxt)(g) MOVW R13, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_pc)(g) MOVW R3, (g_sched+gobuf_lr)(g) // Called from f. // Set m->morebuf to f's caller. MOVW R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC MOVW R13, (m_morebuf+gobuf_sp)(R8) // f's caller's SP MOVW $4(R13), R3 // f's argument pointer MOVW g, (m_morebuf+gobuf_g)(R8) // Call newstack on m->g0's stack. MOVW m_g0(R8), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R13 BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. RET TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-4-0 MOVW $0, R7 B runtime·morestack(SB) TEXT runtime·stackBarrier(SB),NOSPLIT,$0 // We came here via a RET to an overwritten LR. // R0 may be live. Other registers are available. // Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal. MOVW (g_stkbar+slice_array)(g), R4 MOVW g_stkbarPos(g), R5 MOVW $stkbar__size, R6 MUL R5, R6 ADD R4, R6 MOVW stkbar_savedLRVal(R6), R6 // Record that this stack barrier was hit. ADD $1, R5 MOVW R5, g_stkbarPos(g) // Jump to the original return PC. B (R6) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMP $MAXSIZE, R0; \ B.HI 3(PC); \ MOVW $NAME(SB), R1; \ B (R1) TEXT reflect·call(SB), NOSPLIT, $0-0 B ·reflectcall(SB) TEXT ·reflectcall(SB),NOSPLIT,$-4-20 MOVW argsize+12(FP), R0 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVW $runtime·badreflectcall(SB), R1 B (R1) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-20; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVW argptr+8(FP), R0; \ MOVW argsize+12(FP), R2; \ ADD $4, R13, R1; \ CMP $0, R2; \ B.EQ 5(PC); \ MOVBU.P 1(R0), R5; \ MOVBU.P R5, 1(R1); \ SUB $1, R2, R2; \ B -5(PC); \ /* call function */ \ MOVW f+4(FP), R7; \ MOVW (R7), R0; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (R0); \ /* copy return values back */ \ MOVW argptr+8(FP), R0; \ MOVW argsize+12(FP), R2; \ MOVW retoffset+16(FP), R3; \ ADD $4, R13, R1; \ ADD R3, R1; \ ADD R3, R0; \ SUB R3, R2; \ loop: \ CMP $0, R2; \ B.EQ end; \ MOVBU.P 1(R1), R5; \ MOVBU.P R5, 1(R0); \ SUB $1, R2, R2; \ B loop; \ end: \ /* execute write barrier updates */ \ MOVW argtype+0(FP), R1; \ MOVW argptr+8(FP), R0; \ MOVW argsize+12(FP), R2; \ MOVW retoffset+16(FP), R3; \ MOVW R1, 4(R13); \ MOVW R0, 8(R13); \ MOVW R2, 12(R13); \ MOVW R3, 16(R13); \ BL runtime·callwritebarrier(SB); \ RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // void jmpdefer(fn, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 4 bytes to get back to BL deferreturn // 3. B to fn // TODO(rsc): Push things on stack and then use pop // to load all registers simultaneously, so that a profiling // interrupt can never see mismatched SP/LR/PC. // (And double-check that pop is atomic in that way.) TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8 MOVW 0(R13), LR MOVW $-4(LR), LR // BL deferreturn MOVW fv+0(FP), R7 MOVW argp+4(FP), R13 MOVW $-4(R13), R13 // SP is 4 below argp, due to saved LR MOVW 0(R7), R1 B (R1) // Save state of caller into g->sched. Smashes R11. TEXT gosave<>(SB),NOSPLIT,$0 MOVW LR, (g_sched+gobuf_pc)(g) MOVW R13, (g_sched+gobuf_sp)(g) MOVW $0, R11 MOVW R11, (g_sched+gobuf_lr)(g) MOVW R11, (g_sched+gobuf_ret)(g) MOVW R11, (g_sched+gobuf_ctxt)(g) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-12 MOVW fn+0(FP), R1 MOVW arg+4(FP), R0 MOVW R13, R2 MOVW g, R4 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVW g_m(g), R8 MOVW m_g0(R8), R3 CMP R3, g BEQ g0 BL gosave<>(SB) MOVW R0, R5 MOVW R3, R0 BL setg<>(SB) MOVW R5, R0 MOVW (g_sched+gobuf_sp)(g), R13 // Now on a scheduling stack (a pthread-created stack). g0: SUB $24, R13 BIC $0x7, R13 // alignment for gcc ABI MOVW R4, 20(R13) // save old g MOVW (g_stack+stack_hi)(R4), R4 SUB R2, R4 MOVW R4, 16(R13) // save depth in stack (can't just save SP, as stack might be copied during a callback) BL (R1) // Restore registers, g, stack pointer. MOVW R0, R5 MOVW 20(R13), R0 BL setg<>(SB) MOVW (g_stack+stack_hi)(g), R1 MOVW 16(R13), R2 SUB R2, R1 MOVW R5, R0 MOVW R1, R13 MOVW R0, ret+8(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$12-12 MOVW $fn+0(FP), R0 MOVW R0, 4(R13) MOVW frame+4(FP), R0 MOVW R0, 8(R13) MOVW framesize+8(FP), R0 MOVW R0, 12(R13) MOVW $runtime·cgocallback_gofunc(SB), R0 BL (R0) RET // cgocallback_gofunc(void (*fn)(void*), void *frame, uintptr framesize) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$8-12 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R0 CMP $0, R0 BL.NE runtime·load_g(SB) // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP $0, g B.NE havem MOVW g, savedm-4(SP) // g is zero, so is m. MOVW $runtime·needm(SB), R0 BL (R0) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVW g_m(g), R8 MOVW m_g0(R8), R3 MOVW R13, (g_sched+gobuf_sp)(R3) havem: MOVW g_m(g), R8 MOVW R8, savedm-4(SP) // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 4(R13) aka savedsp-8(SP). MOVW m_g0(R8), R3 MOVW (g_sched+gobuf_sp)(R3), R4 MOVW R4, savedsp-8(SP) MOVW R13, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -8(SP) and -4(SP) are unused. MOVW m_curg(R8), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVW (g_sched+gobuf_pc)(g), R5 MOVW R5, -12(R4) MOVW $-12(R4), R13 BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVW 0(R13), R5 MOVW R5, (g_sched+gobuf_pc)(g) MOVW $12(R13), R4 MOVW R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVW g_m(g), R8 MOVW m_g0(R8), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R13 MOVW savedsp-8(SP), R4 MOVW R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVW savedm-4(SP), R6 CMP $0, R6 B.NE 3(PC) MOVW $runtime·dropm(SB), R0 BL (R0) // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB),NOSPLIT,$-4-4 MOVW gg+0(FP), R0 B setg<>(SB) TEXT setg<>(SB),NOSPLIT,$-4-0 MOVW R0, g // Save g to thread-local storage. MOVB runtime·iscgo(SB), R0 CMP $0, R0 B.EQ 2(PC) B runtime·save_g(SB) MOVW g, R0 RET TEXT runtime·getcallerpc(SB),NOSPLIT,$4-8 MOVW 8(R13), R0 // LR saved by caller MOVW runtime·stackBarrierPC(SB), R1 CMP R0, R1 BNE nobar // Get original return PC. BL runtime·nextBarrierPC(SB) MOVW 4(R13), R0 nobar: MOVW R0, ret+4(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$4-8 MOVW pc+4(FP), R0 MOVW 8(R13), R1 MOVW runtime·stackBarrierPC(SB), R2 CMP R1, R2 BEQ setbar MOVW R0, 8(R13) // set LR in caller RET setbar: // Set the stack barrier return PC. MOVW R0, 4(R13) BL runtime·setNextBarrierPC(SB) RET TEXT runtime·getcallersp(SB),NOSPLIT,$-4-8 MOVW argp+0(FP), R0 MOVW $-4(R0), R0 MOVW R0, ret+4(FP) RET TEXT runtime·emptyfunc(SB),0,$0-0 RET TEXT runtime·abort(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 // bool armcas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // }else // return 0; // // To implement runtime·cas in sys_$GOOS_arm.s // using the native instructions, use: // // TEXT runtime·cas(SB),NOSPLIT,$0 // B runtime·armcas(SB) // TEXT runtime·armcas(SB),NOSPLIT,$0-13 MOVW valptr+0(FP), R1 MOVW old+4(FP), R2 MOVW new+8(FP), R3 casl: LDREX (R1), R0 CMP R0, R2 BNE casfail MOVB runtime·goarm(SB), R11 CMP $7, R11 BLT 2(PC) WORD $0xf57ff05a // dmb ishst STREX R3, (R1), R0 CMP $0, R0 BNE casl MOVW $1, R0 MOVB runtime·goarm(SB), R11 CMP $7, R11 BLT 2(PC) WORD $0xf57ff05b // dmb ish MOVB R0, ret+12(FP) RET casfail: MOVW $0, R0 MOVB R0, ret+12(FP) RET TEXT runtime·casuintptr(SB),NOSPLIT,$0-13 B runtime·cas(SB) TEXT runtime·atomicloaduintptr(SB),NOSPLIT,$0-8 B runtime·atomicload(SB) TEXT runtime·atomicloaduint(SB),NOSPLIT,$0-8 B runtime·atomicload(SB) TEXT runtime·atomicstoreuintptr(SB),NOSPLIT,$0-8 B runtime·atomicstore(SB) // armPublicationBarrier is a native store/store barrier for ARMv7+. // On earlier ARM revisions, armPublicationBarrier is a no-op. // This will not work on SMP ARMv6 machines, if any are in use. // To implement publiationBarrier in sys_$GOOS_arm.s using the native // instructions, use: // // TEXT ·publicationBarrier(SB),NOSPLIT,$-4-0 // B runtime·armPublicationBarrier(SB) // TEXT runtime·armPublicationBarrier(SB),NOSPLIT,$-4-0 MOVB runtime·goarm(SB), R11 CMP $7, R11 BLT 2(PC) WORD $0xf57ff05e // DMB ST RET // AES hashing not implemented for ARM TEXT runtime·aeshash(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 // memhash_varlen(p unsafe.Pointer, h seed) uintptr // redirects to memhash(p, h, size) using the size // stored in the closure. TEXT runtime·memhash_varlen(SB),NOSPLIT,$16-12 GO_ARGS NO_LOCAL_POINTERS MOVW p+0(FP), R0 MOVW h+4(FP), R1 MOVW 4(R7), R2 MOVW R0, 4(R13) MOVW R1, 8(R13) MOVW R2, 12(R13) BL runtime·memhash(SB) MOVW 16(R13), R0 MOVW R0, ret+8(FP) RET TEXT runtime·memeq(SB),NOSPLIT,$-4-13 MOVW a+0(FP), R1 MOVW b+4(FP), R2 MOVW size+8(FP), R3 ADD R1, R3, R6 MOVW $1, R0 MOVB R0, ret+12(FP) loop: CMP R1, R6 RET.EQ MOVBU.P 1(R1), R4 MOVBU.P 1(R2), R5 CMP R4, R5 BEQ loop MOVW $0, R0 MOVB R0, ret+12(FP) RET // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$16-9 MOVW a+0(FP), R0 MOVW b+4(FP), R1 CMP R0, R1 BEQ eq MOVW 4(R7), R2 // compiler stores size at offset 4 in the closure MOVW R0, 4(R13) MOVW R1, 8(R13) MOVW R2, 12(R13) BL runtime·memeq(SB) MOVB 16(R13), R0 MOVB R0, ret+8(FP) RET eq: MOVW $1, R0 MOVB R0, ret+8(FP) RET TEXT runtime·cmpstring(SB),NOSPLIT,$-4-20 MOVW s1_base+0(FP), R2 MOVW s1_len+4(FP), R0 MOVW s2_base+8(FP), R3 MOVW s2_len+12(FP), R1 ADD $20, R13, R7 B runtime·cmpbody(SB) TEXT bytes·Compare(SB),NOSPLIT,$-4-28 MOVW s1+0(FP), R2 MOVW s1+4(FP), R0 MOVW s2+12(FP), R3 MOVW s2+16(FP), R1 ADD $28, R13, R7 B runtime·cmpbody(SB) // On entry: // R0 is the length of s1 // R1 is the length of s2 // R2 points to the start of s1 // R3 points to the start of s2 // R7 points to return value (-1/0/1 will be written here) // // On exit: // R4, R5, and R6 are clobbered TEXT runtime·cmpbody(SB),NOSPLIT,$-4-0 CMP R0, R1 MOVW R0, R6 MOVW.LT R1, R6 // R6 is min(R0, R1) ADD R2, R6 // R2 is current byte in s1, R6 is last byte in s1 to compare loop: CMP R2, R6 BEQ samebytes // all compared bytes were the same; compare lengths MOVBU.P 1(R2), R4 MOVBU.P 1(R3), R5 CMP R4, R5 BEQ loop // bytes differed MOVW.LT $1, R0 MOVW.GT $-1, R0 MOVW R0, (R7) RET samebytes: CMP R0, R1 MOVW.LT $1, R0 MOVW.GT $-1, R0 MOVW.EQ $0, R0 MOVW R0, (R7) RET // eqstring tests whether two strings are equal. // The compiler guarantees that strings passed // to eqstring have equal length. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$-4-17 MOVW s1str+0(FP), R2 MOVW s2str+8(FP), R3 MOVW $1, R8 MOVB R8, v+16(FP) CMP R2, R3 RET.EQ MOVW s1len+4(FP), R0 ADD R2, R0, R6 loop: CMP R2, R6 RET.EQ MOVBU.P 1(R2), R4 MOVBU.P 1(R3), R5 CMP R4, R5 BEQ loop MOVW $0, R8 MOVB R8, v+16(FP) RET // TODO: share code with memeq? TEXT bytes·Equal(SB),NOSPLIT,$0-25 MOVW a_len+4(FP), R1 MOVW b_len+16(FP), R3 CMP R1, R3 // unequal lengths are not equal B.NE notequal MOVW a+0(FP), R0 MOVW b+12(FP), R2 ADD R0, R1 // end loop: CMP R0, R1 B.EQ equal // reached the end MOVBU.P 1(R0), R4 MOVBU.P 1(R2), R5 CMP R4, R5 B.EQ loop notequal: MOVW $0, R0 MOVBU R0, ret+24(FP) RET equal: MOVW $1, R0 MOVBU R0, ret+24(FP) RET TEXT bytes·IndexByte(SB),NOSPLIT,$0-20 MOVW s+0(FP), R0 MOVW s_len+4(FP), R1 MOVBU c+12(FP), R2 // byte to find MOVW R0, R4 // store base for later ADD R0, R1 // end _loop: CMP R0, R1 B.EQ _notfound MOVBU.P 1(R0), R3 CMP R2, R3 B.NE _loop SUB $1, R0 // R0 will be one beyond the position we want SUB R4, R0 // remove base MOVW R0, ret+16(FP) RET _notfound: MOVW $-1, R0 MOVW R0, ret+16(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0-16 MOVW s+0(FP), R0 MOVW s_len+4(FP), R1 MOVBU c+8(FP), R2 // byte to find MOVW R0, R4 // store base for later ADD R0, R1 // end _sib_loop: CMP R0, R1 B.EQ _sib_notfound MOVBU.P 1(R0), R3 CMP R2, R3 B.NE _sib_loop SUB $1, R0 // R0 will be one beyond the position we want SUB R4, R0 // remove base MOVW R0, ret+12(FP) RET _sib_notfound: MOVW $-1, R0 MOVW R0, ret+12(FP) RET TEXT runtime·fastrand1(SB),NOSPLIT,$-4-4 MOVW g_m(g), R1 MOVW m_fastrand(R1), R0 ADD.S R0, R0 EOR.MI $0x88888eef, R0 MOVW R0, m_fastrand(R1) MOVW R0, ret+0(FP) RET TEXT runtime·return0(SB),NOSPLIT,$0 MOVW $0, R0 RET TEXT runtime·procyield(SB),NOSPLIT,$-4 MOVW cycles+0(FP), R1 MOVW $0, R0 yieldloop: CMP R0, R1 B.NE 2(PC) RET SUB $1, R1 B yieldloop // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$8 // R11 and g register are clobbered by load_g. They are // callee-save in the gcc calling convention, so save them here. MOVW R11, saveR11-4(SP) MOVW g, saveG-8(SP) BL runtime·load_g(SB) MOVW g_m(g), R0 MOVW m_curg(R0), R0 MOVW (g_stack+stack_hi)(R0), R0 MOVW saveG-8(SP), g MOVW saveR11-4(SP), R11 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$-4-0 MOVW R0, R0 // NOP BL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit MOVW R0, R0 // NOP TEXT runtime·prefetcht0(SB),NOSPLIT,$0-4 RET TEXT runtime·prefetcht1(SB),NOSPLIT,$0-4 RET TEXT runtime·prefetcht2(SB),NOSPLIT,$0-4 RET TEXT runtime·prefetchnta(SB),NOSPLIT,$0-4 RET // x -> x/1000000, x%1000000, called from Go with args, results on stack. TEXT runtime·usplit(SB),NOSPLIT,$0-12 MOVW x+0(FP), R0 CALL runtime·usplitR0(SB) MOVW R0, q+4(FP) MOVW R1, r+8(FP) RET // R0, R1 = R0/1000000, R0%1000000 TEXT runtime·usplitR0(SB),NOSPLIT,$0 // magic multiply to avoid software divide without available m. // see output of go tool compile -S for x/1000000. MOVW R0, R3 MOVW $1125899907, R1 MULLU R1, R0, (R0, R1) MOVW R0>>18, R0 MOVW $1000000, R1 MULU R0, R1 SUB R1, R3, R1 RET