// // std::map // %include <std_pair.i> %include <std_container.i> %define %std_map_methods_common(map...) %std_container_methods(map); size_type erase(const key_type& x); size_type count(const key_type& x) const; #ifdef SWIG_EXPORT_ITERATOR_METHODS // iterator insert(iterator position, const value_type& x); void erase(iterator position); void erase(iterator first, iterator last); iterator find(const key_type& x); iterator lower_bound(const key_type& x); iterator upper_bound(const key_type& x); #endif %enddef %define %std_map_methods(map...) %std_map_methods_common(map); #ifdef SWIG_EXPORT_ITERATOR_METHODS // iterator insert(const value_type& x); #endif %enddef // ------------------------------------------------------------------------ // std::map // // const declarations are used to guess the intent of the function being // exported; therefore, the following rationale is applied: // // -- f(std::map<T>), f(const std::map<T>&): // the parameter being read-only, either a sequence or a // previously wrapped std::map<T> can be passed. // -- f(std::map<T>&), f(std::map<T>*): // the parameter may be modified; therefore, only a wrapped std::map // can be passed. // -- std::map<T> f(), const std::map<T>& f(): // the map is returned by copy; therefore, a sequence of T:s // is returned which is most easily used in other functions // -- std::map<T>& f(), std::map<T>* f(): // the map is returned by reference; therefore, a wrapped std::map // is returned // -- const std::map<T>* f(), f(const std::map<T>*): // for consistency, they expect and return a plain map pointer. // ------------------------------------------------------------------------ %{ #include <map> #include <algorithm> #include <stdexcept> %} // exported class namespace std { template<class _Key, class _Tp, class _Compare = std::less<_Key >, class _Alloc = allocator<std::pair<const _Key, _Tp > > > class map { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Key key_type; typedef _Tp mapped_type; typedef std::pair<const _Key, _Tp> value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef _Alloc allocator_type; %traits_swigtype(_Key); %traits_swigtype(_Tp); %fragment(SWIG_Traits_frag(std::pair< _Key, _Tp >), "header", fragment=SWIG_Traits_frag(_Key), fragment=SWIG_Traits_frag(_Tp), fragment="StdPairTraits") { namespace swig { template <> struct traits<std::pair< _Key, _Tp > > { typedef pointer_category category; static const char* type_name() { return "std::pair<" #_Key "," #_Tp " >"; } }; } } %fragment(SWIG_Traits_frag(std::map<_Key, _Tp, _Compare, _Alloc >), "header", fragment=SWIG_Traits_frag(std::pair<_Key, _Tp >), fragment="StdMapTraits") { namespace swig { template <> struct traits<std::map<_Key, _Tp, _Compare, _Alloc > > { typedef pointer_category category; static const char* type_name() { return "std::map<" #_Key "," #_Tp "," #_Compare "," #_Alloc " >"; } }; } } %typemap_traits_ptr(SWIG_TYPECHECK_MAP, std::map<_Key, _Tp, _Compare, _Alloc >); map( const _Compare& ); #ifdef %swig_map_methods // Add swig/language extra methods %swig_map_methods(std::map<_Key, _Tp, _Compare, _Alloc >); #endif %std_map_methods(map); }; }