// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" const ( _ESRCH = 3 _EAGAIN = 35 _EWOULDBLOCK = _EAGAIN _ENOTSUP = 91 // From OpenBSD's sys/time.h _CLOCK_REALTIME = 0 _CLOCK_VIRTUAL = 1 _CLOCK_PROF = 2 _CLOCK_MONOTONIC = 3 ) const ( sigset_none = uint32(0) sigset_all = ^uint32(0) ) // From OpenBSD's <sys/sysctl.h> const ( _CTL_HW = 6 _HW_NCPU = 3 ) func getncpu() int32 { mib := [2]uint32{_CTL_HW, _HW_NCPU} out := uint32(0) nout := unsafe.Sizeof(out) // Fetch hw.ncpu via sysctl. ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret >= 0 { return int32(out) } return 1 } //go:nosplit func semacreate() uintptr { return 1 } //go:nosplit func semasleep(ns int64) int32 { _g_ := getg() // Compute sleep deadline. var tsp *timespec if ns >= 0 { var ts timespec var nsec int32 ns += nanotime() ts.set_sec(int64(timediv(ns, 1000000000, &nsec))) ts.set_nsec(nsec) tsp = &ts } for { v := atomicload(&_g_.m.waitsemacount) if v > 0 { if cas(&_g_.m.waitsemacount, v, v-1) { return 0 // semaphore acquired } continue } // Sleep until woken by semawakeup or timeout; or abort if waitsemacount != 0. // // From OpenBSD's __thrsleep(2) manual: // "The abort argument, if not NULL, points to an int that will // be examined [...] immediately before blocking. If that int // is non-zero then __thrsleep() will immediately return EINTR // without blocking." ret := thrsleep(uintptr(unsafe.Pointer(&_g_.m.waitsemacount)), _CLOCK_MONOTONIC, tsp, 0, &_g_.m.waitsemacount) if ret == _EWOULDBLOCK { return -1 } } } //go:nosplit func semawakeup(mp *m) { xadd(&mp.waitsemacount, 1) ret := thrwakeup(uintptr(unsafe.Pointer(&mp.waitsemacount)), 1) if ret != 0 && ret != _ESRCH { // semawakeup can be called on signal stack. systemstack(func() { print("thrwakeup addr=", &mp.waitsemacount, " sem=", mp.waitsemacount, " ret=", ret, "\n") }) } } // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrier func newosproc(mp *m, stk unsafe.Pointer) { if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int32(mp.tls[0]), " ostk=", &mp, "\n") } mp.tls[0] = uintptr(mp.id) // so 386 asm can find it param := tforkt{ tf_tcb: unsafe.Pointer(&mp.tls[0]), tf_tid: (*int32)(unsafe.Pointer(&mp.procid)), tf_stack: uintptr(stk), } oset := sigprocmask(_SIG_SETMASK, sigset_all) ret := tfork(¶m, unsafe.Sizeof(param), mp, mp.g0, funcPC(mstart)) sigprocmask(_SIG_SETMASK, oset) if ret < 0 { print("runtime: failed to create new OS thread (have ", mcount()-1, " already; errno=", -ret, ")\n") throw("runtime.newosproc") } } func osinit() { ncpu = getncpu() } var urandom_dev = []byte("/dev/urandom\x00") //go:nosplit func getRandomData(r []byte) { fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) closefd(fd) extendRandom(r, int(n)) } func goenvs() { goenvs_unix() } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) mp.gsignal.m = mp } func msigsave(mp *m) { smask := (*uint32)(unsafe.Pointer(&mp.sigmask)) if unsafe.Sizeof(*smask) > unsafe.Sizeof(mp.sigmask) { throw("insufficient storage for signal mask") } *smask = sigprocmask(_SIG_BLOCK, 0) } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. func minit() { _g_ := getg() // m.procid is a uint64, but tfork writes an int32. Fix it up. _g_.m.procid = uint64(*(*int32)(unsafe.Pointer(&_g_.m.procid))) // Initialize signal handling signalstack(&_g_.m.gsignal.stack) // restore signal mask from m.sigmask and unblock essential signals nmask := *(*uint32)(unsafe.Pointer(&_g_.m.sigmask)) for i := range sigtable { if sigtable[i].flags&_SigUnblock != 0 { nmask &^= 1 << (uint32(i) - 1) } } sigprocmask(_SIG_SETMASK, nmask) } // Called from dropm to undo the effect of an minit. func unminit() { _g_ := getg() smask := *(*uint32)(unsafe.Pointer(&_g_.m.sigmask)) sigprocmask(_SIG_SETMASK, smask) signalstack(nil) } func memlimit() uintptr { return 0 } func sigtramp() type sigactiont struct { sa_sigaction uintptr sa_mask uint32 sa_flags int32 } func setsig(i int32, fn uintptr, restart bool) { var sa sigactiont sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK if restart { sa.sa_flags |= _SA_RESTART } sa.sa_mask = sigset_all if fn == funcPC(sighandler) { fn = funcPC(sigtramp) } sa.sa_sigaction = fn sigaction(i, &sa, nil) } func setsigstack(i int32) { throw("setsigstack") } func getsig(i int32) uintptr { var sa sigactiont sigaction(i, nil, &sa) if sa.sa_sigaction == funcPC(sigtramp) { return funcPC(sighandler) } return sa.sa_sigaction } func signalstack(s *stack) { var st stackt if s == nil { st.ss_flags = _SS_DISABLE } else { st.ss_sp = s.lo st.ss_size = s.hi - s.lo st.ss_flags = 0 } sigaltstack(&st, nil) } func updatesigmask(m sigmask) { sigprocmask(_SIG_SETMASK, m[0]) } func unblocksig(sig int32) { mask := uint32(1) << (uint32(sig) - 1) sigprocmask(_SIG_UNBLOCK, mask) }